Preprint
Article

Laser Additive Manufacturing of Si/ZrO2 Tunable Crystalline Phase 3D Nanostructures

Altmetrics

Downloads

449

Views

668

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

23 December 2020

Posted:

28 December 2020

You are already at the latest version

Alerts
Abstract
The current paper is focused on the rapidly developing field of nano-/micro three-dimensional production of inorganic materials. The fabrication method includes laserlithography of hybrid organic-inorganic materials with subsequent heat treatment lead-ing to a variety of crystalline phases in 3D structures. In this work, it was examineda series of organometallic polymer precursors with different silicon (Si) and zirconium (Zr) molar ratios, ranging from 9:1 to 5:5, prepared via sol-gel method. All mixtureswere examined for perspective used in 3D laser by manufacturing by fabricating nano-and micro-feature sized structures. Their deformation and surface morphology wereevaluated depending on chemical composition and crystallographic phase. The appear-ance of a crystalline phase was proven using single-crystal X-ray diffraction analysis,which revealed a lower crystallization temperature for microstructures compared tobulk materials. Fabricated 3D objects retain a complex geometry without any distortion after heat treatment up to 1400oC. Under the proper conditions, a zircon phase (ZrSiO4 - a highly stable material) can be observed. In addition, the highest newrecord of achieved resolution below 60 nm has been reached. The proposed prepara-tion protocol can be used to manufacture micro/nano-devices with high precision andresistance to high temperature and aggressive environment.
Keywords: 
Subject: Chemistry and Materials Science  -   Biomaterials
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated