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1. Introduction

Psychometricians have long acknowledged the presence and impact of measurement
error. The very first principle of Classical Test Theory dictates that X=T+E. This equation
suggests that an observed score (X) represents not only a measurement of the entity of
interest, or the true score (T), but also some level of error (E) that distorts the researcher’s
observation. If researchers could determine the portion of an observed score that consists of
the true score and of error, they could simply focus their analyses upon true-score values to
obtain actual representations of the conditions they study. However, because error scores exist
as latent components of observed scores, researchers cannot determine the exact extent to
which they affect their data and the statistics computed from that data.

Despite the lack of such detailed information, some general understanding of the
consequences that error scores can have upon statistics exists. Psychometricians know, for
instance, that the presence of measurement error causes the correlation between observed
scores to fall below that of true scores, a phenomenon known as attenuation (Carrol, Ruppert,
and Stefanski 1995). But, the inability to obtain an actual true score or error score makes it
impossible to determine the exact degree to which the observed score correlation
underestimates the true score correlation.

This attenuation effect was first recognized by Spearman in 1904. Spearman, resigned to
only estimate the correlation between true scores, proposed a formula to theoretically

counteract the effects of attenuation on pairwise correlation coefficients. In his formula,

Pr r,=_PxY . (1)
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P, represents an estimate of the Pearson correlation coefficient between true scores the

numerator contains the observed correlation coefficient, and the values in the denominator
represent reliabilities. Applying the formula produces a value that exceeds the observed-score
correlation.

Spearman’s correction for attenuation was groundbreaking with regards to Classical
Test Theory. It provided increased accuracy in estimates of the relationship between variables
because it eliminated the effects of measurement error to the extent possible. Consequently, as
reported by Hakistian, Schroeder, and Rogers (1988), esteemed statisticians and research
analysts (Gulliksen, 1950; Block, 1963; Lord and Novick, 1968; Cochran, 1970; Lord, 1970;
Crohnbach, 1971) have given much credibility to Spearman’s correction for attenuation.

One limitation of Spearman’s formula, though, is its application only to pairwise
situations. To address partial, part, or multiple correlations, one must apply the correction to
each individual pairwise coefficient before inserting it into the relevant formula. This process
becomes extremely tedious and time consuming.

In response, Bohrnstedt (1969) proposed a formula for a partial correlation coefficient!
containing an implicit correction for attenuation. He had intended for his formula to allow the
computation of an estimate for the partial correlation between true scores in a single step and
his published explanations of his formula describe it as such. However, an algebraic mistake in

Bohrnstedt’s derivation makes the resulting formula incorrect.

! The partial correlation coefficient allows for consideration of the linear relationship between the independent and
dependent variables, exclusive of any confounding effects that other factors may have upon these variables.
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2. Bohrnstedt’s Derivation
Bohrnstedt bases his derivation on two psychometric equivalences. One states that
dividing the covariance between two data sets by the product of the data sets’ standard
deviations produces the pairwise correlation coefficient, as shown in Equation 2.

This formula is one of many commonly used to calculate pairwise correlation coefficients.

Pxy— oxy (2)
ox0oy

The other equivalence used by Borhnstedt allows him to adapt Equation 2 to partial
correlations. It follows the leads of others, including Carter (1949) and Wright, et. al. (1959), by
focusing upon residuals between variables (e.g 6xz). Simply, the covariances and standard
deviations that appear in Equation 2 become covariances and standard deviations of residuals
between these same variables and the potential confounding variable (Z). Bohrnstedt,
therefore, defines the corrected partial correlation as the ratio between the covariance of

estimated residuals and the square root of the product of the residuals’ variances, or

p

oxz)(Yz) ° (3)

/ 2 2
0xz9yz

To acknowledge the focus upon true scores, not observed scores, Bohrnstedt turns to

XY.Z=

rather sophisticated psychometric principles. In particular, he utilizes the principle that

2 Although, the exponents and square root sign in the denominator of this fraction may seem
senseless, as one “undoes” the other, Bohrnstedt’s derivation relies upon expansion of the
squared values. Thus, the square root sign maintains equality to the more typical partial
correlation equation denominator of (oxz )(ovz).
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Oxz = GX-bxzz (and the corresponding equivalence for Y and Z) to propose that

_ 9(X-bxz Z)(Y-byz Z)
pTxTy.TZ - > >
GX—bXZZ GY—bYZZ

(4)

The insertion of these expressions into the existing subscripts, as shown in Equation 4, indicates
the consideration of multiple independent variables.
Expanding the covariance in equation 4 and calculating the squared value of the terms

in the denominator produces

2
oxy —byzoxz—bxz oyz+ byzbxz 057

PTxTy.Ty (5)

\/(0)2(—219)(2 Oxz+ 05b% ;) (05 —2byz Oyz4+ 05bE )

Once again following psychometric theory, Bohrnstedt redefines by as and makes

pXZO-X/pZZ'O-Z

the comparable change for by,. This manipulation, along with restatement of each covariance as

the product of the relevant correlation coefficient and standard deviations (e.g. Oy =0y 0y P ),
XY

produces
PYzOy PXZIX PYZOY\,  PXZOX~ .2
oyxyo _—————0xO0 ———0yO0 + o
, XOYPXY = 1670XOZPXZ ™ G 0¥ O2PYZ (pzz"’Z pzz"’Z) "
TxTy Tz 2 2 2 2 2 2 2 2
2_2PXz9X | PXZ%Xy\ s2_2PYZoY | PyzYy
(0% D 73— (oy o 7—)
zz! Pzz zz! Pzgl

A simplified version,

3 The “b” in this expression emerges from the regression equation y=a+hx, and represents the expected change in
the dependent variable given a one-unit change in the independent variable.
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2pXZPYZ9X0Y = 2px7ZPYZ0X0Y

Ox 0 _
B XO0ypxy 0771 P%Z/
PTxTy. T, = ) (7)
(0)2( 2pXZGX+pXZGX)( 2_ PYZ"Y_l_PYZ‘TY)
Pzz! P2z Pzz! Pz

results from adding and multiplying terms in equation 6.

Further algebraic simplifications involve three steps of factoring and combining terms.
First the standard deviations are factored within the numerator and the variances are factored
within the denominator. Second, the existing terms within the numerator and within the
denominator are added. The final step involves factoring reliabilities within the numerator and
denominator as well as removing variances from beneath radical signs, making them standard

deviations. These steps respectively appear as

2pxzPyZz + ZPXZPYZ
OyO
B x0y(Pxy-— Duzr i, )
PTxTy.T; = = (8)
2
0)2((1 Pxz " pXZ) UY (1- pYZ+ pYZ)
Pzz! Py Pzz!  Pog

2
PXYPZzI1—2PXZPYZPZZIt PXZPYZ )

ox0y( 2
—_ ZZ
PTxTyT; = , (9)
- (pZZ’ pXZ pZZ’ sz) o2 (pZZ’ pYZ pZZ’+ Pyz)
pZZ' PZZI
and
/OZZI(PXYPZZI—ngzpyz)+ PxzPyZz
PTyTy.T, = Pzz: . (10)
XY~z 2 2 2 2
Pzz' (Pzz1— 2Px7 )+ Pxz [ Pzz'(Pzz'~ 2Pyz)* Pyz
2 2
Pzzi Pzzr
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It is this point in the derivation at which Bohrnstedt errs. His canceling of standard
deviations within the numerator and denominator of equation 10 is appropriate. But, he
INCORRECTLY cancels reliabilities within the numerator and denominator* to produce

(pxyPzzI1—2PxZPYZ)t PXZPYZ
PZZr

11
PTyTy.T, . (11)
PzZZ1—2Pyz T Pyz

PZZiI

PzZI— 2P§(Z + p§(Z
PZZ1

Without realizing the flaws in equation 11, Bohrnstedt continued with his derivation. He added
components within the numerator and the denominator and then cancelled reliabilities from

each. The equations

PXYPZZI— PXZPYZ

— PZZ1
pTxTy.TZ - 5 - (12)
[PZZI_ Pxz PZZ1— Pyz

PzZr PZZr

and

PXYPZZI— PXZPYZ

\/(pZZ’_ p)zfz)(pzz’_ Plzfz)

) (13)

PTxTy.T,

respectively, result.
The algebraic error leading to equation 11 devalues equation 13, proposed as the

formula to compute a partial correlation coefficient corrected for attenuation. However, the

* Bohrnstedt cancelled the reliability pzz- from the numerator and denominator. Had pzz- appeared in all terms
within the numerators of the general numerator and the general denominator, then he would have cancelled

correctly, However, because only the first of the terms in these numerators contained pzz, such factoring and,
consequently, such cancelling should not have occurred.
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equations presented before equation 11 remain valid and can serve as a basis for fulfilling

Bohrnstedt’s original goal.

3. Correcting the Derivation

Using Bohrnstedt’s reasoning and making the changes necessary to correct equation 11
allows for the development of the formula that Bohrnstedt desired. With proper canceling of
reliabilities, equation 11 should have appeared as

PzzI(PXYPZZI=2PXZPYZ)t PXZPYZ
P2z

= . 14
PTxTy.T, — > — - (14)

) Z
Pzzr Pzzr
Squared reliabilitites in the denominators of the general denominator can be removed from the

radical sign. Cancelling this ,02 value with the same value in the denominator of the general

'

numerator forms the single fraction

PzzI(DxyPzzI—2PxzPYZ)t PXZPYZ

PTyTy.T; (15)

\/[Pzz’ (Pz2= 2P%2)+ Pxz 1| P2z1(P221— 2P 2)+ PPz ]
Distribution produces the final version of the formula:

PXYPZZ1I=2PXZPYZP z7)¥ PXZPYZ

PryTy.T; (16)

Equation 16 does exactly what Borhnstedt had suggested his formula would do. By
inserting correlation and reliability coefficients into the appropriate positions, one can

simultaneously compute a partial correlation coefficient and correct for attenuation.
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4. Conclusions

Further development of the formula in Equation 16 can increase its usefulness in
research situations. Reasonable goals for future endeavors include deriving similar formulas for
part and multiple correlations as well as adjusting these formulas to make them applicable to
situations involving more than three variables.

Given the similarity between the partial and part correlation formulas, the procedure
needed to derive a comparable formula for part correlations is likely very similar to that
followed to obtain equation 16. A formula to compute multiple correlation coefficients
corrected for attenuation would not resemble the corrected partial coefficient quite as closely
as the corrected part coefficient formula would. Yet, the existing derivation certainly suggests a
general framework.

Expanding these formulas to manage more than three variables could follow patterns
similar to those used in deriving the formulas for three-variable situations. However, as more
variables become involved, the number of relationships between variables grows and,
obviously, the complexity of the resulting formulas would increase with the addition of each
variable.

Optimally, these developments could lead to formulas that correct for attenuation while
computing partial, part, and multiple correlation coefficients for any number of variables. The
generalizability of such formulas would make them highly useful for researchers wishing to

analyze complex data.
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