
   

Supplementary Material 1 

1 Probability of activation of a gene 

If c(t) is the concentration of a Transcription Factor (TF) in the nucleus, the probability that the TF 

successful binds to the promoter site of a gene at time t + ∆t and active it (state on) is: 
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where p
off

(t) is the probability that the gene is inactive (state off) at time t, k1 is the rate constant of 

transition from state off to state on, k-1 is the rate constant of transition from state on to state off, and 

 t  is a random function of t such that 
 

0
t

t

 



 when 0t  .  

Eq. (1) is the master equation for the process of transition from state 0 to state 1 for a single gene due 

to the binding of a TF to its promoter. 

Dividing Eq. (1) by t and calculating the limit when 0t   we obtain: 
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which leads to: 
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Assuming that the binding of the TF to the promoter site is a Bernoulli process:     1on offp t p t  , 

and we finally obtain: 
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2 Probability of inhibition of a gene 

The presence of a competitive inhibitor of the TF activity, which not necessarily acts on the same 

promoter site, can be modeled as: 
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      (5) 

where inh(t) is the concentration of the inhibitor in the nucleus, and  is a constant. Expression (5) 

corresponds to Eqs. 5-8 of main text. 
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3 Stability analysis of nonlinear systems 

Cells are complex networks of physicochemical processes that support a highly organized structure 

and function. Thus, each cellular process sustained by a cell involves different levels of cellular 

organization. Every level cellular level of organization can be represented as a subsystem 

(subnetwork) with modular. In this form, cells can be modeled as formed by a set of subsystems like 

the gene regulatory network (GRN), the network of synthesis and distribution of proteins, the 

network of signaling pathways, and the metabolic network, among others. The information flow 

through the set of cellular subsystems that controls the cell response to environmental signals occurs 

according to the canonical schema of SM 2 Figure 1. DNA or RNA viruses can drastically modify 

this flow of information.  

An important remark from SM 2 Figure 1 is that the flow of information through cellular subsystems 

is due to a continuous flow of matter and energy, according to the respective laws of conservation. 

Taking into account the flow of matter at each point of the cell, the respective mass balance equation 

is: 
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SM 2 Figure 1.- Flow of information between cell subsystems. Changes in environmental conditions are sensed by cell 

signaling networks, which code and transmit this information to the nucleus. Coded information is decoded by the 

transcription machinery that, in response to this information, activates and inactivates a set of specific genes, giving rise 

to a specific distribution of effectors proteins. These proteins are responsible for the cell specific response to the 

environmental conditions. Some of these proteins can be used to regulate gene expression, acting as specific transcription 

factors that form complex regulatory loops inside the nucleus. Proteins can also be secreted to modify the cell 

environment.  Viral RNA and DNA can modify this flow of information by acting directly on the cell genome, drastically 

modifying the population of effectors proteins and their function.  

Equation (1) means that the local rate of variation of the concentration of the substance k (denoted by 

kc ) at point x at time t is equal to the net rate of diffusion of k inside the cell volume V (denoted by 

 2 ,k kD c tx ) plus the rate of formation/degradation of k due to the local chemical reactions inside V. In 

Eq. (1), r represents the local rate of the chemical reaction r, which is a functional of the 

concentration of the reactive substances at point x at time t, and  rk is the stoichiometric coefficient of 

k in reaction r.   

The reaction term of Eq. (1) can be rewritten as:  
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leading to: 
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which is the well known form of the reaction-diffusion equation for the substance k. It indicates that 

the temporal variation of the concentration of k at point x at time t depends on the balance between 

the chemical processes in which this substance takes part, represented by the function fk, and its 

diffusion rate in the cellular medium. Function fk is generally a nonlinear function of the 

concentration of the reactive substances, and Eq. (3) usually has not an analytical solution. In a 

homogeneous medium, the diffusive term in Eq. (3) is null, and fk completely defines the entire 

system dynamics in the s-dimensional phase space, which is defined by the set of concentration 

values of the s reactive substances. The systems dynamics is represented by a trajectory in this space 

or phase space, defined by the column vector      
1 2( ) ... s

T
t c t c t c tc . In nonlinear systems this 

trajectory can have peculiar characteristics like high sensitivity to initial conditions, bifurcations and 

complex loops that represent a great variety of dynamical behaviors observed in biological systems 

like limit cycles, hysteresis, bistability, ultra sensitivity, among others. In a no homogeneous 

medium, the diffusive term of Eq. (3) produces a more complex dynamical behavior of the system, 

giving rise to phenomena like traveling waves, spirals and spatially located bursting of second 

messengers and proteins, among others.  

The first problem concerning the dynamics of nonlinear systems is the determination the steady 

points of the system in the phase space.  

A steady point is a column vector       1 2 ...
To o o o

sc t c t c tc for which equation: 
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becomes zero. Once the set of steady points of the system is settled on, is necessary to determine 

their stability. Eq. (4) subject to the initial condition    00c c defines a nonlinear dynamical system. 

The steady point oc  of a dynamical system is Liapunov stable if for each  > 0 exits a  > 0 such that 

        whenever 0o otc c c c , i.e., any trajectory that initiates at a distance  of the steady point o
c

remains at a distance  of it all time. 

The steady point oc of a dynamical system is attracting if exists a   0  such that  


lim o

t
tc c  for any 

trajectory  ( )tc c whenever    0 oc c , i.e., any trajectory that initiates at a distance  of the steady 

point oc will converge to it eventually.  In this case, the point oc is an attractor of the dynamical 

system in the phase space. A steady point oc  Liapunov stable and attractor is asymptotically stable. A 

steady point oc that is neither stable nor attractor is unstable, and is a repulsor in the phase space. 
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Generally, the nonlinear systems trajectories cannot be determined in an analytical form. However, it 

is possible to perform a qualitative analysis to find out the global behavior of the dynamical system 

in the corresponding phase space. As a vector can be assigned to each point of this space, according 

to Eq. (4), the vector field associated to the phase space can be drawn. By flowing this vector field, a 

phase point traces a solution c(t) of the dynamical system, corresponding to a trajectory winding 

through the phase space.  

It is of importance to point out the fact that if the function f of Eq. (4) is continuous and all its partial 

derivates 





   , 1,2,...,i

j

f
i j s

c
 are also continuous in c for a given subset nD , then for every 0 Dc  the 

initial value problem of Eq. (4), has solution c(t) in some time interval (-t,t) around t = 0 and this 

solution is unique. A topological implication of this theorem is that two trajectories cannot intersect 

and, as consequence, chaos is ruled out of any 2-dimensional phase space but arises as a possible 

behavior of every s-dimensional dynamical system with s > 2.   

The phase space analysis of the dynamics of a nonlinear system takes into account the following 

aspects: 1) the number, position and stability of the steady points; 2) the arrangement of the 

trajectories near the steady points; and 3) the existence and stability of closed orbits.  

 The arrangement of the trajectories around steady points is determined by linearization of the 

original nonlinear system, and analysis of the behavior of the eigenvalues of the Jacobian matrix of 

the linearized system around each steady point. For example, considering a 2-dimensional phase 

space and a steady point  1 1,
To o oc cc , a small perturbation from this steady state drives the nonlinear 

dynamical system 
 

 

    
    

  
   
    

1 1 21

2 2 1 2

,

,

f c t c tc t

c t f c t c t
into a new trajectory         1 2,

T
t c t c tc , where

     1 1 1
oc t c t c  , and      2 2 2

oc t c t c . In this form: 

   
 

   
 

      

     

 
    

 

 
   
 

1 2 1 2

1 2 1 2

2 21 1
1 1 1 1 2 1 2 1 2 1 2

1 2, ,

2 21 1
1 2 1 2 1 2 1 1 2

1 2, ,

( , ) , ,

    , ,   because ( , ) 0

o o o o

o o o o

o o

c c c c

o o

c c c c

f f
c c f c c c c O c c c c

c c

f f
c c O c c c c f c c

c c

                   (5) 

in a similar form: 
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which leads to the linearized dynamical system: 
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 1 2,c cJ represents the Jacobian matrix of the linearized dynamical system in Eq. (6). The eigenvalues 

 1 2,   of  1 2,c cJ can be calculated from the characteristic equation:    1 2, 0c cJ I . Depending on the 

nature of the eigenvalues, it is possible to know the arrangement of the trajectories near each steady 

point of the nonlinear system (SM 2 Figure 2). This linearization process can be extended to perform 

the phase space analysis of higher dimensional nonlinear dynamical systems.  

 

SM 2 Figure 2.- Classification of the steady points of a 2-dimensional linearized dynamical system. (a) There is a 

stable node or attractor in the phase space when both eigenvalues 1 and 2 are real and negative (when both eigenvalues 

are positive, the steady point is a unstable node or repulsor); (b) There is a saddle point in the phase space when both 

eigenvalues 1 and 2 are real, but one of them is positive and the other is negative. The stable manifold is spanned by the 

eigenvector associated to the negative eigenvalue. The unstable manifold is spanned by stable the eigenvector associated 

to the positive eigenvalue. (c) There is a stable spiral in the phase space when both eigenvalues 1 and 2 are complex 

conjugated with negative real part.  (d) On the contrary, if both eigenvalues 1 and 2 are complex conjugated with 

positive real part the spiral is unstable. (e) When 1 and 2 are pure imaginary the steady point is a center surrounded by a 

series of stable closed orbits. All figures show the flow of the dynamical system in the phase space spanned by the basis 

conformed by the variables c1(t) and c2(t). The black point represents the steady point of the dynamical system, and the 

arrows mark out the direction of the flow of the vector field. 

An important question that arises at this point is whether the behavior of the trajectories obtained 

from Eq. (7) accurately reflects the real behavior of the trajectories of the original nonlinear system.. 

If the linearized system has a saddle, a node or a spiral at a given steady point, then the original 

nonlinear system also has a saddle, a node or a spiral at that steady point. Furthermore, if a steady 

point is a stable saddle or node of the linearized dynamical system, then is also a stable saddle or 

node of the nonlinear system. In this case, the neglected nonlinear terms of Eq. (5) and Eq. (6) 

practically have no effect on the stability of these points when Re()  0, for both eigenvalues. This 

kind of steady points is known as hyperbolic points, and they are not affected by the small nonlinear 

perturbations. The topological implication of this fact is that the vector field corresponding to a 
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saddle or a node is not altered by small nonlinear perturbations and, as consequence, has structural 

stability.     

When the eigenvalues of the Jacobian matrix are pure imaginary  = i , the steady point is a center. 

The trajectories around this point are closed orbits that are stable. However, the neglected nonlinear 

terms in Eq. (5) and Eq. (6) can produce an imperfect closure of the orbit, giving rise to a spiral. In 

this form, the vector field corresponding to a center is altered by small nonlinear perturbations that 

transform the center into a spiral and, as consequence, has not structural stability. 

According to their stability, steady points of 2-dimensional dynamical systems can be classified into 

a: 1) Robust case, which includes repellers or sources, for which both eigenvalues have Re() > 0; 

attractors or sinks, for which both eigenvalues have Re() < 0 and saddles, for which one eigenvalues 

has Re() > 0 and the other one has Re() < 0; 2) Marginal case, which includes centers for which 

both eigenvalues are pure imaginary, and non-isolated steady points for which one eigenvalue has 

Re() = 0. 

However, the phase space of a nonlinear system can exhibit another kind of closed orbits called limit 

cycles, which cannot be observed in linear systems. A limit cycle is an isolated trajectory for which 

neighbor trajectories can be only spirals that converge to it or diverge from it. If all the spirals 

converge into the limit cycle, this closed orbit is stable, otherwise is unstable. The existence of this 

kind of closed trajectories in the plane is settled down by the Poincaré-Bendixson theorem. 

According to this theorem, exits a trajectory C, which is either a closed orbit or a spiral that 

converges to a closed orbit as t  , confined inside a certain closed bounded region R of the plane. 

This theorem assumes 1) the existence of a vector field ( )c f c that is continuously differentiable on 

an open set of the plane containing R, and 2) R does not contain any fixed point. A consequence of 

this theorem is that in a 2-dimensional phase space any trajectory trapped into a closed bounded 

region R must converge to a limit cycle.  

However, in higher dimensional systems the Poincaré-Bendixon theorem does not longer apply and 

trajectories can be trapped into a closed region of the phase space without converge into a limit cycle 

or settle down to a fixed point, and they could be attracted by a complex geometric object called 

strange attractor, which is a fractal set on which the motion is no periodic and sensitive to very small 

changes in initial conditions. This sensitivity makes the motion unpredictable as t increases, giving 

rise to a chaotic dynamics.  

The qualitative features of the vector field of a biochemical dynamical system are strongly dependent 

on the set of parameters of its corresponding set of differential equations. As the value of one of these 

parameters changes, the qualitative features of the vector field undergo local variations around the 

steady points. This parameter-dependent change in the local topological structure of a vector field is 

known as bifurcation. They generally occur in a one-dimensional subspace, and the rest of the 

dimensions of the phase space are affected as consequence of the flow that can be attracted or 

repelled from this subspace. Taking into consideration the imaginary plane, we can roughly classify 

bifurcations into two cases: 1) the eigenvalues of the Jacobian matrix are both real and bifurcations 

occur along the real axis as certain parameter  changes. This kind of bifurcation comprises the 

saddle-node bifurcation; the transcritical bifurcation, and the subcritical and supercritical pitchfork 

bifurcation. 2) The eigenvalues of the Jacobian matrix are complex conjugated. Bifurcations occur 



 7 

crossing the imaginary axis as certain parameter  changes. This kind of bifurcation comprises the 

supercritical and subcritical Hopf bifurcation. 

In the first case, a) the saddle-node bifurcation causes local variations in the vector field around two 

points: a saddle and a node, as a bifurcation parameter  changes. These points become closer as 

parameter  varies until they collide and annihilate each other. This type of bifurcation has 

interesting applications in some models of biological processes that imply the presence of chemical 

switches; b) a transcritical bifurcation occurs when two steady points interchange their stability as the 

bifurcation parameter  varies; c) the normal form of an ordinary differential equation (ODE) that 

exhibits a subcritical pitchfork bifurcation is: 3c c c  . When  <0, there are one stable steady 

point at  
1 0oc  , and there are two unstable points at   2,3

oc . When  > 0 the only real steady 

point c
o
 = 0 becomes unstable. The normal form of an ODE that exhibits a supercritical pitchfork 

bifurcation is 3c c c  . When  < 0 the only real steady point c
o
 = 0 is stable. For  > 0 there is an 

unstable steady point at 
1 0oc  , and two stable steady points at  2,3

oc .  

In the second case, the presence of a Hopf bifurcation leads the system to a limit cycle. As the 

bifurcation parameter  varies, when a certain critical value c is reached the supercritical Hopf 
bifurcation drives the transformation of a stable spiral into an unstable spiral that converges to a 

stable limit cycle (SM 2 Figure 2).  The case of a subcritical Hopf bifurcation is more complicated. A 

typical example is when an unstable limit cycle shrinks to cero amplitude as the bifurcation 

parameter  reaches its critical value c, at which the cycle engulfs the node rendering it unstable and 

making the system to jump to a distant attractor when  > c. This new attractor could be a steady 
point, another limit cycle, infinity or a chaotic attractor (for higher dimensional systems).  

   

 

SM 2 Figure 2.- Supercritical Hopf bifurcation. This kind of bifurcation transforms a stable spiral into an unstable 

spiral that converges to a stable limit cycle when the value of the bifurcation parameter  reaches some critical value c. 

The black points in the figure are different initial conditions of the dynamical system. The arrows mark out the direction 

of the flow of the vector field. The phase space is spanned by c1(t) and c2(t). 

 

 

4 Stability analysis of the model  
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One of the objectives of the model is to determine how the phase space of the circuit of Figure 2 of 

the main text  is structured, i.e., how the trajectories span around the fixed points in the n-

dimensional phase space for the set of initial conditions and parameter values. A second objective is 

to know in what extent this phase space structure is changed by the presence of the SARS-CoV-2 

virus. The third objective is to find the possible bifurcations of the system and to identify which 

parameter or parameters are the responsible of this change in the qualitative dynamical behavior of 

the system. 

The model of the circuit consist of 10 nonlinear coupled ODES that describe the dynamics of the 

interaction of the proteins that form the dynamical system, and four stochastic differential equations 

that describe the activation of the genes NK B, IL-6, Cox2 and IB according to the feedback 
circuits shown in Figure 3 of main text (see also Table 1 of main text). 

In this form the 10-dimensional dynamical system can be written as:   tx f x , where:

                   , * , , 5 , ( ), * , 6 , , 2 , 2
T

t NF B t nf t i bnf t Nsp t hd t hd t il t i b t cox t pge t     x
 
is the 

state vector at time t, and f is a nonlinear function of the state vector x(t). This equation describes the 

trajectories of the dynamical system in the phase space. The four master equations for the temporal 

dynamics of the gene regulatory network (GRN) of the lung cell define the vector: 

         6 2, , ,
T

on on on on

s IL I B Cox NF Bt p t p t p t p t 
   x (see Table 1 of main text). This vector describe the 

change in the probability distribution of the activation of each gene of the GNR, which usually 

converges to a steady constant distribution when t  . We numerically solved the model using the 

predictor-corrector Euler method and the Runge-Kutta 4,5 method in Math-Lab with the parameter 

values reported in Table 1 of main text, and for a set of 100 random initial conditions in each case. 

We assume that all parameters of the model are unknown, so we define and arbitrary reference state 

(ARS) in which the activation of NF B is transitory (Figure 4A in main text) in presence of an 

external input ((t) = 10 pg mL
-1

 s
-
1), and in absence of the SARS-CoV-2 virus. 

Solution of the model for the ARF defines the stable node and the steady probability distribution: 

 

 

0,0,0,0,15,120,20,0.91,0,0

0,0,0,0

o

ARF

o

s





x

x
       (13)

 

Thus, in ARS the probability of activation of all genes become zero, and the concentration of IL-6 in 

plasma is 20 pg mL
-1

 (see Figure SM2 3a). Thus, ARS is a state in which the external signal (t) 

produces a sustained high concentration of the cytokine in the circuit beside the fact that NF B is 

transiently switched on (see Eq. 12 of main text).  

Perturbation of ARS with Nsp5 changes the position of the steady point without modifying its 

qualitative nature, as is shown in Figure SM2 3b. In this case the stable node and the steady 

probability distribution are:
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 

 

1.41,5.65,0.09,20,0.71,6.71,20.86,0.25,0.71,9.79

0.71,0.88,0.71,0.71

o

virus

o

s





x

x

         (14)
 

which indicate that the virus effectively induces the decrease in the concentration of free and nuclear 

HDAC2 (hd = 0.71 pg mL-1 and hd* = 6.71 pg mL-1) increasing the probability of activation of NF 

B and its target genes. In particular, activation of IL-6 does not significantly alters the steady level 

of IL-6 in plasma, indicating that the external signal (t) is still the main cause of the high level of 
the cytokine in the circuit when ARS is perturbed by the viral protein Nsp5. 

 

Figure SM2 3.-  Viral perturbation of ARS. a) Projection of the 10-dimensional phase space of the circuit of Figure 2 

of main text on the NF B-IL-6 phase plane in the ARS. In this Figure we show only five trajectories generated from five 

random initial conditions that converge to the stable node xo
ARS that corresponds to a state of high concentration of IL-6 

(20 pg mL-1) in the plasma and zero cytoplasmic free NF B (equation 13 SM2). b) The presence of the viral protein 

Nsp5 changes the position of the stable node in the NF B-IL-6 without changing its qualitative nature. For this stable 

node xo
virus the concentration of IL-6 in plasma has a small increase but there is also a small concentration of cytoplasmic 

NF B in the circuit. For both panels: (t) = 10 pg mL-1 s-1, and the parameters values are the reported in Table 1 of main 

text. 

5 Parameter Variation  

3.1) Gene Translation rate 

We varied the translation rates of NF B, IL-6, Cox2, and IB genes to test the influence of these 
parameters on the circuit dynamics while the rest of the parameters remain without change with 

respect to their value reported in Table 1 of main text. We found that a high rate of translation of NF 

B ( max 1 110 pg mL  snfV   ), IB ( max 1 115 pg mL  sI BV 

   ), and IL-6 ( max 1 1

6 20 pg mL  sILV   ), in 

absence of the virus, defines a stable node and a steady probability distribution identical to the one of 

ARS (Figure SM2 3a and Figure SM2 4a). This result indicate that the high translation rates of NF 

B, IL-6, and IB are not sufficient to permanently overcome the inhibitory effect that the epigenetic 

regulator HDAC2 exerts on NF B, when (t) = 10 pg mL
-1

 s
-1

. In this case, the value of the rate of 

translation of Cox2 is constant (2 pg mL
-1

 s
-1

).  
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In contrast, in presence of protein Nsp5 the high translation rates of NF B ( max 1 110 pg mL  snfV   ), 

IB ( max 1 115 pg mL  sI BV 

   ), and IL-6 ( max 1 1

6 20 pg mL  sILV   ) produce a stable node and a steady 

probability distribution: 

 

 

9.41,37.65,0.61,20,0.71,5.71,35.73,0.31,9.41,7.6

0.94,0.97,0.94,0.94

o

OSIS

o

s





x

x

      (15) 

that correspond to a state with an elevated concentration of free cytoplasmic and nuclear NF B (9.41 

and 37.65 pg mL
-1

 respectively), a high concentration of the viral protein Nsp5 (20 pg mL-1), a low 

concentration of cytoplasmic and nuclear HDAC2 (0.21 and 5.71 pg mL
-1

, respectively), and a high 

concentration of IL-6 in plasma (35.73 pg mL
-1

). This state is the over stimulated immune state 

(OSIS) observed in critical patients of COVID19 (Figure SM2 4b) produced by a high rate of 

production of IL-6, and by the inhibition of HDAC2 by the viral protein Nsp5 (see main text).  

 

Figure SM2 4.- OSIS. a) Projection of the 10-dimensional phase space of the circuit of Figure 2 of main text on the NF 

B-IL-6 phase plane for high translation rates of NF IL-6 and IB in absence of virus. In this Figure we show only 

five trajectories generated from five random initial conditions that converge to the stable node that corresponds to a state 

of high concentration of IL-6 (20 pg mL-1) in the plasma and zero cytoplasmic free NF B (Equation 13 of SM2). b) The 

presence of the viral protein Nsp5 changes the position of the stable node in the NF B-IL-6 phase plane without 

changing its qualitative nature. For this stable node the concentration of IL-6 in plasma is high (~ 35 pg mL-1), and the 

concentration of cytoplasmic and nuclear HDAC2 (0.21 and 5.71 pg mL-1, respectively) are lower than in ARS (Equation 

13 SM2). This stable node represents the OSIS. For both panels: (t) = 10 pg mL-1 s-1, and the value of the rest of the 

parameters are the reported in Table 1 of main text.  

 

3.2) Rate of IL-6 release from external sources.  

We analyzed the effect of different rates of IL-6 release from external sources ((t)) on the dynamics 

of the circuit of Figure 2 of main text. We varied the parameter t from 0 to 20 pg mL-1 s-1 in 
presence of Nsp5. The value of the rest of the parameters are constant (Table 1 main text). In Figure 

SM2 5a we show that variation of  (t) from 0 to 20 pg mL-1 s-1 produces a series of trajectories 

max 1 1
10 pg ,

nf
V mL s

 
   max 1 1

15 pg ,
I B

V mL s


 
  

max 1 1

6
and 20 pg .

IL
V mL s

 
  
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trapped in a narrow region of the NF B-Il-6 phase plane,  when the translation rates of all genes are 

equal to 2 pg mL-1 s-1. Each trajectory converge to a stable node in which the steady concentration of 

cytoplasmic NF B is ~ 1.4 pg mL-1, and the steady concentration of IL-6 changes from 5 to 40 pg 

mL-1 according to the value of . The circuit becomes unstable for (t) > 50 pg mL-1.  

In OSIS max 1 110 pg mL  snfV   , max 1 115 pg mL  si BV

  , and max 1 1

6 20 pg mL  sILV   . The rest of the 

parameters have the value indicated in Table 1 of main text.  When  varies from 0 to 20 pg mL
-1

 s
-1

 

the trajectories span inside a wider region of the NF B-IL-6 phase plane and each one converge to a 

stable node with a steady concentration of NF B of ~ 10 pg mL
-1

, and a steady concentration of Il-6 

that varies from a minimum of ~ 20 pg mL
-1

 to ~ 55 pg mL
-1

 (Figure SM
 
2 5b)

  
, which are values 

higher that the shown in panel (a) of the same figure. These results indicate that the viral protein 

Nsp5 effectively amplifies the effect of the external signal , increasing the levels of free NF B and 

IL-6 in the circuit. When  = 1 pg mL
-1

 s
-1

, the circuit exhibits a tremor in the trajectory that 

disappears before entering the stable node.     

 

Figure SM2 5.- Effect of the variation of parameter . a) Projection of the 10-dimensional phase space of the circuit of 

Figure 2 of main text on the NF B-IL-6 phase plane for different values of the parameter (t). In this Figure we show six 

trajectories generated from six increasing values of , each one converging to a stable node that corresponds to a state of 

increasing concentration of IL-6 (from ~ 5 to ~ 40 pg mL-1) in the plasma and ~ 1.4 pg mL-1 free NF B. In this case all 

the gene translation velocities are equal to 2 pg mL-1 s-1. b) The presence of the viral protein Nsp5 changes the position of 

the stable node in the NF B-IL-6 phase plane without changing its qualitative nature. For each stable node, the 

concentration of free NF B corresponds to a value of ~ 10 pg mL-1, and the concentration of IL-6 changes from ~ 20 to ~ 

55 pg mL-1. Each node corresponds to an OSIS.  

3.3) Effect of the intensity of IB inhibition on the circuit dynamics 

The parameter k1 of the model (see Table 1 of main text) measures the intensity of the inhibition of 

IB on cytoplasmic NF B, which corresponds to the negative feedback loop of Figure 3B of main 

text. Figure SM2 6a shows that the variation of this parameter in absence of the virus (holding the 

rest of the parameters at the value indicated in Table of main text), and with gene translation rates
max 1 110 pg mL snfV    , max 1 115 pg mL sI BV 

  , max 1 1

6 20 pg mL sILV   , and max 1 1

2 2 pg mL sCoxV   , 

produces a set of trajectories that converge to ARS for values of k1[0, 0.5]. However, for k1(0.5, 

0.8) the qualitative dynamical behavior of the circuit changes and each trajectory converge to a stable 

node. This set of nodes form a succession of points with decreasing concentrations of IL-6 between 
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10 and 18 pg mL
-1

, and a increasing concentration of free NF B between 1 to 12 pg mL
-1

 

(trajectories not shown). For k1[0.8, 0.85) the trajectories converge to a stable node for which IL-6 

concentration is ~ 18 pg mL
-1

m and the free NF B concentration is ~ 12 pg mL
-1

. For k1[0.85, 

0.88) a bifurcation occurs giving rise to oscillations of increasing amplitude and frequency in NF B 
and IL-6 concentration, as the parameter k1 increases its value. Finally, the circuit becomes unstable 

for k1[0.85, ).        

The presence of the virus drastically changes the above dynamical behavior. When k1 = 0, the only 

possible state of the circuit is ARS (Figure SM2 6b). For k1(0,0.4) the system becomes unstable.  In 

the interval k1[0.4, 0.69) each trajectory converge to a stable nodes with IL-6 concentration of 30 pg 

mL
-1

 and a NF B concentration that varies from ~ 6 to 12 pg mL
-1

. Each node represents an OSIS 

state. In this case, when k1[0.69, 0.75)  a bifurcation occurs giving rise to oscillations of increasing 

amplitude and frequency in NF B and IL-6 concentration, as the parameter k1 increases its value. In 
this case, the amplitude of the oscillations is larger than in absence of the virus, and the oscillations 

appear at a lower value of k1. For values of k1  0.75 the circuit becomes unstable.     

 

Figure SM2 6- Effect of the variation of k1. a) In absence of the virus, and with high gene translation rates, the variation 

of parameter k1 produces the modification of the qualitative dynamics of the circuit from a tendency to remain in ARS (k1 

 0.5) to produce an oscillatory dynamics (k1[0.8, 0.85)). In all cases the maximum concentrations of IL-6 and free NF 

B are 20 and 12 pg mL
-1

 respectively. b) In presences of the virus, in OSIS conditions, the circuit becomes unstable for 

k1 (0, 0.4). In contrast to panel (a), for each value of k1 the trajectory converges to a node with high concentration of IL-

6 (~ 30 pg mL
-1

) when k1[0.4, 0.69). Oscillations occur at a lower value of k1 (bifurcation point at k1 = 0.69) indicating a 

faster release of NF B from the inhibitory effect of IB due to the presence of Nsp5. 

3.4) Effect of the diffusion rate of NF B into the nucleus  

The release of NF B into the cytoplasm and its subsequent mobilization into the nucleus is a key 

step in the activation of its target genes NF B, IL-6, Cox2, and IB. In the model the parameter that 

controls this process is D, which in ARS has a value of 1 s
-1

.  In conditions of high translation 

velocities of NF B, IL-6, Cox2, and IB (10, 20, 2, and 15 pg mL
-1

 s
-1

, respectively) variation in the 
value of this parameter in absence of the virus is indicative of the form in which the activation of the 

immune response depends on the localization of NF B in the nucleus. We varied this parameter 

from 0 to 5 s
-1

, holding the rest of the parameters at a constant value (Table 1 main text). We found 
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that when D = 0 exists a stable node in the NF B-IL-6 phase plane that corresponds to a IL-6 

concentration of  ~ 20 pg mL
-1

, and a NF B concentration of ~ 5 pg mL
-1

. In this case the 

concentration of NF B in nucleus and the probability of activation of its target genes are zero. This 

result indicates that the mobilization of NF B into the nucleus is a necessary condition to start the 

immune response in the circuit of Figure 2 of main text, even in the presence of an external signal 

(t) = 10 pg mL
-1

s
-1

. For D(0,5] the circuit enters in the ARS, and values of D > 5 s
-1

 destabilizes 
the circuit (Figure SM2 7a). 

In presence of the virus, the response of the circuit to D = 0 is identical to the reported in panel (a), 

indicating that neither the external signal (t) nor the virus can start the immune response if NF B 

cannot be translocated into the nucleus (Figure SM2 7b). However, when D(0,12) the presence of 
Nsp5 produce a series of steady responses in which IL-6 has a concentration of  ~ 30 pg mL

-1
, and 

NF B decreases from ~ 8 to ~ 2 pg mL
-1

 as parameter D increases. This result indicates that the 

virus increases the availability of NF B in the nucleus, promoting gene transcription in the circuit 
and a strong immune response (OSIS). Values of D > 12 s

-1
 destabilize the circuit.   

 

Figure SM2 7.- Effect of the variation of parameter D. a) In absence of movement of NF B into the nucleus (D = 0) 

the circuit exhibits a stable node in absence of Nsp5 in which IL-6 concentration is ~ 20 pg mL
-1

 and NF B 

concentration is ~ 5 pg mL
-1

 . For values of D(0,5] the circuit enters in ARS, and values of D > 5 destabilize the circuit. 

b) In presence of Nsp5 (OSIS), when D(0,12) the presence of Nsp5 produce a series of steady responses in which IL-6 

has a concentration of  ~ 30 pg mL
-1

, and NF B decreases from ~ 8 to ~ 2 pg mL
-1

 as parameter D increases.      

3.5) Effect of NF B in the nucleus 

In the nucleus of the type 2 alveolar lung cells, NF B promotes the transcription of its target genes 

NF B, IL-6, IB and Cox2. The concentration of NF B in the nucleus is regulated by a series of 
mechanisms whose intensity we represent by the parameter kdeg, which in ARS has a value of 2 s

-1
 

(Table 1 of main text). In conditions of high translation velocities of NF B, IL-6, Cox2, and IB (10, 

20, 2, and 15 pg mL
-1

s
-1

, respectively) variation in the value of this parameter in absence of the virus 

is indicative of the form in which the activation of the immune response depends on the availability 

of NF B in the nucleus. We varied this parameter from 0 to 5 s
-1

, holding the rest of the parameters 
at a constant value (Table 1 main text). We found that when kdeg = 0 the circuit becomes unstable, 

indicating that the nuclear regulatory mechanisms of NF B are necessary to produce a stable 

immune response.  For kdeg (0,2) the trajectories in the NF B – IL-6 phase plane converge to stable 
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nodes for which IL-6 and cytoplasmic NF B concentrations decrease (Figure SM2 8a).  When kdeg = 

2 s
-1

 the circuit enters in ARS, and for kdeg > 2 the circuit becomes unstable.  

In presence of the virus, the qualitative dynamical behavior of the circuit drastically changes for kdeg 

(0, 50). In this case the trajectories in the NF B – IL-6 phase plane converge to numerous stable 

nodes for which IL-6 and cytoplasmic NF B concentrations decrease as kdeg increases (Figure SM2 

8b), indicating that Nsp5 enhances the nuclear concentration of NF B that, in turn, produces a raise 
in the intensity of the inhibitory mechanisms required to regulate its activity. Each of this nodes 

represents an OSIS, which can be only suppressed when kdeg = 50 s
-1

 and the circuit enters in the 

ARS.          

 

Figure SM2 8.- Effect of the variation of parameter kdeg. a)  In conditions of high translation velocities of NF B, IL-6, 

Cox2, and IB (10, 20, 2, and 15 pg mL
-1

s
-1

, respectively) variation in the value of this parameter in absence of the virus 

is indicative of the form in which the activation of the immune response depends on the availability of NF B in the 

nucleus. For kdeg (0,2) each trajectory converges to a stable node for which IL-6 and cytoplasmic NF B concentrations 

successively decrease. When kdeg = 2 s
-1

 the trajectories converges to the ARS. b) In presence of the virus, the qualitative 

dynamical behavior of the circuit drastically changes for kdeg (0, 50). In this case, each trajectory converges to a stable 

node that represents an OSIS. When kdeg = 50 s
-1

 the trajectories converges to the ARS. In both panels, when kdeg = 0 the 

circuit becomes unstable 

 

 

  
  

 

 

 

 

 


