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On the stability of swelling porous elastic soils with a viscoelastic damping
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ABSTRACT. The present work studies a swelling porous-elastic system with viscoelastic damping. We
establish a general and optimal decay estimate which generalizes some recent results in the literature.
Our result is established without imposing the usual equal-wave-speed condition associated with similar
problems in literature.
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1. Introduction

The basic field equations describing the linear theory of swelling porous elastic soils, see Iesan [?] and
Quintanilla [?] are given by

/J<p<,0tt == Flac - Kl + Ll,

Py = Fog + Ko + Lo,

where the constituents ¢ = (x,t) and ¥ = (x,t) are respectively, the displacement of the fluid and

the elastic solid material. The physical parameters p, and py are the densities of each constituent. The

functions (F1, K1, L1) and (Fy, Ko, Lo) are the partial tensions, internal body forces, and external forces

acting on the displacement and the elastic solid respectively. In addition, the constitutive equations of

partial tensions are given by
Fy b1 b2 901»)
= 1.2
(Fz) (bz bs) <¢w (2
—_———

A=
where by, bs are positive constants and by # 0 is a real number. The matrix A is positive definite ( that
is b1bs > b3. Quintanilla [?] studeid (??) with
Ky =Ky =&(pr — 1), L1 =0b3pzat, L2=0,
where ¢ is a positive coefficient and established an exponential stability result. Wang and Guo [?]
investigated (?7?) with

(1.1)

Ki=Ky=0, Li=—pyy(x)p;, L2=0,
where (z) is an internal viscous damping function with positive mean. The authors in [?] used the
spectral method to prove an exponential stability result. For more related results, we refere the reader
to [?]-[?] and the references cited there in.
The present work aims at studying (??) with null internal body forces, where the external force is
acting only on the elastic solid as a viscoelastic force, that is:

t
Kl = KQ = 0, L1 = 0, L2 = —/ g(t - s)wm(s)ds, (13)
0

where g is a given kernel to be specified later (also known as the relaxation function). Substituting (?7)
into (??), we arrive at
PoPtt — bl@acw - waacw = 07 in (07 1) X (07 OO),
. (1.4)
puta = buthes ~bagas + [ gl = 9has(i5)ds =0, in (0.1) x (0.0)
0
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We supplement (?7) with the following boundary conditions
¥(0,t) =¥(1,t) = 0(0,t) = p(L,t) =0,  t=>0 (1.5)

and initia data

(P(x’o) = QOQ(!E), (pt(xvo) = Sol(x)a w(1'70) = Ql)o(x), qpt(xvo) = ¢1(x)7 MAS [07 1] (16)
The novelty of this paper is to improve the work established by Apalara [?], where he considered (?7)
and proved a general decay result when g satisfied ¢'(¢t) < —¢&(t)g(¢). This present work considers very
general condition with minimal assumption on g and prove an optimal decay estimate from which the
result in [?] is a particular case. For more related results or background of porous elastic swelling soil
theory, we refer the reader to [?]-[?] and the references cited there.
The rest of this work is organized as follows: In Section 77, we present preliminary materials which
will be helpful in obtaining our results. In Section ?7?, we establish some useful lemmas. In Section 77,
we study the decay rate of the energy functional associated to problem (?7)-(?7).

2. Assumptions and functional setting

From now on, the variables C' denote a positive constants that may change within lines or from line
to line. We denote by ||.||2 the usual norm in L?(0,1). We consider the following assumptions on g

(A1) The kernel g : [0, +00) — (0, +0c0) is a C! decreasing function satisfying

go == / g(s)ds < b
0

2

whereb:bg—b—2 > 0.
by

(A2) There exists a C! function G : [0,+00) — [0, +00) which is linear or it is strictly convex C?
function on (0, 7], n < g(to), for any ¢ty > 0 with G(0) = G’(0) = 0 and a positive non-increasing
differentiable function £ : [0, 4+00) — (0, +00), such that

g'(t) < =EMG (9(t), t=0. (2.1)

Remark 2.1. 1. From assumption (A1) and (Az) we see that G is a strictly increasing conver C?—
function on (0,r], with G(0) = G'(0) = 0, thus, we can find an extension of G say

G : [0, 400) = (0, +00)

which is also strictly increasing and strictly convex C?-function. For example, for anyt > 1, we

define G by
_ G// G//
a(5) = CI02 4 (@) - s + ) - Gl + CL (22
2. For any tg > 0, it follows from the fact that g is continuous, positive and g(0) > 0, that
t to
/ g(s)ds > / g(s)ds =co >0, Vt > to. (2.3)
0 0

3. Using the fact that g and £ are positive, continuous, and nonincreasing, and G is continuous and
positive, there exists tg > 0 such that, for all ¢ € [0, o],

0 <g(to) < g(t) <g(0), 0<E(to) <&(t) <£(0).
It follows that
a1 <E(H)G(g(1)) < az,
for some ay,as > 0. Therefore, V ¢ € [0, ], we get

(1) < ~€0G(9(0) < —50(0) < ~hso(t) (2.4)
and
E(t)a(t) < —%”g'(t) (2.5)

The well-posedness reads:
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Theorem 2.2. Let (o, p1,%0,¢1,) € HE(0,1) x L%(0,1) x H}(0,1) x L*(0,1) be given and assume
conditions (A1) and (Az) hold. Then, problem (?7?7) — (??) has a global weak unique solution (z,u) such
.- (¢,¥) € C ([0,+00), Hy(0,1) x H(0,1)) N C* ([0,400), L*(0,1) x L*(0,1)) . (2.6)
Furthermore, if
(¢0, p1,%0,%1,) € H*(0,1) N Hy(0,1) x Hy(0,1) x H*(0,1) N H(0,1) x HS(0,1),

then the global unique solution of problem (??) — (??) has more regularity in the class

¢ € C([0,400), H*(0,1) N Hy(0,1)) N C* ([0, +00), Hy(0,1)) N C* ([0, 400), L*(0, 1)),

¥ € C ([0,+00), H*(0,1) N H(0,1)) N C* ([0, +00), Hy(0,1)) N C? ([0, +00), L*(0,1)) .
Proof. The result can be establish using the Galerkin approximation method similarly like in [?] (]

We recall some lemmas which will be useful in establishing the main result.

Lemma 2.3. Let w € L} ([0, +0c0), L%(0,1)), there holds
2

/ 1 ( / gt~ 8)(w(t) - w(s))ds) 0 < cpla— go)(g o wa) (1), (2.7)
0 0 X i ,
/ ( / w(y,t>dy) dr < [l (2.8)
where ’ ’ .
(g0 w)(t) = / g(t = ) w(t) — w(s)|3ds.
Proof. The result follows easily by Cauchy-Schwarz and Poincaré’s inequalities. O

Asin [?], for any 0 < o < 1, let

h(t) = ag(t) — ¢'(t) and A, = /%o 9
o agls)—g(s)
We have the following lemma.

Lemma 2.4. Let (p, 1)) be the solution of problem (?7?) — (??). Then, for any 0 < a < 1, we have
2

/01 (/Otg(t —5) (p(t) — w(s))ds) dz < A (hoy) (1), (2.9)
where

(hows) (t) = / Wt — )| tha(t) — ta(s)3ds.

Proof. Using Cauchy-Schwarz and Poincaré’s inequalities, we have
2

/01 (/otg(t —5) ($(t) = ¥(s)) dds> da

[ tM s — (s st
_/0 (0 s h(t —s) (¥(t) — ¥( ))d> d (2.10)

(/0+°° g;((:)) ds) /01 /0 bt ) (6(0) — 9()? dsds
< Ao (hoy) ().

IN

O

Lemma 2.5. Suppose F is convex function on a close interval [a,b] and let f : Q — [a,b] and a function
J such that j(z) > 0 and [, j(x)dx = a > 0. Then, we have the following Jensen inequality

L [ ruwiwar=F (2 [ iwiwa). (2.11)

a
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3. Essential Lemmas
We state and prove some essential lemmas in this section.

Lemma 3.1. [?] Let (p, 1)) be the solution given by Theorem ??. Then, the energy functional E, defined

by
1 t
E(t) = %/O [Pw? + b1os + pyti + <b3 —~ /0 9(8)d8> V2 + 2b2¢z¢z} dz + % (gove) (1),  (3.1)
satisfies )
B(0)= 56 o) (0= 390) [ 2o < S (g 0v) <0,V E0, (3.2)

Lemma 3.2. Let (p, 1)) be the solution given by Theorem ??. Then, the functional

1 b 1
Fi(t) = Pw/ Yepdr — bﬁpw/ prypda
0 1 0

satisfies, for any positive oy

, b 1 1
R<-3 [ vdreo sofdw(pwjpg;)/ Vo + 2 (hou)1),  (33)

where by > 0 is a constant.

Proof. Direct differentiation and using integration by parts yields

Fl(t) = (bg)/ 1/12d:c+p¢/ Yidr — Qb;;‘p/o gotwtd;rJr/ ’l/)z/ (t — s)pz(s)dsdz . (3.4)

J1 J2

Using Cauchy-Schwarz and Young’s inequalities, we get

1
2p?
<o [ s 2% [ (33

Recalling Lemma ?7—77, then Cauchy-Schwarz and Young’s inequalities give

/ ds/ Mx—/%/ (= ) (40 (t) = v (s))dsda
s(/o ()ds+so)/ de+4i0/ (/O gt — 5) (Pa(t) — %(s))dds)de (3.6)

< (/Otg(s)ds—l-eo)/o ¢§dx+f?‘z(h<>wz) (t).

By substituting the estimates in (?7) and (?7?) into (??), we arrive at

b2 t 1 1
Fl(t) < (b3 0 —/0 g(s)ds —80)/ wid:ﬁ—i—ol/o oidx

(3.7)
2p
+ <pw+ 42 ;)02> / y;tderf (hoy) (t).
From condition (A;), we have
t b2
/ ()d8<go<b—b3—f. (38)
0 by

2

b K b
Thus, it follows that b3 — b—Q - / g(s)ds = by > 0. Therefore, by choosing gy = 50, we obtain (?7). O
1 0

Lemma 3.3. Let (p, 1) be the solution given by Theorem ??. Then, for any to > 0, the functional

1) = —py / " / g(t — $)((t) — (s))dsdz
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satisfies, for any positive oy, 03, the estimate

1 1 1
Fi(t) < — prCO / Vidr + 02/ P2dx + 03/ Yidr
0 0

(3.9)
Py v b pya’
R (e e ) (LU
to
h = ds.
where ¢y /0 g(s)ds
Proof. Differentiation of Fy, using (?7?), and then integrating by parts, we get
t 1 ) 1 t
70 = —py [ a(s)as [ vtz s [ [ o= 5)0.(0) = v (0)dsda
1t t
~ [ [ st =9vae)as [ gt = )0n0) = vuts)dsc
Ja
*ﬂw/ ?/Jt/ (t—s)( d8d$+b2/ gox/ (t — 8)(Wz(t) — e (s))dsdzx .
" (3.10)

Using Lemma 7?7, it follows by Young’s, and Cauchy-Schwarz, and Poincaré’s inequalities that for any

02,03,81 > 0, ,

J3<f/ et 24 1(/Otgu—s)(ww(t)—ws))ds) s

A
< 9/ wﬁdwrb?’—“(howw) (t),
2 0 20—2
2

s [Cotoyis [ v [ = 0a0)—vetnasae + [ ([ o= 0.0 - vatos) aw

(3.11)

<2 [uzae s ) ([owas) [ ([ ot o) - vutons) do s ashov 0
<2 Olwidaﬂ— (1+ ;;) Ao (ho ) (1),
(3.12)
gy = —poec [ [ gt = w0~ wioasda + oo [ v [0 5)00) v
< pyer 01 e+ 2 | 1 (f glt - 50 - w<s>>ds)2dx
v | 1 (f B ()~ w<s>>ds)2 do (3.13)
< pyer 1w?dx+p§€1 (hota) (1) + 52 (h o) (1)
= poer [ it (B a0+ 22) o) )
" sosos [ 2 ([ tg(ts)(zﬁ(t)w(s))ds)de -

1 2
< o3 / e+ 2 A, (hoiy) (1)
0 40’3
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Substituting (??)—(??) into (??), we end up with

t
</g d8—€1>/ fg[)tdx—i—@/ ¢2dx+03/ cpzdx
0 0

N B e (3.15)
+ (261 + Aq (1 + =+ E + 2, )) (hoty)(t).
Recalling (?7), it follows that for any ¢ > tg > 0
co = /Oto g(s)ds < /Ot g(s)ds. (3.16)
Thus, we select e = %O to get (77). O

Lemma 3.4. Let (p, 1)) be the solution given by Theorem ??. Then, the functional

1
Fs(t) := fbg/o (Vo1 — Prp) d

satisfies

2t b b b
Fi(t g—i/ 2dr+ | =2+ — +py <1—>
() 200 Jo ¥ Pe Py pe

Proof. Differentiating F3, using (??) and then integration by parts give

b [t vy [t by by !
Ry =— 2 / 2z + 2 / Rdi 4 by ( - ) / outbuda
Py Jo Pe Jo Pe Py / Jo

J7

+ — <pg;/ (t — 8)Ys(s)dsdz . (3.18)

( o 1ha) (£)- (3.17)

Js
Keeping in mind Lemma ?7—77, Young’s and Cauchy-Schwarz inequalities yield for any €5 > 0,

1
252 2 1 bl
b2 t 1
/ oo [ at=9)wa(5) - %(t))dsdﬂpw( [ oteias) [

2

b2/ ‘Hlpw/ (/ g1t = 9) (02(6) ~ b.(5)) s d“ezlpi (/Otg@)ds)g/olwzdx

1 A
<43 : =
<b; 5 ), %= e (hots)(t) ] Y2dz.

Substituting J7 and Jg into (?7?), we end up with
1 ! b2 b2 1 (b bs\°| [ Aq
Fj(t) < —b3 < - 52> / prdr + | =2 + +— (1 - 3) / Y2z + —% (ho ) (t)
Py 0 0 2P

Py 52;03, 252 Py P
1
Finally, by selecting €5 = 5, we obtain (?7). d
Py

Lemma 3.5. [?] Let (o, ) be the solution given by Theorem ??. Then, the functional

1
Fy(t) :== —py / pripdr
0
satisfies

1 1
Fi(t) < —pg,/ @fdx—l—%l/ Prda + 2 m / Yidz. (3.19)
0 0 1
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Lemma 3.6. Assume conditions (A;) and (A4s3) hold. Then, the functional

//ft—sq/J2 )dsdz,

+oo
£(t) = / o(5)ds

satisfies, along the solution of Problem (??), the estimate

where

R0 <3 [ 20 %@o%)(t» (3.20)

Proof. Differentiating Fs and observing that f'(t) = —g(t), we infer

//ft—s¢2 Ydsdx + f(0 /dex
- / / g(t — ) (a(s) — 1, (£))? dsda
2 / s / gt~ ) (6(s) — (D)) dz 1 F(O) / 20y

=2 [0 [ o= @ale) ) dr <200 [ i)zt Saov) )

But,

Therefore,

Fl(t) < 290/¢ Dz — (g0 12)(0) + £(0 /W’

Since f is decreasing, so f(t) < f(0) = go. Thus, we get

FL(t) < 300 / YAz — 5(g0 ) (1)
O

Lemma 3.7. Let (¢,v) be the solution given by Theorem ?7?. Then, for suitable positive parameters
N,Nj,j=1,2,3,4 to be choosen later, the functional

F(t) = NE(t) + N1F1(t) + NoF5(t) + N3F5(t) + NaFy(t)
satisfies
aE(l) <Ft)<cE(l), Vt>0 (3.21)
and . .
F'(t) < fﬂ/ (0 + 92 +uf +ud) dot 5 (gown) (1), V¢ 21, (3.22)
where c1,co and B are some pogitive constants.

Proof. With simple routine estimation using Young’s, Cauchy-Schwarz, and Poincaré’s inequalities, we
obtain (??) easily. Using (?7), (??), (?7?), (?7), (??) and recalling that h = ag — ¢’, we obtain

1
co N P
F/(t) <- [p¢N4—01N1]/ wfdx— lprO 2 - N <pw+ 21;:2>] / ¢tdx

0

[b2N. ! aN
273 — 0'3N22 — 2b1N4:| / Qﬁidﬁﬁ + — (g Lo d)x) (t)
L 2Py 0 2

[ bo N B2 b2 by b3 \2\  B2NL| [}
O GyNy— Ns | =2+ — +py <1—‘°’) -2z /wgdx
2 Pe Py Py Py 4b1 | Jo

_N N1 b2 b2 przQ 2N3 prQ
—|=—Aa|=—+No[1 4+ —+ = — | —-==1(h t).
B a(2b0+ < + +40_3+ o )T o o (hos) (1)
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Taking
Py bs by 8b1py
4 y 01 2N1 ) 02 4N2 ) g3 N2 ) 3 b% )
we obtain
po 1 o Py CoNa b3py N1 . e
F/(t)g_i’/ pide — |—— — N pw—{—% / wtdx—bl/ ppdz
2 Jo 2 2b1 0 0

boNi  Sbipy (b3 B2 <b1 b3>2 b3 / Yo, aN
_ - 2t —tpy [ — = - = Yrdr + — (gosz) (T
[ 2 B \pe pe U\pp  pu 2| Jo 7 )®)

N Nl b2N2 b%NQ prMQ 16b1 p¢NQ
— = A, N, [ 1 - hoy)(t).
{2 <2bo+ 2(+4b3+4b1+ P o | (ova) )

Now we choose the remaining constants: First, we select N1 big enough such that

boN:  8b b2 B2 by by\’) b
0N _ 8hipy 2++p¢(1_3> LY
2 b \pre Py Po Py 2

then we choose Ny so large that

pycolN2 b3po N1
Pocoltz 0
2 ! <p vt o )
ag’(s)  ag’(s)

From h = ag — ¢/, it follows that =
79 n(s)  ag(s) - g'(s)

< ¢g(s); thus application of dominated

convergence theorem gives
+o0 2
al, = / L(S)/ds —+0 as a—0. (3.23)
o ag(s)—g'(s)
Therefore, we can find 0 < ag < 1 so that if a < ap < 1, then
1

Ny b2N, - BIN. a2 1601\
4 g+ N (15 B 2 4
0 2

aA, <

1
Finally, we choose N so large and take o = N such that (??) remains true and
N b2N2 b%NQ pwa2) n 16b1) prQ

Ny
S N A 0
2 0‘(2b0+ 2( T T B2 o

4. MAIN DECAY RESULT
Now, we state the main stability result of this paper.

Theorem 4.1. Under the assumptions (A;) and (Asz), there exist positive constants m; and ms such
that the solution energy functional (??) satisfies

¢ r
E(t) < moG1t (ml /to f(s)ds) ,  where Gi(t) :/t ﬁ(s)ds (4.1)
and G is a strictly convex function that is non-increasing on (0, r|, where r = g(to) > 0 with }1_{% Gi(t) =
+00.
Proof. Using (?77?) and (??), if follows that for any ¢ > to,
fo ! 2 9(0) o / ! 2 /
|06 [ a0 =t 00 dnds < <22 [ 05) [ ) = wale = ) dods < ).

(4.2)

Thus, estimates (?7?) and (??) give

(0 < =BB0) + 5 [ 0(6) [ alt) = talt =) dnds+ 5 [ 0(s) [ (0200 = (0= 9)) dos

to 0
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< BB~ B0+ [ 95) [ (alt) = vult - )" duds.

2 to 0
This yields

t 1
RO < -BE® + 5 [ 906) [ (0alt) = ult — )" duds, ¥2 2 1o, (43)

to 0
where Ry = F' + ¢E and Ry ~ E by virtue of (??). The proof completed by considering two cases:
Case I: G is linear. Multiplying (??) by £(t), recalling (??) and (As), we have

EORL(D) < ~BEOED) + 5€0) [ 9(6) [ (Wal®) — valt - )° dods

to 0

t 1
<—BE0BW) + 5 [ &0)ale) [ (rl0) = s lt = 5)) dads
1 i / ! 2
<86 — 5 [ ) [ @) = vatt - ) dnas
< —BEWE() — cE'(1), V1> fo. (4.4)
From (Asz), & is non-increasing, so we get
(ER1 +cE)'(t) < —BEME(t), Yt >to (4.5)
and
ER1+cE~FE since Ry~ E. (4.6)
It follows that
Ry(t) < —BEME(t) < —mé()Ra(t), ¥t = to, (4.7)

where Ry = £Ry + ¢E and m is some positive constant. Integrating (??) over (tg,t) and recalling (?7),

we obtain ,
—mi [ &(8)ds ¢
E(t) < msge to =myG! (ml/ 5(5)d5> .
to

Case II: G is nonlinear. We define the functional L(t) = F(t)+ F5(t). Then, it follows from Lemma ??
and estimate (?7?), that for some A > 0,

L'(t) < =XE(t), Y t>t, (4.8)

which gives
t
A | E(s)ds < L(to) — L(t) < L(tp)-
to

It follows that oo

E(s)ds < 0. (4.9)
0
Using (?7?), we can choose 0 < p < 1 such that

a(t) = p / / (e ) — ot — 5))? dads,

satisfies

q(t) < 1,¥ t > to. (4.10)
From here onward, we assume ¢(¢) > 0 for all ¢ > to; otherwise estimate (??) yields an exponential decay
result. Now, we define the function u(t) by

t 1
ut) == [ 9) [ a(0) ~ valt — 5))* dods,

to 0
It follows from (?7?) that u(t) < —cE'(t), V ¢t > to. Thanks to remark ??, condition (Asz), (??), and
Jensen’s inequality, we obtain

1 t , 1 5
) = o / 4B (~g () / (6 (t) — ot — )% deds
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1 t
> / dOECos ) [ (alt) = (e - 9)* dods
€W 1 -5 xds
> £ / Gla(lg(o)n [ (alt) =t~ 5))* dud
@ t S ' — S xras
> & G(u/to ()/0 (6 (t) — ult — 9)) dd)
&) A ! ! >
= TG <,u/t0 g(s)/o (Vo () — Yo (t — 5)) dwds) , (4.11)

where G is the convex extension of G' on (0, +0c). It follows from estimate (??) that

/t:g<s)/01 (1he (1) — Yu(t — 5))* dads < %@—1 (Mgg)) -

Thus estimate (?7) takes the form

Ri(t) < —BE(t) + G > , Vit >t (4.12)

Let no < n < g(to), to be chosen later, and define Ry(t) by

Ro(t) =G’ <770lE;((3))> Ryi(t)+ E(t) ~ E(t) since Ry ~ E.

By using (??) and recalling that
E'(t) <0, G'(t) >0, G"(t) > 0,

we obtain
vy B A (0 E() A E®)Y /
Ry(t) =mo F0) G (UOE(0)> Ri(t)+ G (”OE(O)> Ry (t) + E'(t)
< -BE()G (770 g%) + G’ (770 JEE((SD G (“Z&)) +E'(t), Yt >t. (4.13)
J
To estimate the term .J, we consider the convex conjugate G* of G in the sense of Young, see [?], defined
by
G*(s) =7(G")(s) - G [(G/)(s)] (4.14)
and satisfies the generalized Young inequality
AB < G*(A) + G(B). (4.15)
We set A = G’ (ro 50) ) and B=G! ( Z((:)) then using (?7?) and (??)-(??), we obtain
Bt wf A, E®) u(t) | o
)< =086 (mgy )+ (& (i) ) +ong + 10
E(t) E@) ~ ( E() ut) |
< —BE(t)G ( E(O)) o (O)G (nOE(O)> +c,u@ + E'(t). (4.16)

0 2

Next, multiplying (??) by £(¢), recalling 7 ( ) , then

<n
t
O
and we arrive at

SO0 < ~sOEOC () ) Fan g e (i) + et +€OF 0

0 E(0) (0)
< -80B0C (g ) + M p O (o) - B0, (4.17)

Let R3 = £Rs 4 cFE and using the fact that Ry ~ F, we get
FL()Rg(t) S E(t) S Fcle(t), (418)
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for some kg, k1 > 0. Thus, from estimate (?7), we obtain
E(t) E(t)
L(t) < —(BE — ) —=G' — t > to.
Ri(t) < ~(3E0) ~ em)éO 3006 (mgge) ) e o
Now, we choose 19 < n very small so that SE(0) — ¢ng > 0 and we get for some positive m,
E(t) E(t) E(t)
Ri(t) < —mé&(t) ==G' =-—m&t)Go | =5 |, Vt>t 4.19

where Ga(t) = tG'(not). Its easy to see that
G3(t) = G'(not) + 1moG" (not).
Therefore, using the fact G is strictly convex on (0, 7], we have Ga(t) > 0, G5(t) > 0 on (0,7]. Let

_ Rs(t)
R4(t) = Ko E(O) .
Then, from (??) and (?7), we obtain
Ry(t) ~ E(t) (4.20)
and
) Ry(t)
R4(t) = Ko E(O) S —mlf(t)Gg(R4(t)), Vit 2 to. (421)
The integration of (??) over (to,t) yields
t t R (8) 1 1o Ra(to) 1
m £(s)ds < — A s = —/ —ds. 4.22
OB ) GRS T W Sy 566 (422

This implies

Ry(t) < n—loG;1 (ml /totf(s)ds) ,  where Gi(t) = /tT7 ﬁ(s)ds. (4.23)

From (Az), we see that Gy is strictly decreasing on (0, 7] and
th—n>10 G1 (t) = +o0.
Thus, (??) follows from (??) and (?7). O

corollary 4.2. Under assumptions (A4;) and (Asz), suppose the function G in assumption (Az) is defined
by

G(s) =31, p>1 (4.24)
Then there exist positive constants m and m such that the solution energy (?7?) satisfies

mexp (ﬁl /tf(s)ds) , forp=1,
0

E(t) < (4.25)
m ——, forp>1.

(o)

5. Concluding Remarks

The present work improves the result in [?], where the author established a general decay result. The
decay results in Theorem ?7? is optimal in the sense that it agrees with the decay rate of the memory
term g, see Remark 2.3 in [?]. This decay result is paramount to the engineers and architects as they
might employ it to attenuate the harmful effects of swelling soils. The result in this paper also holds for
some other boundary conditions such as

Ve (0,1) = e (1,1) = ©2(0,t) = @, (1,t) = 0, ¥(0,t) = P2 (1,) = ¢(0,t) = p,(1,¢) =0, and
wm(oa t) = 1/)(170 = (pﬂi(ovt) = 90(17t) =0.
However, there might be some challenges for the following boundary conditions
¢z(07t) = ¢z(17t) = @(Ovt) = @(Lt) =0 and 1/’(0715) = d}(lat) = @x(oat) = Qﬁm(lat) =0,
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