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Abstract: Bohrnstedt’s (1969) attempt to derive a formula to compute the partial correlation coefficient and simultaneously 

correct for attenuation sought to simplify the process of performing each task separately. He suggested that his formula, 

developed from algebraic and psychometric manipulations of the partial correlation coefficient, produces a corrected partial 

correlation value. However, an algebraic error exists within his derivations. Consequently, the formula proposed by Bohrnstedt 

does not appropriately represent the value he intended it to estimate. By correcting the erroneous step and continuing the 

derivation based upon his proposed procedure, the steps outlined in this paper ultimately produce the formula that Bohrnstedt 

desired.  
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1. Introduction 

 Psychometricians have long acknowledged the presence and impact of measurement 

error. The very first principle of Classical Test Theory dictates that X=T+E. This equation 

suggests that an observed score (X) represents not only a measurement of the entity of 

interest, or the true score (T), but also some level of error (E) that distorts the researcher’s 

observation. If researchers could determine the portion of an observed score that consists of 

the true score and of error, they could simply focus their analyses upon true-score values to 

obtain actual representations of the conditions they study. However, because error scores exist 

as latent components of observed scores, researchers cannot determine the exact extent to 

which they affect their data and the statistics computed from that data. 

Despite the lack of such detailed information, some general understanding of the 

consequences that error scores can have upon statistics exists. Psychometricians know, for 

instance, that the presence of measurement error causes the correlation between observed 

scores to fall below that of true scores, a phenomenon known as attenuation (Carrol, Ruppert, 

and Stefanski 1995). But, the inability to obtain an actual true score or error score makes it 

impossible to determine the exact degree to which the observed score correlation 

underestimates the true score correlation.  

 This attenuation effect was first recognized by Spearman in 1904. Spearman, resigned to 

only estimate the correlation between true scores, proposed a formula to theoretically 

counteract the effects of attenuation on pairwise correlation coefficients. In his formula, 

𝜌
𝑇𝑥𝑇𝑌= 

𝜌𝑋𝑌 

𝜌
𝑋𝑋′𝜌

𝑌𝑌′

  .  (1) 
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
TT Yx  represents an estimate of the Pearson correlation coefficient between true scores the 

numerator contains the observed correlation coefficient, and the values in the denominator 

represent reliabilities. Applying the formula produces a value that exceeds the observed-score 

correlation. 

 Spearman’s correction for attenuation was groundbreaking with regards to Classical 

Test Theory. It provided increased accuracy in estimates of the relationship between variables 

because it eliminated the effects of measurement error to the extent possible. Consequently, as 

reported by Hakistian, Schroeder, and Rogers (1988), esteemed statisticians and research 

analysts (Gulliksen, 1950; Block, 1963; Lord and Novick, 1968; Cochran, 1970; Lord, 1970; 

Crohnbach, 1971) have given much credibility to Spearman’s correction for attenuation. 

 One limitation of Spearman’s formula, though, is its application only to pairwise 

situations. To address partial, part, or multiple correlations, one must apply the correction to 

each individual pairwise coefficient before inserting it into the relevant formula. This process 

becomes extremely tedious and time consuming. 

 In response, Bohrnstedt (1969) proposed a formula for a partial correlation coefficient1 

containing an implicit correction for attenuation. He had intended for his formula to allow the 

computation of an estimate for the partial correlation between true scores in a single step and 

his published explanations of his formula describe it as such. However, an algebraic mistake in 

Bohrnstedt’s derivation makes the resulting formula incorrect. 

 

 
1 The partial correlation coefficient allows for consideration of the linear relationship between the independent and 

dependent variables, exclusive of any confounding effects that other factors may have upon these variables. 
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2. Bohrnstedt’s Derivation 

Bohrnstedt bases his derivation on two psychometric equivalences. One states that 

dividing the covariance between two data sets by the product of the data sets’ standard 

deviations produces the pairwise correlation coefficient, as shown in Equation 2.  

This formula is one of many commonly used to calculate pairwise correlation coefficients.  

𝜌
𝑋𝑌= 

𝜎𝑋𝑌 

𝜎𝑋𝜎𝑌

   (2) 

 
The other equivalence used by Borhnstedt allows him to adapt Equation 2 to partial 

correlations. It follows the leads of others, including Carter (1949) and Wright, et. al. (1959), by 

focusing upon residuals between variables (e.g XZ). Simply, the covariances and standard 

deviations that appear in Equation 2 become covariances and standard deviations of residuals 

between these same variables and the potential confounding variable (Z). Bohrnstedt, 

therefore, defines the corrected partial correlation as the ratio between the covariance of 

estimated residuals and the square root of the product of the residuals’ variances, or 

𝜌
𝑋𝑌.𝑍= 

𝜎(𝑋𝑍)(𝑌𝑍) 

√𝜎𝑋𝑍 
2 𝜎𝑌𝑍 

2

   2 (3) 

 
 

To acknowledge the focus upon true scores, not observed scores, Bohrnstedt turns to 

rather sophisticated psychometric principles. In particular, he utilizes the principle that   

 
2 Although, the exponents and square root sign in the denominator of this fraction may seem 
senseless, as one “undoes” the other, Bohrnstedt’s derivation relies upon expansion of the 
squared values. Thus, the square root sign maintains equality to the more typical partial 

correlation equation denominator of (XZ )(YZ).  
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               3              (and the corresponding equivalence for Y and Z) to propose that 
 

𝜌𝑇𝑋𝑇𝑌.𝑇𝑍
 =

𝜎(𝑋−𝑏𝑋𝑍 𝑍)(𝑌−𝑏𝑌𝑍 𝑍) 

√𝜎𝑋−𝑏𝑋𝑍 𝑍 
2  𝜎𝑌−𝑏𝑌𝑍 𝑍 

2
 .    (4) 

 
The insertion of these expressions into the existing subscripts, as shown in Equation 4, indicates 

the consideration of multiple independent variables. 

Expanding the covariance in equation 4 and calculating the squared value of the terms 

in the denominator produces 

 

𝜌𝑇𝑋𝑇𝑌.𝑇𝑍
 =

𝜎𝑋𝑌 −𝑏𝑌𝑍 𝜎𝑋𝑍−𝑏𝑋𝑍 𝜎𝑌𝑍+ 𝑏𝑌𝑍 𝑏𝑋𝑍 𝜎𝑍
2 

√(𝜎𝑋
2 −2𝑏𝑋𝑍 𝜎𝑋𝑍+ 𝜎𝑍

2𝑏𝑋𝑍
2 )(𝜎𝑌

2−2𝑏𝑌𝑍 𝜎𝑌𝑍+ 𝜎𝑍
2𝑏𝑌𝑍

2 )

 .    (5) 

 
 
Once again following psychometric theory, Bohrnstedt redefines bxz as 

 ZZZXXZ '

 and makes 

the comparable change for byz. This manipulation, along with restatement of each covariance as 

the product of the relevant correlation coefficient and standard deviations (e.g.  XYYXXY
= ), 

produces 

 

𝜌𝑇𝑋𝑇𝑌.𝑇𝑍
 =  

𝜎𝑋𝜎𝑌𝜌𝑋𝑌− 
𝜌𝑌𝑍𝜎𝑌
𝜌𝑍𝑍′𝜎𝑍

𝜎𝑋𝜎𝑍𝜌𝑋𝑍−
𝜌𝑋𝑍𝜎𝑋
𝜌

𝑍𝑍′𝜎𝑍
𝜎𝑌𝜎𝑍𝜌𝑌𝑍 +(

 𝜌𝑌𝑍𝜎𝑌
𝜌

𝑍𝑍′𝜎𝑍
)(

 𝜌𝑋𝑍𝜎𝑋
𝜌

𝑍𝑍′𝜎𝑍
)𝜎𝑍

2

√(𝜎𝑋
2 − 

2𝜌𝑋𝑍
2 𝜎𝑋

2

𝜌
𝑍𝑍′

 + 
𝜌𝑋𝑍

2 𝜎𝑋
2

𝜌
𝑍𝑍′
2 )(𝜎𝑌

2− 
2𝜌𝑌𝑍

2 𝜎𝑌
2

𝜌
𝑍𝑍′

 + 
𝜌𝑌𝑍

2 𝜎𝑌
2

𝜌
𝑍𝑍′
2 )

  .    (6) 

 
A simplified version, 
 

 
3 The “b” in this expression emerges from the regression equation ṿ=a+bx, and represents the expected change in 

the dependent variable given a one-unit change in the independent variable.  
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𝜌𝑇𝑋𝑇𝑌.𝑇𝑍
 =  

𝜎𝑋𝜎𝑌𝜌𝑋𝑌− 
2𝜌𝑋𝑍𝜌𝑌𝑍𝜎𝑋𝜎𝑌

𝜌𝑍𝑍′
 +

 2𝜌𝑋𝑍𝜌𝑌𝑍𝜎𝑋𝜎𝑌
𝜌𝑍𝑍′

2

√(𝜎𝑋
2 − 

2𝜌𝑋𝑍
2 𝜎𝑋

2

𝜌
𝑍𝑍′

 + 
𝜌𝑋𝑍

2 𝜎𝑋
2

𝜌
𝑍𝑍′
2 )(𝜎𝑌

2− 
2𝜌𝑌𝑍

2 𝜎𝑌
2

𝜌
𝑍𝑍′

 + 
𝜌𝑌𝑍

2 𝜎𝑌
2

𝜌
𝑍𝑍′
2 )

  ,   (7) 

 
results from adding and multiplying terms in equation 6. 

Further algebraic simplifications involve three steps of factoring and combining terms. 

First the standard deviations are factored within the numerator and the variances are factored 

within the denominator. Second, the existing terms within the numerator and within the 

denominator are added. The final step involves factoring reliabilities within the numerator and 

denominator as well as removing variances from beneath radical signs, making them standard 

deviations. These steps respectively appear as  

𝜌𝑇𝑋𝑇𝑌.𝑇𝑍
 =  

𝜎𝑋𝜎𝑌(𝜌𝑋𝑌− 
2𝜌𝑋𝑍𝜌𝑌𝑍

𝜌𝑍𝑍′
 +

 2𝜌𝑋𝑍𝜌𝑌𝑍
𝜌𝑍𝑍′

2 )

√𝜎𝑋
2 (1−

2𝜌𝑋𝑍
2

𝜌
𝑍𝑍′

 + 
𝜌𝑋𝑍

2

𝜌
𝑍𝑍′
2 ) 𝜎𝑌

2 (1−
2𝜌𝑌𝑍

2

𝜌
𝑍𝑍′

 + 
𝜌𝑌𝑍

2

𝜌
𝑍𝑍′
2 )

  ,  (8) 

 
 

𝜌𝑇𝑋𝑇𝑌.𝑇𝑍
 =  

𝜎𝑋𝜎𝑌(
𝜌𝑋𝑌𝜌𝑍𝑍′

2 −2𝜌𝑋𝑍𝜌𝑌𝑍𝜌𝑍𝑍′+ 𝜌𝑋𝑍𝜌𝑌𝑍 

𝜌𝑍𝑍′
2  )

√𝜎𝑋
2 (

𝜌
𝑍𝑍′
2 − 2𝜌𝑋𝑍 

2 𝜌
𝑍𝑍′+ 𝜌𝑋𝑍

2

𝜌
𝑍𝑍′
2  ) 𝜎𝑌

2 (
𝜌

𝑍𝑍′
2 − 2𝜌𝑌𝑍 

2 𝜌
𝑍𝑍′+ 𝜌𝑌𝑍

2

𝜌
𝑍𝑍′
2 ) 

 ,       (9) 

 
and 
 
 

𝜌𝑇𝑋𝑇𝑌.𝑇𝑍
 = 

𝜌𝑍𝑍′(𝜌𝑋𝑌𝜌𝑍𝑍′−2𝜌𝑋𝑍𝜌𝑌𝑍)+ 𝜌𝑋𝑍𝜌𝑌𝑍 

𝜌𝑍𝑍′
2  

√[
𝜌𝑍𝑍′(𝜌𝑍𝑍′− 2𝜌𝑋𝑍 

2 )+ 𝜌𝑋𝑍
2

𝜌𝑍𝑍′
2  ] [  

𝜌𝑍𝑍′(𝜌𝑍𝑍′− 2𝜌𝑌𝑍 
2 )+ 𝜌𝑌𝑍

2

𝜌𝑍𝑍′
2  ]

  .       (10)
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It is this point in the derivation at which Bohrnstedt errs. His canceling of standard 

deviations within the numerator and denominator of equation 10 is appropriate. But, he 

INCORRECTLY cancels reliabilities within the numerator and denominator4 to produce 

𝜌𝑇𝑋𝑇𝑌.𝑇𝑍
 =  

(𝜌𝑋𝑌𝜌𝑍𝑍′−2𝜌𝑋𝑍𝜌𝑌𝑍)+ 𝜌𝑋𝑍𝜌𝑌𝑍 

𝜌𝑍𝑍′
 

√[
𝜌𝑍𝑍′− 2𝜌𝑋𝑍 

2 + 𝜌𝑋𝑍
2

𝜌𝑍𝑍′
 ] [  

𝜌𝑍𝑍′− 2𝜌𝑌𝑍 
2 + 𝜌𝑌𝑍

2

𝜌𝑍𝑍′
 ]

  .  (11) 

 
 
Without realizing the flaws in equation 11, Bohrnstedt continued with his derivation. He added 

components within the numerator and the denominator and then cancelled reliabilities from 

each. The equations 

𝜌𝑇𝑋𝑇𝑌.𝑇𝑍
 =  

𝜌𝑋𝑌𝜌𝑍𝑍′− 𝜌𝑋𝑍𝜌𝑌𝑍 

𝜌𝑍𝑍′
 

√[
𝜌𝑍𝑍′− 𝜌𝑋𝑍

2

𝜌𝑍𝑍′
 ] [  

𝜌𝑍𝑍′− 𝜌𝑌𝑍
2

𝜌𝑍𝑍′
 ]

   (12) 

 
and 

 
𝜌𝑇𝑋𝑇𝑌.𝑇𝑍

 =  
𝜌𝑋𝑌𝜌𝑍𝑍′− 𝜌𝑋𝑍𝜌𝑌𝑍  

√(𝜌𝑍𝑍′− 𝜌𝑋𝑍
2 )(𝜌𝑍𝑍′− 𝜌𝑌𝑍

2 )
 ,  (13) 

 
 
respectively, result. 

  The algebraic error leading to equation 11 devalues equation 13, proposed as the 

formula to compute a partial correlation coefficient corrected for attenuation. However, the 

 
4 Bohrnstedt cancelled the reliability ZZ’ from the numerator and denominator. Had ZZ’ appeared in all terms 

within the numerators of the general numerator and the general denominator, then he would have cancelled 

correctly, However, because only the first of the terms in these numerators contained ZZ’, such factoring and, 

consequently, such cancelling should not have occurred. 
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equations presented before equation 11 remain valid and can serve as a basis for fulfilling 

Bohrnstedt’s original goal. 

 

3. Correcting the Derivation 

 Using Bohrnstedt’s reasoning and making the changes necessary to correct equation 11 

allows for the development of the formula that Bohrnstedt desired. With proper canceling of 

reliabilities, equation 11 should have appeared as 

𝜌𝑇𝑋𝑇𝑌.𝑇𝑍
 =  

𝜌𝑍𝑍′(𝜌𝑋𝑌𝜌𝑍𝑍′−2𝜌𝑋𝑍𝜌𝑌𝑍)+ 𝜌𝑋𝑍𝜌𝑌𝑍 

𝜌𝑍𝑍′
2  

√[
𝜌

𝑍𝑍′(𝜌
𝑍𝑍′− 2𝜌𝑋𝑍 

2 )+ 𝜌𝑋𝑍
2

𝜌𝑍𝑍′
2  ] [  

𝜌
𝑍𝑍′(𝜌

𝑍𝑍′− 2𝜌𝑌𝑍 
2 )+ 𝜌𝑌𝑍

2

𝜌𝑍𝑍′
2  ]

  .  (14) 

Squared reliabilitites in the denominators of the general denominator can be removed from the 

radical sign.  Cancelling this 
2

'ZZ

 value with the same value in the denominator of the general 

numerator forms the single fraction 

     

𝜌𝑇𝑋𝑇𝑌.𝑇𝑍
 =  

𝜌𝑍𝑍′(𝜌𝑋𝑌𝜌𝑍𝑍′−2𝜌𝑋𝑍𝜌𝑌𝑍)+ 𝜌𝑋𝑍𝜌𝑌𝑍 

√[𝜌𝑍𝑍′(𝜌𝑍𝑍′− 2𝜌𝑋𝑍 
2 )+ 𝜌𝑋𝑍

2  ] [  𝜌𝑍𝑍′(𝜌𝑍𝑍′− 2𝜌𝑌𝑍 
2 )+ 𝜌𝑌𝑍

2  ]

 .  (15) 

Distribution produces the final version of the formula: 

𝜌𝑇𝑋𝑇𝑌.𝑇𝑍
 =  

𝜌𝑋𝑌𝜌𝑍𝑍′
2 −2𝜌𝑋𝑍𝜌𝑌𝑍𝜌

𝑍𝑍′)+ 𝜌𝑋𝑍𝜌𝑌𝑍 

√(𝜌
𝑍𝑍′
2 − 2𝜌𝑋𝑍 

2 𝜌𝑍𝑍′+ 𝜌𝑋𝑍
2 )(𝜌

𝑍𝑍′
2 − 2𝜌𝑌𝑍 

2 𝜌𝑍𝑍′+ 𝜌𝑌𝑍
2 ) 

  .  (16) 

 Equation 16 does exactly what Borhnstedt had suggested his formula would do. By 

inserting correlation and reliability coefficients into the appropriate positions, one can 

simultaneously compute a partial correlation coefficient and correct for attenuation. 
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4. Conclusions 

 Further development of the formula in Equation 16 can increase its usefulness in 

research situations. Reasonable goals for future endeavors include deriving similar formulas for 

part and multiple correlations as well as adjusting these formulas to make them applicable to 

situations involving more than three variables. 

 Given the similarity between the partial and part correlation formulas, the procedure 

needed to derive a comparable formula for part correlations is likely very similar to that 

followed to obtain equation 16. A formula to compute multiple correlation coefficients 

corrected for attenuation would not resemble the corrected partial coefficient quite as closely 

as the corrected part coefficient formula would. Yet, the existing derivation certainly suggests a 

general framework. 

 Expanding these formulas to manage more than three variables could follow patterns 

similar to those used in deriving the formulas for three-variable situations. However, as more 

variables become involved, the number of relationships between variables grows and, 

obviously, the complexity of the resulting formulas would increase with the addition of each 

variable. 

 Optimally, these developments could lead to formulas that correct for attenuation while 

computing partial, part, and multiple correlation coefficients for any number of variables. The 

generalizability of such formulas would make them highly useful for researchers wishing to 

analyze complex data.    

 

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 25 December 2020                   



References 

 
1. Carrol R.J., Ruppert, D., and Stafanski, L.A. (1995).  Measurement Error in Nonlinear Models. 

New York: Chapman and Hall. 
 

2. Spearman, C. (1904). The proof and measurement of association between two things.  
American Journal of Psychology, 15, 72–101. 
 

3. Hakstian, A. Ralph, Schroeder, Marsha L., and Rogers, W. Todd (1988). Inferential 
procedures for correlation coefficients corrected for attenuation. Psychometrika, 53, 27-43. 
 

4. Bohrnstedt, George W. (1989). Observations on the measurement of change. In Borgatta,  
Edgar F. (ed.) Sociological Methodology. San Francisco: Jossey-Bass, Inc. 
 

5. Carter, A. H. (1949). The estimation and comparison of residual regressions where there are 
two or more related sets of observations. Biometrika,36(1-2), 26-46. 
 

6. Wright, E. M., Manning, W. H., & Dubois, P. H. (1959). Determinants in multivariate  
correlation. The Journal of Experimental Education,27(3), 195-202.  

 
 
 
 
 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 25 December 2020                   


