Preprint
Article

Evaluating and Zoning Flood Susceptibility Using Curve Number (CN) Logistic and Hydrological Regression Model (Case Study of Kalateh Qanbar Drainage Basin, Nishabur)

Altmetrics

Downloads

323

Views

225

Comments

0

Submitted:

24 December 2020

Posted:

25 December 2020

You are already at the latest version

Alerts
Abstract
Spatial evaluation of flood-prone areas at the drainage basins is one of the basic strategies in the field of flood risk management. The present study aims to investigate the efficiency of the CN logistic and hydrological regression model for predicting and zoning floods. In the first stage, 13 runoff parameters, hydrologic soil groups (HSGs), slope, lithology, drainage density (DD), land curvature, elevation, distance to waterways/rivers, topographic wetness index (TWI), stream power index (SPI), rainfall, land use, and NDVI were employed. In the SCS-CN model of the drainage basin, the infiltration rate (S) and runoff amount (Q) were determined. The weights of the used layers were weighted by the AHP. Also, a flood zoning map of the drainage basin with different 5, 15, 25, and 50 year return periods was drawn by applying the weights of the layers. To ensure the accuracy of the zoning map with the logistic regression model, the ROC curve, and the area below the curve were used. The results showed that for the prediction rate, the AUC is 0.81%, indicating that the model has acceptable accuracy. The most important factors affecting flood are geological index; distance to waterways/rivers; and NDVI in the logistic regression model, and slope, DD, rainfall, and land use in the SCS-CN model respectively. 30 to 46% of the drainage basin area during 5 to 50 year periods has moderate flood potential, and 28 to 34% has high potential.
Keywords: 
Subject: Environmental and Earth Sciences  -   Atmospheric Science and Meteorology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated