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1. Introduction

The basic field equations describing the linear theory of swelling porous elastic soils, see Ieşan [?] and
Quintanilla [?] are given by

ρϕϕtt = F1x −K1 + L1,

ρψψtt = F2x +K2 + L2,
(1.1)

where the constituents ϕ = ϕ(x, t) and ψ = ψ(x, t) are respectively, the displacement of the fluid and
the elastic solid material. The physical parameters ρϕ and ρψ are the densities of each constituent. The
functions (F1,K1, L1) and (F2,K2, L2) are the partial tensions, internal body forces, and external forces
acting on the displacement and the elastic solid respectively. In addition, the constitutive equations of
partial tensions are given by (

F1

F2

)
=

(
b1 b2
b2 b3

)
︸ ︷︷ ︸

Λ:=

(
ϕx
ψx

)
(1.2)

where b1, b3 are positive constants and b2 6= 0 is a real number. The matrix Λ is positive definite ( that
is b1b3 > b22. Quintanilla [?] studeid (??) with

K1 = K2 = ξ(ϕt − ψt), L1 = b3ϕxxt, L2 = 0,

where ξ is a positive coefficient and established an exponential stability result. Wang and Guo [?]
investigated (??) with

K1 = K2 = 0, L1 = −ρϕγ(x)ϕt, L2 = 0,

where γ(x) is an internal viscous damping function with positive mean. The authors in [?] used the
spectral method to prove an exponential stability result. For more related results, we refere the reader
to [?]-[?] and the references cited there in.

The present work aims at studying (??) with null internal body forces, where the external force is
acting only on the elastic solid as a viscoelastic force, that is:

K1 = K2 = 0, L1 = 0, L2 = −
∫ t

0

g(t− s)ψxx(s)ds, (1.3)

where g is a given kernel to be specified later (also known as the relaxation function). Substituting (??)
into (??), we arrive at

ρϕϕtt − b1ϕxx − b2ψxx = 0, in (0, 1)× (0,∞),

ρψψtt − b3ψxx − b2ϕxx +

∫ t

0

g(t− s)ψxx(x, s)ds = 0, in (0, 1)× (0,∞).

(1.4)
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We supplement (??) with the following boundary conditions

ψ(0, t) = ψ(1, t) = ϕ(0, t) = ϕ(1, t) = 0, t ≥ 0 (1.5)

and initia data

ϕ(x, 0) = ϕ0(x), ϕt(x, 0) = ϕ1(x), ψ(x, 0) = ψ0(x), ψt(x, 0) = ψ1(x), x ∈ [0, 1]. (1.6)

The novelty of this paper is to improve the work established by Apalara [?], where he considered (??)
and proved a general decay result when g satisfied g′(t) ≤ −ξ(t)g(t). This present work considers very
general condition with minimal assumption on g and prove an optimal decay estimate from which the
result in [?] is a particular case. For more related results or background of porous elastic swelling soil
theory, we refer the reader to [?]-[?] and the references cited there.

The rest of this work is organized as follows: In Section ??, we present preliminary materials which
will be helpful in obtaining our results. In Section ??, we establish some useful lemmas. In Section ??,
we study the decay rate of the energy functional associated to problem (??)-(??).

2. Assumptions and functional setting

From now on, the variables C denote a positive constants that may change within lines or from line
to line. We denote by ‖.‖2 the usual norm in L2(0, 1). We consider the following assumptions on g

(A1) The kernel g : [0,+∞)→ (0,+∞) is a C1 decreasing function satisfying

g0 :=

∫ ∞
0

g(s)ds < b

where b = b3 −
b22
b1
> 0.

(A2) There exists a C1 function G : [0,+∞) → [0,+∞) which is linear or it is strictly convex C2

function on (0, η], η ≤ g(t0), for any t0 > 0 with G(0) = G′(0) = 0 and a positive non-increasing
differentiable function ξ : [0,+∞)→ (0,+∞), such that

g′(t) ≤ −ξ(t)G (g(t)) , t ≥ 0. (2.1)

Remark 2.1. 1. From assumption (A1) and (A2) we see that G is a strictly increasing convex C2−
function on (0, r], with G(0) = G′(0) = 0, thus, we can find an extension of G say

Ḡ : [0,+∞)→ (0,+∞)

which is also strictly increasing and strictly convex C2-function. For example, for any t > η, we
define Ḡ by

Ḡ(s) =
G′′(η)

2
s2 + (G′(η)−G′′(η)η)s+G(η)−G′(η)η +

G′′(η)

2
η2. (2.2)

2. For any t0 > 0, it follows from the fact that g is continuous, positive and g(0) > 0, that∫ t

0

g(s)ds ≥
∫ t0

0

g(s)ds = c0 > 0, ∀t ≥ t0. (2.3)

3. Using the fact that g and ξ are positive, continuous, and nonincreasing, and G is continuous and
positive, there exists t0 > 0 such that, for all t ∈ [0, t0],

0 < g(t0) ≤ g(t) ≤ g(0), 0 < ξ(t0) ≤ ξ(t) ≤ ξ(0).

It follows that
a1 ≤ ξ(t)G(g(t)) ≤ a2,

for some a1, a2 > 0. Therefore, ∀ t ∈ [0, t0], we get

g′(t) ≤ −ξ(t)G(g(t)) ≤ − a1

g(0)
g(0) ≤ − a1

g(0)
g(t) (2.4)

and

ξ(t)g(t) ≤ −g(0)

a1
g′(t). (2.5)

The well-posedness reads:
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Theorem 2.2. Let (ϕ0, ϕ1, ψ0, ψ1, ) ∈ H1
0 (0, 1) × L2(0, 1) × H1

0 (0, 1) × L2(0, 1) be given and assume
conditions (A1) and (A2) hold. Then, problem (??)− (??) has a global weak unique solution (z, u) such
that

(ϕ,ψ) ∈ C
(
[0,+∞), H1

0 (0, 1)×H1
0 (0, 1)

)
∩ C1

(
[0,+∞), L2(0, 1)× L2(0, 1)

)
. (2.6)

Furthermore, if

(ϕ0, ϕ1, ψ0, ψ1, ) ∈ H2(0, 1) ∩H1
0 (0, 1)×H1

0 (0, 1)×H2(0, 1) ∩H1
0 (0, 1)×H1

0 (0, 1),

then the global unique solution of problem (??)− (??) has more regularity in the class

ϕ ∈ C
(
[0,+∞), H2(0, 1) ∩H1

0 (0, 1)
)
∩ C1

(
[0,+∞), H1

0 (0, 1)
)
∩ C2

(
[0,+∞), L2(0, 1)

)
,

ψ ∈ C
(
[0,+∞), H2(0, 1) ∩H1

0 (0, 1)
)
∩ C1

(
[0,+∞), H1

0 (0, 1)
)
∩ C2

(
[0,+∞), L2(0, 1)

)
.

Proof. The result can be establish using the Galerkin approximation method similarly like in [?] �

We recall some lemmas which will be useful in establishing the main result.

Lemma 2.3. Let w ∈ L2
loc([0,+∞), L2(0, 1)), there holds∫ 1

0

(∫ t

0

g(t− s)(w(t)− w(s))ds

)2

dx ≤ cp(a− g0)(g � wx)(t), (2.7)∫ 1

0

(∫ x

0

w(y, t)dy

)2

dx ≤ ‖w‖22, (2.8)

where

(g � w)(t) =

∫ t

0

g(t− s)‖w(t)− w(s)‖22ds.

Proof. The result follows easily by Cauchy-Schwarz and Poincaré’s inequalities. �

As in [?], for any 0 < α < 1, let

h(t) = αg(t)− g′(t) and Aα =

∫ +∞

0

g2(s)

αg(s)− g′(s)
ds.

We have the following lemma.

Lemma 2.4. Let (ϕ,ψ) be the solution of problem (??)− (??). Then, for any 0 < α < 1, we have∫ 1

0

(∫ t

0

g(t− s) (ψ(t)− ψ(s)) ds

)2

dx ≤ Aα (h � ψx) (t), (2.9)

where

(h � ψx) (t) =

∫ t

0

h(t− s)‖ψx(t)− ψx(s)‖22ds.

Proof. Using Cauchy-Schwarz and Poincaré’s inequalities, we have∫ 1

0

(∫ t

0

g(t− s) (ψ(t)− ψ(s)) dds

)2

dx

=

∫ 1

0

(∫ t

0

g(t− s)√
h(t− s)

√
h(t− s) (ψ(t)− ψ(s)) ds

)2

dx

≤
(∫ +∞

0

g2(s)

h(s)
ds

)∫ 1

0

∫ t

0

h(t− s) (ψ(t)− ψ(s))
2
dsdx

≤ Aα (h � ψx) (t).

(2.10)

�

Lemma 2.5. Suppose F is convex function on a close interval [a, b] and let f : Ω→ [a, b] and a function
j such that j(x) ≥ 0 and

∫
Ω
j(x)dx = a > 0. Then, we have the following Jensen inequality

1

a

∫
Ω

F (f(y))j(y)dy ≥ F
(

1

a

∫
Ω

f(y)j(y)dy

)
. (2.11)
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3. Essential Lemmas

We state and prove some essential lemmas in this section.

Lemma 3.1. [?] Let (ϕ,ψ) be the solution given by Theorem ??. Then, the energy functional E, defined
by

E(t) =
1

2

∫ 1

0

[
ρϕϕ

2
t + b1ϕ

2
x + ρψψ

2
t +

(
b3 −

∫ t

0

g(s)ds

)
ψ2
x + 2b2ϕxψx

]
dx+

1

2
(g � ψx) (t), (3.1)

satisfies

E′(t) =
1

2
(g′ � ψx) (t)− 1

2
g(t)

∫ 1

0

ψ2
xdx ≤

1

2
(g′ � ψx) (t) ≤ 0, ∀ t ≥ 0. (3.2)

Lemma 3.2. Let (ϕ,ψ) be the solution given by Theorem ??. Then, the functional

F1(t) := ρψ

∫ 1

0

ψtψdx−
b2
b1
ρϕ

∫ 1

0

ϕtψdx

satisfies, for any positive σ1

F ′1(t) ≤ −b0
2

∫ 1

0

ψ2
xdx+ σ1

∫ 1

0

ϕ2
tdx+

(
ρψ +

b22ρ
2
ϕ

4σ1b21

)∫ 1

0

ψ2
t dx+

Aα
2b0

(h � ψx)(t), (3.3)

where b0 > 0 is a constant.

Proof. Direct differentiation and using integration by parts yields

F ′1(t) = −
(
b3 −

b22
b1

)∫ 1

0

ψ2
xdx+ ρψ

∫ 1

0

ψ2
t dx−

b2ρϕ
b1

∫ 1

0

ϕtψtdx︸ ︷︷ ︸
J1

+

∫ 1

0

ψx

∫ t

0

g(t− s)ψx(s)dsdx︸ ︷︷ ︸
J2

. (3.4)

Using Cauchy-Schwarz and Young’s inequalities, we get

J1 ≤ σ1

∫ 1

0

ϕ2
tdx+

b22ρ
2
ϕ

4σ1b21

∫ 1

0

ψ2
t dx. (3.5)

Recalling Lemma ??−??, then Cauchy-Schwarz and Young’s inequalities give

J2 =

∫ t

0

g(s)ds

∫ 1

0

ψ2
xdx−

∫ 1

0

ψx

∫ t

0

g(t− s)(ψx(t)− ψx(s))dsdx

≤
(∫ t

0

g(s)ds+ ε0

)∫ 1

0

ψ2
xdx+

1

4ε0

∫ 1

0

(∫ t

0

g(t− s) (ψx(t)− ψx(s)) dds

)2

dx

≤
(∫ t

0

g(s)ds+ ε0

)∫ 1

0

ψ2
xdx+

Aα
4ε0

(h � ψx) (t).

(3.6)

By substituting the estimates in (??) and (??) into (??), we arrive at

F ′1(t) ≤−
(
b3 −

b22
b1
−
∫ t

0

g(s)ds− ε0

)∫ 1

0

ψ2
xdx+ σ1

∫ 1

0

ϕ2
tdx

+

(
ρψ +

b22ρ
2
ϕ

4σ1b21

)∫ 1

0

ψ2
t dx+

Aα
4ε0

(h � ψx) (t).

(3.7)

From condition (A1), we have ∫ t

0

g(s)ds < g0 < b = b3 −
b22
b1
. (3.8)

Thus, it follows that b3 −
b22
b1
−
∫ t

0

g(s)ds = b0 > 0. Therefore, by choosing ε0 =
b0
2
, we obtain (??). �

Lemma 3.3. Let (ϕ,ψ) be the solution given by Theorem ??. Then, for any t0 > 0, the functional

F2(t) := −ρψ
∫ 1

0

ψt

∫ t

0

g(t− s)(ψ(t)− ψ(s))dsdx
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satisfies, for any positive σ2, σ3, the estimate

F ′2(t) ≤− ρψc0
2

∫ 1

0

ψ2
t dx+ σ2

∫ 1

0

ψ2
xdx+ σ3

∫ 1

0

ϕ2
xdx

+

(
ρψ
c0

+Aα

(
1 +

b2

σ2
+

b22
4σ3

+
ρψα

2

c0

))
(h � ψx) (t).

(3.9)

where c0 =

∫ t0

0

g(s)ds.

Proof. Differentiation of F2, using (??), and then integrating by parts, we get

F ′2(t) = −ρψ
∫ t

0

g(s)ds

∫ 1

0

ψ2
t dx+ b3

∫ 1

0

ψx

∫ t

0

g(t− s)(ψx(t)− ψx(s))dsdx︸ ︷︷ ︸
J3

−
∫ 1

0

∫ t

0

g(t− s)ψx(s)ds

∫ t

0

g(t− s)(ψx(t)− ψx(s))dsdx︸ ︷︷ ︸
J4

− ρψ
∫ 1

0

ψt

∫ t

0

g′(t− s)(ψ(t)− ψ(s))dsdx︸ ︷︷ ︸
J5

+ b2

∫ 1

0

ϕx

∫ t

0

g(t− s)(ψx(t)− ψx(s))dsdx︸ ︷︷ ︸
J6

.

(3.10)
Using Lemma ??, it follows by Young’s, and Cauchy-Schwarz, and Poincaré’s inequalities that for any
σ2, σ3, ε1 > 0,

J3 ≤
σ2

2

∫ 1

0

ψ2
xdx+

b23
2σ2

∫ 1

0

(∫ t

0

g(t− s)(ψx(t)− ψx(s))ds

)2

dx

≤ σ2

2

∫ 1

0

ψ2
xdx+

b23Aα
2σ2

(h � ψx) (t),

(3.11)

J4 = −
∫ t

0

g(s)ds

∫ 1

0

ψx

∫ t

0

g(t− s)(ψx(t)− ψx(s))dsdx+

∫ 1

0

(∫ t

0

g(t− s)(ψx(t)− ψx(s))ds

)2

dx

≤ σ2

2

∫ 1

0

ψ2
xdx+

1

2σ2

(∫ t

0

g(s)ds

)2 ∫ 1

0

(∫ t

0

g(t− s)(ψx(t)− ψx(s))ds

)2

dx+Aα (h � ψx) (t)

≤ σ2

2

∫ 1

0

ψ2
xdx+

(
1 +

b2

2σ2

)
Aα (h � ψx) (t),

(3.12)

−J5 = −ρψα
∫ 1

0

ψt

∫ t

0

g(t− s)(ψ(t)− ψ(s))dsdx+ ρψ

∫ 1

0

ψt

∫ t

0

h(t− s)(ψ(t)− ψ(s))dsdx

≤ ρψε1

∫ 1

0

ψ2
t dx+

ρψα
2

2ε1

∫ 1

0

(∫ t

0

g(t− s)(ψ(t)− ψ(s))ds

)2

dx

+
ρψ
2ε1

∫ 1

0

(∫ t

0

h(t− s)(ψ(t)− ψ(s))ds

)2

dx

≤ ρψε1

∫ 1

0

ψ2
t dx+

ρψα
2

2ε1
Aα (h � ψx) (t) +

ρψ
2ε1

(h � ψx) (t)

= ρψε1

∫ 1

0

ψ2
t dx+

(
ρψα

2

2ε1
Aα +

ρψ
2ε1

)
(h � ψx) (t),

(3.13)

and

J6 ≤ σ3

∫ 1

0

ϕ2
xdx+

b22
4σ3

∫ 1

0

(∫ t

0

g(t− s)(ψ(t)− ψ(s))ds

)2

dx

≤ σ3

∫ 1

0

ϕ2
xdx+

b22
4σ3

Aα (h � ψx) (t).

(3.14)
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Substituting (??)–(??) into (??), we end up with

F ′2(t) ≤ −ρψ
(∫ t

0

g(s)ds− ε1

)∫ 1

0

ψ2
t dx+ σ2

∫ 1

0

ψ2
xdx+ σ3

∫ 1

0

ϕ2
xdx

+

(
ρψ
2ε1

+Aα

(
1 +

b23
σ2

+
b22

4σ3
+
ρψα

2

2ε1

))
(h � ψx) (t).

(3.15)

Recalling (??), it follows that for any t ≥ t0 > 0

c0 =

∫ t0

0

g(s)ds ≤
∫ t

0

g(s)ds. (3.16)

Thus, we select ε1 =
c0
2

to get (??). �

Lemma 3.4. Let (ϕ,ψ) be the solution given by Theorem ??. Then, the functional

F3(t) := −b2
∫ 1

0

(ψϕt − ψtϕ) dx

satisfies

F ′3(t) ≤ − b22
2ρψ

∫ 1

0

ϕ2
xdx+

(
b22
ρϕ

+
b2

ρψ
+ ρψ

(
b1
ρϕ
− b3
ρψ

)2
)∫ 1

0

ψ2
xdx+

2Aα
ρψ

(h � ψx) (t). (3.17)

Proof. Differentiating F3, using (??) and then integration by parts give

F ′3(t) =− b22
ρψ

∫ 1

0

ϕ2
xdx+

b22
ρϕ

∫ 1

0

ψ2
xdx+ b2

(
b1
ρϕ
− b3
ρψ

)∫ 1

0

ϕxψxdx︸ ︷︷ ︸
J7

+
b2
ρψ

∫ 1

0

ϕx

∫ t

0

g(t− s)ψx(s)dsdx︸ ︷︷ ︸
J8

. (3.18)

Keeping in mind Lemma ??−??, Young’s and Cauchy-Schwarz inequalities yield for any ε2 > 0,

J7 ≤b22
ε2

2

∫ 1

0

ϕ2
xdx+

1

2ε2

(
b1
ρϕ
− b3
ρψ

)2 ∫ 1

0

ψ2
xdx,

J8 =
b2
ρψ

∫ 1

0

ϕx

∫ t

0

g(t− s) (ψx(s)− ψx(t)) dsdx+
b2
ρψ

(∫ t

0

g(s)ds

)∫ 1

0

ϕxψxdx

≤b22
ε2

2

∫ 1

0

ϕ2
xdx+

1

ε2ρ2
ψ

∫ 1

0

(∫ t

0

g(t− s) (ψx(t)− ψx(s)) ds

)2

dx+
1

ε2ρ2
ψ

(∫ t

0

g(s)ds

)2 ∫ 1

0

ψ2
xdx

≤b22
ε2

2

∫ 1

0

ϕ2
xdx+

Aα
ε2ρ2

ψ

(h � ψx) (t) +
b2

ε2ρ2
ψ

∫ 1

0

ψ2
xdx.

Substituting J7 and J8 into (??), we end up with

F ′3(t) ≤ −b22
(

1

ρψ
− ε2

)∫ 1

0

ϕ2
xdx+

[
b22
ρϕ

+
b2

ε2ρ2
ψ

+
1

2ε2

(
b1
ρϕ
− b3
ρψ

)2
]∫ 1

0

ψ2
xdx+

Aα
ε2ρ2

ψ

(h � ψx) (t)

Finally, by selecting ε2 =
1

2ρψ
, we obtain (??). �

Lemma 3.5. [?] Let (ϕ,ψ) be the solution given by Theorem ??. Then, the functional

F4(t) := −ρϕ
∫ 1

0

ϕtϕdx

satisfies

F ′4(t) ≤ −ρϕ
∫ 1

0

ϕ2
tdx+ 2b1

∫ 1

0

ϕ2
xdx+

b22
4b1

∫ 1

0

ψ2
xdx. (3.19)
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Lemma 3.6. Assume conditions (A1) and (A2) hold. Then, the functional

F5(t) =

∫ 1

0

∫ t

0

f(t− s)ψ2
x(s)dsdx,

where

f(t) =

∫ +∞

t

g(s)ds

satisfies, along the solution of Problem (??), the estimate

F ′5(t) ≤ 3g0

∫ 1

0

ψ2
x(t)dx− 1

2
(g � ψx)(t). (3.20)

Proof. Differentiating F6 and observing that f ′(t) = −g(t), we infer

F ′5(t) =

∫ 1

0

∫ t

0

f ′(t− s)ψ2
x(s)dsdx+ f(0)

∫ 1

0

ψ2
xdx

=−
∫ 1

0

∫ t

0

g(t− s) (ψx(s)− ψx(t))
2
dsdx

− 2

∫ 1

0

ψx

∫ t

0

g(t− s) (ψx(s)− ψx(t)) dx+ f(0)

∫ 1

0

ψ2
x(t)dx

But,

−2

∫ 1

0

ψx

∫ t

0

g(t− s) (ψx(s)− ψx(t)) dx ≤ 2g0

∫ 1

0

ψ2
x(t)dx+

1

2
(g � ψx)(t).

Therefore,

F ′5(t) ≤ 2g0

∫ 1

0

ψ2
x(t)dx− 1

2
(g � ψx)(t) + f(0)

∫ 1

0

ψ2
x(t)dx.

Since f is decreasing, so f(t) ≤ f(0) = g0. Thus, we get

F ′5(t) ≤ 3g0

∫ 1

0

ψ2
x(t)dx− 1

2
(g � ψx)(t).

�

Lemma 3.7. Let (ϕ,ψ) be the solution given by Theorem ??. Then, for suitable positive parameters
N,Nj , j = 1, 2, 3, 4 to be choosen later, the functional

F (t) = NE(t) +N1F1(t) +N2F2(t) +N3F3(t) +N4F4(t)

satisfies

c1E(t) ≤ F (t) ≤ c2E(t), ∀ t ≥ 0 (3.21)

and

F ′(t) ≤ −β
∫ 1

0

(
ϕ2
t + ϕ2

x + ψ2
t + ψ2

x

)
dx+

1

2
(g � ψx) (t), ∀ t ≥ t0, (3.22)

where c1, c2 and β are some positive constants.

Proof. With simple routine estimation using Young’s, Cauchy-Schwarz, and Poincaré’s inequalities, we
obtain (??) easily. Using (??), (??), (??), (??), (??) and recalling that h = αg − g′, we obtain

F ′(t) ≤− [ρϕN4 − σ1N1]

∫ 1

0

ϕ2
tdx−

[
ρψc0N2

2
−N1

(
ρψ +

b22ρ
2
ϕ

4σ1b21

)]∫ 1

0

ψ2
t dx

−
[
b22N3

2ρψ
− σ3N22− 2b1N4

] ∫ 1

0

ϕ2
xdx+

αN

2
(g � ψx) (t)

−

[
b0N1

2
− σ2N2 −N3

(
b22
ρϕ

+
b2

ρψ
+ ρψ

(
b1
ρϕ
− b3
ρψ

)2
)
− b22N4

4b1

]∫ 1

0

ψ2
xdx

−
[
N

2
−Aα

(
N1

2b0
+N2

(
1 +

b2

σ2
+

b22
4σ3

+
ρψα

2

c0

)
+

2N3

ρψ

)
− ρψN2

c0

]
(h � ψx) (t).
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Taking

N4 = 1, σ1 =
ρϕ

2N1
, σ2 =

b3
4N2

, σ3 =
b1
N2

, N3 =
8b1ρψ
b22

,

we obtain

F ′(t) ≤− ρϕ
2

∫ 1

0

ϕ2
tdx−

[
ρψc0N2

2
−N1

(
ρψ +

b22ρϕN1

2b21

)]∫ 1

0

ψ2
t dx− b1

∫ 1

0

ϕ2
xdx

−

[
b0N1

2
− 8b1ρψ

b22

(
b22
ρϕ

+
b2

ρψ
+ ρψ

(
b1
ρϕ
− b3
ρψ

)2
)
− b3

2

]∫ 1

0

ψ2
xdx+

αN

2
(g � ψx) (t)

−
[
N

2
−Aα

(
N1

2b0
+N2

(
1 +

b2N2

4b3
+
b22N2

4b1
+
ρψα

2

c0

)
+

16b1
b22

)
− ρψN2

c0

]
(h � ψx) (t).

Now we choose the remaining constants: First, we select N1 big enough such that

b0N1

2
− 8b1ρψ

b22

(
b22
ρϕ

+
b2

ρψ
+ ρψ

(
b1
ρϕ
− b3
ρψ

)2
)
− b3

2
> 0,

then we choose N2 so large that

ρψc0N2

2
−N1

(
ρψ +

b22ρϕN1

2b21

)
> 0

From h = αg − g′, it follows that
αg2(s)

h(s)
=

αg2(s)

αg(s)− g′(s)
< g(s); thus application of dominated

convergence theorem gives

αAα =

∫ +∞

0

αg2(s)

αg(s)− g′(s)
ds→ 0 as α→ 0. (3.23)

Therefore, we can find 0 < α0 < 1 so that if α < α0 < 1, then

αAα <
1

4

(
N1

2b0
+N2

(
1 + b2N2

4b3
+

b22N2

4b1
+

ρψα2

c0

)
+

16b1
b22

) .
Finally, we choose N so large and take α =

1

2N
such that (??) remains true and

N

2
−Aα

(
N1

2b0
+N2

(
1 +

b2N2

4b3
+
b22N2

4b1
+
ρψα

2

c0

)
+

16b1
b22

)
− ρψN2

c0
> 0

�

4. Main decay result

Now, we state the main stability result of this paper.

Theorem 4.1. Under the assumptions (A1) and (A2), there exist positive constants m1 and m2 such
that the solution energy functional (??) satisfies

E(t) ≤ m2G
−1
1

(
m1

∫ t

t0

ξ(s)ds

)
, where G1(t) =

∫ r

t

1

sG′(s)
ds (4.1)

and G1 is a strictly convex function that is non-increasing on (0, r], where r = g(t0) > 0 with lim
t→0

G1(t) =

+∞.

Proof. Using (??) and (??), if follows that for any t ≥ t0,∫ t0

0

g(s)

∫ 1

0

(ψx(t)− ψx(t− s))2
dxds ≤ −g(0)

a1

∫ t0

0

g′(s)

∫ 1

0

(ψx(t)− ψx(t− s))2
dxds ≤ −cE′(t).

(4.2)

Thus, estimates (??) and (??) give

F ′(t) ≤ −βE(t) +
1

2

∫ t0

0

g(s)

∫ 1

0

(ψx(t)− ψx(t− s))2
dxds+

1

2

∫ t

t0

g(s)

∫ 1

0

(ψx(t)− ψx(t− s))2
dxds
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≤ −βE(t)− cE′(t) +
1

2

∫ t

t0

g(s)

∫ 1

0

(ψx(t)− ψx(t− s))2
dxds.

This yields

R′1(t) ≤ −βE(t) +
1

2

∫ t

t0

g(s)

∫ 1

0

(ψx(t)− ψx(t− s))2
dxds, ∀t ≥ t0, (4.3)

where R1 = F + cE and R1 ∼ E by virtue of (??). The proof completed by considering two cases:
Case I: G is linear. Multiplying (??) by ξ(t), recalling (??) and (A2), we have

ξ(t)R′1(t) ≤ −βξ(t)E(t) +
1

2
ξ(t)

∫ t

t0

g(s)

∫ 1

0

(ψx(t)− ψx(t− s))2
dxds

≤ −βξ(t)E(t) +
1

2

∫ t

t0

ξ(s)g(s)

∫ 1

0

(ψx(t)− ψx(t− s))2
dxds

≤ −βξ(t)E(t)− 1

2

∫ t

t0

g′(s)

∫ 1

0

(ψx(t)− ψx(t− s))2
dxds

≤ −βξ(t)E(t)− cE′(t), ∀ t ≥ t0. (4.4)

From (A2), ξ is non-increasing, so we get

(ξR1 + cE)′(t) ≤ −βξ(t)E(t), ∀ t ≥ t0 (4.5)

and
ξR1 + cE ∼ E since R1 ∼ E. (4.6)

It follows that
R′2(t) ≤ −βξ(t)E(t) ≤ −mξ(t)R2(t), ∀ t ≥ t0, (4.7)

where R2 = ξR1 + cE and m is some positive constant. Integrating (??) over (t0, t) and recalling (??),
we obtain

E(t) ≤ m2e
−m1

∫ t

t0

ξ(s)ds
= m2G

−1
1

(
m1

∫ t

t0

ξ(s)ds

)
.

Case II: G is nonlinear. We define the functional L(t) = F (t)+F5(t). Then, it follows from Lemma ??
and estimate (??), that for some λ > 0,

L′(t) ≤ −λE(t), ∀ t ≥ t0, (4.8)

which gives

λ

∫ t

t0

E(s)ds ≤ L(t0)− L(t) ≤ L(t0).

It follows that ∫ +∞

0

E(s)ds <∞. (4.9)

Using (??), we can choose 0 < µ < 1 such that

q(t) := µ

∫ t

t0

∫ 1

0

(ψx(t)− ψx(t− s))2
dxds,

satisfies
q(t) < 1,∀ t ≥ t0. (4.10)

From here onward, we assume q(t) > 0 for all t ≥ t0; otherwise estimate (??) yields an exponential decay
result. Now, we define the function u(t) by

u(t) = −
∫ t

t0

g′(s)

∫ 1

0

(ψx(t)− ψx(t− s))2
dxds.

It follows from (??) that u(t) ≤ −cE′(t), ∀ t ≥ t0. Thanks to remark ??, condition (A2), (??), and
Jensen’s inequality, we obtain

u(t) =
1

µq(t)

∫ t

t0

q(t)(−g′(s))µ
∫ 1

0

(ψx(t)− ψx(t− s))2
dxds
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≥ 1

µq(t)

∫ t

t0

q(t)ξ(s)G(g(s))µ

∫ 1

0

(ψx(t)− ψx(t− s))2
dxds

≥ ξ(t)

µq(t)

∫ t

t0

G(q(t)g(s))µ

∫ 1

0

(ψx(t)− ψx(t− s))2
dxds

≥ ξ(t)

µ
G

(
µ

∫ t

t0

g(s)

∫ 1

0

(ψx(t)− ψx(t− s))2
dxds

)
=
ξ(t)

µ
Ḡ

(
µ

∫ t

t0

g(s)

∫ 1

0

(ψx(t)− ψx(t− s))2
dxds

)
, (4.11)

where Ḡ is the convex extension of G on (0,+∞). It follows from estimate (??) that∫ t

t0

g(s)

∫ 1

0

(ψx(t)− ψx(t− s))2
dxds ≤ 1

µ
Ḡ−1

(
µu(t)

ξ(t)

)
, ∀ t ≥ t0.

Thus estimate (??) takes the form

R′1(t) ≤ −βE(t) + cḠ−1

(
µu(t)

ξ(t)

)
, ∀ t ≥ t0. (4.12)

Let η0 < η ≤ g(t0), to be chosen later, and define R2(t) by

R2(t) := Ḡ′
(
η0
E(t)

E(0)

)
R1(t) + E(t) ∼ E(t) since R1 ∼ E.

By using (??) and recalling that

E′(t) ≤ 0, Ḡ′(t) > 0, Ḡ′′(t) > 0,

we obtain

R′2(t) = η0
E′(t)

E(0)
Ḡ′′
(
η0
E(t)

E(0)

)
R1(t) + Ḡ′

(
η0
E(t)

E(0)

)
R′1(t) + E′(t)

≤ −βE(t)Ḡ′
(
η0
E(t)

E(0)

)
+ cḠ′

(
η0
E(t)

E(0)

)
Ḡ−1

(
µ
u(t)

ξ(t)

)
︸ ︷︷ ︸

J

+E′(t), ∀ t ≥ t0. (4.13)

To estimate the term J , we consider the convex conjugate Ḡ∗ of Ḡ in the sense of Young, see [?], defined
by

Ḡ∗(s) = τ(Ḡ′)−1(s)− Ḡ
[
(Ḡ′)(s)

]
(4.14)

and satisfies the generalized Young inequality

AB ≤ Ḡ∗(A) + Ḡ(B). (4.15)

We set A = Ḡ′
(
r0

E(t)
E(0)

)
and B = Ḡ−1

(
B u(t)
ξ(t)

)
, then using (??) and (??)-(??), we obtain

R′2(t) ≤ −βE(t)Ḡ′
(
η0
E(t)

E(0)

)
+ cḠ∗

(
Ḡ′
(
η0
E(t)

E(0)

))
+ cµ

u(t)

ξ(t)
+ E′(t)

≤ −βE(t)Ḡ′
(
η0
E(t)

E(0)

)
+ cη0

E(t)

E(0)
Ḡ′
(
η0
E(t)

E(0)

)
+ cµ

u(t)

ξ(t)
+ E′(t). (4.16)

Next, multiplying (??) by ξ(t), recalling η0
E(t)
E(0) < η, then

Ḡ′
(
η0
E(t)

E(0)

)
= G′

(
η0
E(t)

E(0)

)
,

and we arrive at

ξ(t)R′2(t) ≤ −βξ(t)E(t)G′
(
η0
E(t)

E(0)

)
+ cη0

E(t)

E(0)
ξ(t)G′

(
η0
E(t)

E(0)

)
+ cµu(t) + ξ(t)E′(t)

≤ −βξ(t)E(t)G′
(
η0
E(t)

E(0)

)
+ cη0

E(t)

E(0)
ξ(t)G′

(
η0
E(t)

E(0)

)
− cE′(t). (4.17)

Let R3 = ξR2 + cE and using the fact that R1 ∼ E, we get

κ0R3(t) ≤ E(t) ≤ κ1R3(t), (4.18)
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for some κ0, κ1 > 0. Thus, from estimate (??), we obtain

R′3(t) ≤ −(βE(0)− cη0)ξ(t)
E(t)

E(0)
G′
(
η0
E(t)

E(0)

)
, ∀t ≥ t0.

Now, we choose η0 < η very small so that βE(0)− cη0 > 0 and we get for some positive m,

R′3(t) ≤ −mξ(t)E(t)

E(0)
G′
(
η0
E(t)

E(0)

)
= −mξ(t)G2

(
E(t)

E(0)

)
, ∀t ≥ t0, (4.19)

where G2(t) = tG′(η0t). Its easy to see that

G′2(t) = G′(η0t) + η0G
′′(η0t).

Therefore, using the fact G is strictly convex on (0, η], we have G2(t) > 0, G′2(t) > 0 on (0, η]. Let

R4(t) = κ0
R3(t)

E(0)
.

Then, from (??) and (??), we obtain
R4(t) ∼ E(t) (4.20)

and

R′4(t) = κ0
R′3(t)

E(0)
≤ −m1ξ(t)G2(R4(t)), ∀t ≥ t0. (4.21)

The integration of (??) over (t0, t) yields

m1

∫ t

t0

ξ(s)ds ≤ −
∫ t

t0

R′4(s)

G2(R4(s))
ds =

1

η0

∫ η0R4(t0)

η0R4(t)

1

sG′(s)
ds. (4.22)

This implies

R4(t) ≤ 1

η0
G−1

1

(
m1

∫ t

t0

ξ(s)ds

)
, where G1(t) =

∫ η

t

1

sG′(s)
ds. (4.23)

From (A2), we see that G1 is strictly decreasing on (0, η] and

lim
t−→0

G1(t) = +∞.

Thus, (??) follows from (??) and (??). �

corollary 4.2. Under assumptions (A1) and (A2), suppose the function G in assumption (A2) is defined
by

G(s) = sq, p ≥ 1. (4.24)

Then there exist positive constants m and m̄ such that the solution energy (??) satisfies

E(t) ≤



m exp

(
−m̄

∫ t

0

ξ(s)ds

)
, for p = 1,

m1+

∫ t

t0

ξ(s)ds


1
p−1

, for p > 1.
(4.25)

5. Concluding Remarks

The present work improves the result in [?], where the author established a general decay result. The
decay results in Theorem ?? is optimal in the sense that it agrees with the decay rate of the memory
term g, see Remark 2.3 in [?]. This decay result is paramount to the engineers and architects as they
might employ it to attenuate the harmful effects of swelling soils. The result in this paper also holds for
some other boundary conditions such as

ψx(0, t) = ψx(1, t) = ϕx(0, t) = ϕx(1, t) = 0, ψ(0, t) = ψx(1, t) = ϕ(0, t) = ϕx(1, t) = 0, and

ψx(0, t) = ψ(1, t) = ϕx(0, t) = ϕ(1, t) = 0.

However, there might be some challenges for the following boundary conditions

ψx(0, t) = ψx(1, t) = ϕ(0, t) = ϕ(1, t) = 0 and ψ(0, t) = ψ(1, t) = ϕx(0, t) = ϕx(1, t) = 0,
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except we impose ∫ 1

0

ψ0dx = 0 and

∫ 1

0

ϕ0dx = 0.
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