Preprint
Article

A Precision Evaluation Method for Remote Sensing Data Sampling Based on Hexagon Discrete Grid

Altmetrics

Downloads

429

Views

297

Comments

0

Submitted:

28 December 2020

Posted:

29 December 2020

You are already at the latest version

Alerts
Abstract
With the rapid development of earth observation, satellite navigation, mobile communication and other technologies, the order of magnitude of the spatial data we acquire and accumulate is increasing, and higher requirements are put forward for the application and storage of spatial data. Under this circumstance, a new form of spatial data organization emerged-the global discrete grid. This form of data management can be used for the efficient storage and application of large-scale global spatial data, which is a digital multi-resolution the geo-reference model that helps to establish a new model of data association and fusion. It is expected to make up for the shortcomings in the organization, processing and application of current spatial data. There are different types of grid system according to the grid division form, including global discrete grids with equal latitude and longitude, global discrete grids with variable latitude and longitude, and global discrete grids based on regular polyhedrons. However, there is no accuracy evaluation index system for remote sensing images expressed on the global discrete grid to solve this problem. This paper is dedicated to finding a suitable way to express remote sensing data on discrete grids, and establishing a suitable accuracy evaluation system for modeling remote sensing data based on hexagonal grids to evaluate modeling accuracy. The results show that this accuracy evaluation method can evaluate and analyze remote sensing data based on hexagonal grids from multiple levels, and the comprehensive similarity coefficient of the images before and after conversion is greater than 98%, which further proves that the availability hexagonal grid-based remote sensing data of remote sensing images. And among the three sampling methods, the image obtained by the nearest interpolation sampling method has the highest correlation with the original image.
Keywords: 
Subject: Environmental and Earth Sciences  -   Remote Sensing
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated