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1 Probability of activation of a gene
If c(t) is the concentration of a Transcription Factor (TF) in the nucleus, the probability that the TF
successful binds to the promoter site of a gene at time t + At and active it (state on) is:

p™ (t+At)=p™ (t)+kc(t) p™ (t)At—k, p™ (t)At+o(At) (1)

where p*(t) is the probability that the gene is inactive (state off) at time t, k; is the rate constant of
transition from state off to state on, k.; is the rate constant of transition from state on to state off, and

] ) At
o(At) is a random function of Atsuch that M — 0 when At —0.

Eq. (1) is the master equation for the process of transition from state O to state 1 for a single gene due
to the binding of a TF to its promoter.

Dividing Eq. (1) by Atand calculating the limit when At — 0 we obtain:

P (t+AL)—p™(t . on . o(At
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which leads to:

dt
=1,

dp® (t
P ( )—klc(t)- P (t)-k,p™(t) ()
Assuming that the binding of the TF to the promoter site is a Bernoulli process: p™ (t)+ p (t)

and we finally obtain:
dpon t on on
dt( )_ ke(t)-(1-p™ (1)) -k, p (t) (@)
2 Probability of inhibition of a gene
The presence of a competitive inhibitor of the TF activity, which not necessarily acts on the same

promoter site, can be modeled as:
dp™" (t) __ ke(t)
= A1-p™(t)) =k, p*(t 5
dt inh(t)+y ( ) ()) <P 6)
where inh(t) is the concentration of the inhibitor in the nucleus, and y is a constant. Expression (5)

corresponds to Egs. 5-8 of main text.
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3 Stability analysis of nonlinear systems

Cells are complex networks of physicochemical processes that support a highly organized structure
and function. Thus, each cellular process sustained by a cell involves different levels of cellular
organization. Every level cellular level of organization can be represented as a subsystem
(subnetwork) with modular. In this form, cells can be modeled as formed by a set of subsystems like
the gene regulatory network (GRN), the network of synthesis and distribution of proteins, the
network of signaling pathways, and the metabolic network, among others. The information flow
through the set of cellular subsystems that controls the cell response to environmental signals occurs
according to the canonical schema of SM 2 Figure 1. DNA or RNA viruses can drastically modify
this flow of information.

An important remark from SM 2 Figure 1 is that the flow of information through cellular subsystems
is due to a continuous flow of matter and energy, according to the respective laws of conservation.
Taking into account the flow of matter at each point of the cell, the respective mass balance equation
Is:
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SM 2 Figure 1.- Flow of information between cell subsystems. Changes in environmental conditions are sensed by cell
signaling networks, which code and transmit this information to the nucleus. Coded information is decoded by the
transcription machinery that, in response to this information, activates and inactivates a set of specific genes, giving rise
to a specific distribution of effectors proteins. These proteins are responsible for the cell specific response to the
environmental conditions. Some of these proteins can be used to regulate gene expression, acting as specific transcription
factors that form complex regulatory loops inside the nucleus. Proteins can also be secreted to modify the cell
environment. Viral RNA and DNA can modify this flow of information by acting directly on the cell genome, drastically
modifying the population of effectors proteins and their function.

Equation (1) means that the local rate of variation of the concentration of the substance k (denoted by
¢, ) at point x at time t is equal to the net rate of diffusion of k inside the cell volume V (denoted by

DV, (x,t)) plus the rate of formation/degradation of k due to the local chemical reactions inside V. In
Eq. (1), o, represents the local rate of the chemical reaction r, which is a functional of the
concentration of the reactive substances at point x at time t, and v, is the stoichiometric coefficient of
k in reaction r.

The reaction term of Eq. (1) can be rewritten as:
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leading to:

acy (x,t)
ot

=f (c1 (%,£),C5 (X,1) s € (X, ), (x,t)) +D Vi, (x,t) k=1,2,..,5 (3)

which is the well known form of the reaction-diffusion equation for the substance k. It indicates that
the temporal variation of the concentration of k at point x at time t depends on the balance between
the chemical processes in which this substance takes part, represented by the function fy, and its
diffusion rate in the cellular medium. Function fy is generally a nonlinear function of the
concentration of the reactive substances, and Eqg. (3) usually has not an analytical solution. In a
homogeneous medium, the diffusive term in Eq. (3) is null, and fy completely defines the entire
system dynamics in the s-dimensional phase space, which is defined by the set of concentration
values of the s reactive substances. The systems dynamics is represented by a trajectory in this space

or phase space, defined by the column vector c(t):<c1(t)c2(t)...cs(t)>T. In nonlinear systems this

trajectory can have peculiar characteristics like high sensitivity to initial conditions, bifurcations and
complex loops that represent a great variety of dynamical behaviors observed in biological systems
like limit cycles, hysteresis, bistability, ultra sensitivity, among others. In a no homogeneous
medium, the diffusive term of Eq. (3) produces a more complex dynamical behavior of the system,
giving rise to phenomena like traveling waves, spirals and spatially located bursting of second
messengers and proteins, among others.

The first problem concerning the dynamics of nonlinear systems is the determination the steady
points of the system in the phase space.

A steady point is a column vector ¢’ :<c1"(t)cz"(t)...cs"(t)>TfOI’ which equation:

fi (cl (£),05(t),eeci (1), (t))
&(t)=£(c(t)), where f(c(t)) = : @)
fuler (8),ca(£) ey (£),0(t))

becomes zero. Once the set of steady points of the system is settled on, is necessary to determine
their stability. Eq. (4) subject to the initial condition ¢(0)=c,defines a nonlinear dynamical system.

The steady point ¢ of a dynamical system is Liapunov stable if for each &> 0 exits a > 0 such that
Hc(t)—c" <&, 1.e., any trajectory that initiates at a distance ¢ of the steady point ¢°

remains at a distance ¢ of it all time.

< & whenever HC(O) —c®

The steady point ¢° of a dynamical system is attracting if exists a §>0 such that lime(t) =¢” for any

trajectory c=c(t) Whenever Hc(o)—co <&, 1.e., any trajectory that initiates at a distance ¢ of the steady

point ¢ will converge to it eventually. In this case, the point ¢’ is an attractor of the dynamical
system in the phase space. A steady point ¢° Liapunov stable and attractor is asymptotically stable. A
steady point ¢ that is neither stable nor attractor is unstable, and is a repulsor in the phase space.
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Generally, the nonlinear systems trajectories cannot be determined in an analytical form. However, it
Is possible to perform a qualitative analysis to find out the global behavior of the dynamical system
in the corresponding phase space. As a vector can be assigned to each point of this space, according
to Eq. (4), the vector field associated to the phase space can be drawn. By flowing this vector field, a
phase point traces a solution c(t) of the dynamical system, corresponding to a trajectory winding
through the phase space.

It is of importance to point out the fact that if the function f of Eq. (4) is continuous and all its partial
i,j=1,2,..,s are also continuous in ¢ for a given subset b %", then for every ¢, D the

derivates

ac]-
initial value problem of Eq. (4), has solution c(t) in some time interval (-t,t) around t = 0 and this
solution is unique. A topological implication of this theorem is that two trajectories cannot intersect
and, as consequence, chaos is ruled out of any 2-dimensional phase space but arises as a possible
behavior of every s-dimensional dynamical system with s > 2.

The phase space analysis of the dynamics of a nonlinear system takes into account the following
aspects: 1) the number, position and stability of the steady points; 2) the arrangement of the
trajectories near the steady points; and 3) the existence and stability of closed orbits.

The arrangement of the trajectories around steady points is determined by linearization of the
original nonlinear system, and analysis of the behavior of the eigenvalues of the Jacobian matrix of
the linearized system around each steady point. For example, considering a 2-dimensional phase

space and a steady point ¢’ :<c§,c{>T , @ small perturbation from this steady state drives the nonlinear

dynamical system El(t)}:{f 1(Cl(t)’c2(t))} into a new trajectory se(t) = (sc, (t),5¢,(1))" , where
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sc,(H)=c,(H)—cf , and &c, (t)=c,(t)—c5. In this form:
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in a similar form:
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which leads to the linearized dynamical system:
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J[e1.c,] represents the Jacobian matrix of the linearized dynamical system in Eq. (6). The eigenvalues
A, 4 Of J[c;,c,]can be calculated from the characteristic equation: |y[c,,c,]-1=0. Depending on the

nature of the eigenvalues, it is possible to know the arrangement of the trajectories near each steady
point of the nonlinear system (SM 2 Figure 2). This linearization process can be extended to perform
the phase space analysis of higher dimensional nonlinear dynamical systems.

(a) Stable node

(e) Center c:(t)

/' c(t)

SM 2 Figure 2.- Classification of the steady points of a 2-dimensional linearized dynamical system. (a) There is a
stable node or attractor in the phase space when both eigenvalues A, and A4, are real and negative (when both eigenvalues
are positive, the steady point is a unstable node or repulsor); (b) There is a saddle point in the phase space when both
eigenvalues A, and A, are real, but one of them is positive and the other is negative. The stable manifold is spanned by the
eigenvector associated to the negative eigenvalue. The unstable manifold is spanned by stable the eigenvector associated
to the positive eigenvalue. (c) There is a stable spiral in the phase space when both eigenvalues 4, and A, are complex
conjugated with negative real part. (d) On the contrary, if both eigenvalues 4; and A, are complex conjugated with
positive real part the spiral is unstable. (€) When A, and A, are pure imaginary the steady point is a center surrounded by a
series of stable closed orbits. All figures show the flow of the dynamical system in the phase space spanned by the basis
conformed by the variables c(t) and c,(t). The black point represents the steady point of the dynamical system, and the
arrows mark out the direction of the flow of the vector field.

An important question that arises at this point is whether the behavior of the trajectories obtained
from Eq. (7) accurately reflects the real behavior of the trajectories of the original nonlinear system..
If the linearized system has a saddle, a node or a spiral at a given steady point, then the original
nonlinear system also has a saddle, a node or a spiral at that steady point. Furthermore, if a steady
point is a stable saddle or node of the linearized dynamical system, then is also a stable saddle or
node of the nonlinear system. In this case, the neglected nonlinear terms of Eq. (5) and Eq. (6)
practically have no effect on the stability of these points when Re(A) # 0, for both eigenvalues. This
kind of steady points is known as hyperbolic points, and they are not affected by the small nonlinear
perturbations. The topological implication of this fact is that the vector field corresponding to a
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saddle or a node is not altered by small nonlinear perturbations and, as consequence, has structural
stability.

When the eigenvalues of the Jacobian matrix are pure imaginary A = +i, the steady point is a center.
The trajectories around this point are closed orbits that are stable. However, the neglected nonlinear
terms in Eq. (5) and Eq. (6) can produce an imperfect closure of the orbit, giving rise to a spiral. In
this form, the vector field corresponding to a center is altered by small nonlinear perturbations that
transform the center into a spiral and, as consequence, has not structural stability.

According to their stability, steady points of 2-dimensional dynamical systems can be classified into
a: 1) Robust case, which includes repellers or sources, for which both eigenvalues have Re(A) > 0;
attractors or sinks, for which both eigenvalues have Re(A) < 0 and saddles, for which one eigenvalues
has Re(4) > 0 and the other one has Re(A) < 0; 2) Marginal case, which includes centers for which
both eigenvalues are pure imaginary, and non-isolated steady points for which one eigenvalue has
Re(1) = 0.

However, the phase space of a nonlinear system can exhibit another kind of closed orbits called limit
cycles, which cannot be observed in linear systems. A limit cycle is an isolated trajectory for which
neighbor trajectories can be only spirals that converge to it or diverge from it. If all the spirals
converge into the limit cycle, this closed orbit is stable, otherwise is unstable. The existence of this
kind of closed trajectories in the plane is settled down by the Poincaré-Bendixson theorem.
According to this theorem, exits a trajectory C, which is either a closed orbit or a spiral that
converges to a closed orbit as t — «, confined inside a certain closed bounded region R of the plane.
This theorem assumes 1) the existence of a vector field ¢ = f(c) that is continuously differentiable on
an open set of the plane containing R, and 2) R does not contain any fixed point. A consequence of
this theorem is that in a 2-dimensional phase space any trajectory trapped into a closed bounded
region R must converge to a limit cycle.

However, in higher dimensional systems the Poincaré-Bendixon theorem does not longer apply and
trajectories can be trapped into a closed region of the phase space without converge into a limit cycle
or settle down to a fixed point, and they could be attracted by a complex geometric object called
strange attractor, which is a fractal set on which the motion is no periodic and sensitive to very small
changes in initial conditions. This sensitivity makes the motion unpredictable as t increases, giving
rise to a chaotic dynamics.

The qualitative features of the vector field of a biochemical dynamical system are strongly dependent
on the set of parameters of its corresponding set of differential equations. As the value of one of these
parameters changes, the qualitative features of the vector field undergo local variations around the
steady points. This parameter-dependent change in the local topological structure of a vector field is
known as bifurcation. They generally occur in a one-dimensional subspace, and the rest of the
dimensions of the phase space are affected as consequence of the flow that can be attracted or
repelled from this subspace. Taking into consideration the imaginary plane, we can roughly classify
bifurcations into two cases: 1) the eigenvalues of the Jacobian matrix are both real and bifurcations
occur along the real axis as certain parameter « changes. This kind of bifurcation comprises the
saddle-node bifurcation; the transcritical bifurcation, and the subcritical and supercritical pitchfork
bifurcation. 2) The eigenvalues of the Jacobian matrix are complex conjugated. Bifurcations occur



crossing the imaginary axis as certain parameter o changes. This kind of bifurcation comprises the
supercritical and subcritical Hopf bifurcation.

In the first case, a) the saddle-node bifurcation causes local variations in the vector field around two
points: a saddle and a node, as a bifurcation parameter « changes. These points become closer as
parameter « varies until they collide and annihilate each other. This type of bifurcation has
interesting applications in some models of biological processes that imply the presence of chemical
switches; b) a transcritical bifurcation occurs when two steady points interchange their stability as the
bifurcation parameter « varies; c) the normal form of an ordinary differential equation (ODE) that

exhibits a subcritical pitchfork bifurcation is: ¢ =ac+c”. When a <0, there are one stable steady
pointat ¢’ =0, and there are two unstable points at ¢ 5 =2\~ . When a. > 0 the only real steady
point c® = 0 becomes unstable. The normal form of an ODE that exhibits a supercritical pitchfork
bifurcation is ¢ =ac—c®>. When a < 0 the only real steady point c® = 0 is stable. For o > 0 there is an
unstable steady point at c¢? =0, and two stable steady points at c5 5 =+Ja .

In the second case, the presence of a Hopf bifurcation leads the system to a limit cycle. As the
bifurcation parameter « varies, when a certain critical value ¢ is reached the supercritical Hopf
bifurcation drives the transformation of a stable spiral into an unstable spiral that converges to a
stable limit cycle (SM 2 Figure 2). The case of a subcritical Hopf bifurcation is more complicated. A
typical example is when an unstable limit cycle shrinks to cero amplitude as the bifurcation
parameter « reaches its critical value «, at which the cycle engulfs the node rendering it unstable and
making the system to jump to a distant attractor when « > «.. This new attractor could be a steady
point, another limit cycle, infinity or a chaotic attractor (for higher dimensional systems).

ca(t)

Hopf Bifurcation

Limit cycle

ci(t)

SM 2 Figure 2.- Supercritical Hopf bifurcation. This kind of bifurcation transforms a stable spiral into an unstable
spiral that converges to a stable limit cycle when the value of the bifurcation parameter « reaches some critical value a.
The black points in the figure are different initial conditions of the dynamical system. The arrows mark out the direction
of the flow of the vector field. The phase space is spanned by c¢,(t) and c,(t).

4 Stability analysis of the model
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One of the objectives of the model is to determine how the phase space of the circuit of Figure 2 of
the main text is structured, i.e., how the trajectories span around the fixed points in the n-
dimensional phase space for the set of initial conditions and parameter values. A second objective is
to know in what extent this phase space structure is changed by the presence of the SARS-CoV-2
virus. The third objective is to find the possible bifurcations of the system and to identify which
parameter or parameters are the responsible of this change in the qualitative dynamical behavior of
the system.

The model of the circuit consist of 10 nonlinear coupled ODES that describe the dynamics of the
interaction of the proteins that form the dynamical system, and four stochastic differential equations
that describe the activation of the genes NK «B, IL-6, Cox2 and 1xB according to the feedback
circuits shown in Figure 3 of main text (see also Table 1 of main text).

In this form the 10-dimensional dynamical system can be written as: X :f(x(t)), where:

=[NF&B(t),nf *(t),ixbnf (t), Nsp5(t), hd (t),hd *(t),i16(t), ixb(t),cox2(t), pge2(t)]  is the
state vector at time t, and f is a nonlinear function of the state vector x(t). This equation describes the

trajectories of the dynamical system in the phase space. The four master equations for the temporal
dynamics of the gene regulatory network (GRN) of the lung cell define the vector:

t)=[ s (1), Pls (1), P&o (1), PRve (t)]T (see Table 1 of main text). This vector describe the

change in the probability distribution of the activation of each gene of the GNR, which usually
converges to a steady constant distribution when t — oo. We numerically solved the model using the
predictor-corrector Euler method and the Runge-Kutta 4,5 method in Math-Lab with the parameter
values reported in Table 1 of main text, and for a set of 100 random initial conditions in each case.

We assume that all parameters of the model are unknown, so we define and arbitrary reference state
(ARS) in which the activation of NF kB is transitory (Figure 4A in main text) in presence of an
external input (e(t) = 10 pg mL™ s°1), and in absence of the SARS-CoV-2 virus.

Solution of the model for the ARF defines the stable node and the steady probability distribution:
X =[0,0,0,0,15,120,20,0.91,0,0]

(13)
x? =[0,0,0,0]

Thus, in ARS the probability of activation of all genes become zero, and the concentration of I1L-6 in
plasma is 20 pg mL™ (see Figure SM2 3a). Thus, ARS is a state in which the external signal a(t)
produces a sustained high concentration of the cytokine in the circuit beside the fact that NF kB is
transiently switched on (see Eq. 12 of main text).

Perturbation of ARS with Nsp5 changes the position of the steady point without modifying its
qualitative nature, as is shown in Figure SM2 3b. In this case the stable node and the steady
probability distribution are:



X%, =[1.41,5.65,0.09,20,0.71,6.71,20.86,0.25,0.71,9.79]
(14)
x? =[0.71,0.88,0.71,0.71]

which indicate that the virus effectively induces the decrease in the concentration of free and nuclear
HDAC2 (hd = 0.71 pg mL™* and hd* = 6.71 pg mL™) increasing the probability of activation of NF
xB and its target genes. In particular, activation of IL-6 does not significantly alters the steady level
of IL-6 in plasma, indicating that the external signal «(t) is still the main cause of the high level of
the cytokine in the circuit when ARS is perturbed by the viral protein Nsp5.
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Figure SM2 3.- Viral perturbation of ARS. a) Projection of the 10-dimensional phase space of the circuit of Figure 2
of main text on the NF kB-IL-6 phase plane in the ARS. In this Figure we show only five trajectories generated from five
random initial conditions that converge to the stable node x°ars that corresponds to a state of high concentration of I1L-6
(20 pg mL™?) in the plasma and zero cytoplasmic free NF B (equation 13 SM2). b) The presence of the viral protein
Nsp5 changes the position of the stable node in the NF xB-IL-6 without changing its qualitative nature. For this stable
node x%;.s the concentration of IL-6 in plasma has a small increase but there is also a small concentration of cytoplasmic
NF «B in the circuit. For both panels: o(t) = 10 pg mL™ s, and the parameters values are the reported in Table 1 of main
text.

5 Parameter Variation
3.1) Gene Translation rate

We varied the translation rates of NF B, IL-6, Cox2, and IxB genes to test the influence of these
parameters on the circuit dynamics while the rest of the parameters remain without change with
respect to their value reported in Table 1 of main text. We found that a high rate of translation of NF
KB (VI =10 pg mL™ s™), IxB (V™ =15 pg mL ™" s ), and I1L-6 (V," =20 pgmL* s7'), in
absence of the virus, defines a stable node and a steady probability distribution identical to the one of
ARS (Figure SM2 3a and Figure SM2 4a). This result indicate that the high translation rates of NF
kB, IL-6, and |1xB are not sufficient to permanently overcome the inhibitory effect that the epigenetic
regulator HDAC? exerts on NF B, when a(t) = 10 pg mL™ s™%. In this case, the value of the rate of
translation of Cox2 is constant (2 pg mL™ s™).
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In contrast, in presence of protein Nsp5 the high translation rates of NF «B (V.7 =10 pg mL™ s™),

IxB (V7 =15 pg mL™* s ), and IL-6 (V& =20 pg mL™* s™) produce a stable node and a steady
probability distribution:

Xosis :[9.41, 37.65,0.61,20,0.71,5.71, 35.73,0.31,9.41,7.6]
(15)
X; = [0.94,0.97,0.94,0.94]

that correspond to a state with an elevated concentration of free cytoplasmic and nuclear NF xB (9.41
and 37.65 pg mL™ respectively), a high concentration of the viral protein Nsp5 (20 pg mL-1), a low
concentration of cytoplasmic and nuclear HDAC2 (0.21 and 5.71 pg mL™, respectively), and a high
concentration of IL-6 in plasma (35.73 pg mL™). This state is the over stimulated immune state
(OSIS) observed in critical patients of COVID19 (Figure SM2 4b) produced by a high rate of
production of IL-6, and by the inhibition of HDAC?2 by the viral protein Nsp5 (see main text).
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Figure SM2 4.- OSIS. a) Projection of the 10-dimensional phase space of the circuit of Figure 2 of main text on the NF
kB-1L-6 phase plane for high translation rates of NF xB, IL-6 and 1xB in absence of virus. In this Figure we show only
five trajectories generated from five random initial conditions that converge to the stable node that corresponds to a state
of high concentration of IL-6 (20 pg mL™) in the plasma and zero cytoplasmic free NF kB (Equation 13 of SM2). b) The
presence of the viral protein Nsp5 changes the position of the stable node in the NF xB-IL-6 phase plane without
changing its qualitative nature. For this stable node the concentration of IL-6 in plasma is high (~ 35 pg mL™), and the
concentration of cytoplasmic and nuclear HDAC2 (0.21 and 5.71 pg mL ™, respectively) are lower than in ARS (Equation
13 SM2). This stable node represents the OSIS. For both panels: (t) = 10 pg mL™ s?, and the value of the rest of the
parameters are the reported in Table 1 of main text. Vn:”” =10pg-mL*-s7, V™ =15pg- mL*-s™,

andV™ =20 pg-mL"-s™.

IL6

3.2) Rate of IL-6 release from external sources.

We analyzed the effect of different rates of IL-6 release from external sources («(t)) on the dynamics

of the circuit of Figure 2 of main text. We varied the parameter e(t) from 0 to 20 pgmL™ st in
presence of Nsp5. The value of the rest of the parameters are constant (Table 1 main text). In Figure

SM2 5a we show that variation of (t) from 0 to 20 pg mL™ s™* produces a series of trajectories
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trapped in a narrow region of the NF «B-11-6 phase plane, when the translation rates of all genes are
equal to 2 pg mL™* s, Each trajectory converge to a stable node in which the steady concentration of
cytoplasmic NF kB is ~ 1.4 pg mL™, and the steady concentration of IL-6 changes from 5 to 40 pg
mL*according to the value of «. The circuit becomes unstable for a(t) > 50 pg mL™.

InOSIS V™ =10 pg mL™* s, V& =15 pg mL™* s, and V,[& =20 pg mL™ s™. The rest of the

parameters have the value indicated in Table 1 of main text. When « varies from 0 to 20 pg mL™* s™
the trajectories span inside a wider region of the NF «B-I1L-6 phase plane and each one converge to a
stable node with a steady concentration of NF kB of ~ 10 pg mL™, and a steady concentration of 11-6
that varies from a minimum of ~ 20 pg mL™ to ~ 55 pg mL™ (Figure SM 2 5b) , which are values
higher that the shown in panel (a) of the same figure. These results indicate that the viral protein
Nsp5 effectively amplifies the effect of the external signal «, increasing the levels of free NF «B and
IL-6 in the circuit. When &= 1 pg mL™ s, the circuit exhibits a tremor in the trajectory that
disappears before entering the stable node.
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Figure SM2 5.- Effect of the variation of parameter a. a) Projection of the 10-dimensional phase space of the circuit of
Figure 2 of main text on the NF xB-IL-6 phase plane for different values of the parameter «(t). In this Figure we show six
trajectories generated from six increasing values of «, each one converging to a stable node that corresponds to a state of
increasing concentration of 1L-6 (from ~ 5 to ~ 40 pg mL™) in the plasma and ~ 1.4 pg mL™ free NF «B. In this case all
the gene translation velocities are equal to 2 pg mL™ s™. b) The presence of the viral protein Nsp5 changes the position of
the stable node in the NF «B-IL-6 phase plane without changing its qualitative nature. For each stable node, the
concentration of free NF kB corresponds to a value of ~ 10 pg mL™, and the concentration of I1L-6 changes from ~ 20 to ~
55 pg mL™. Each node corresponds to an OSIS.

3.3) Effect of the intensity of 1xB inhibition on the circuit dynamics

The parameter k; of the model (see Table 1 of main text) measures the intensity of the inhibition of
IkB on cytoplasmic NF «B, which corresponds to the negative feedback loop of Figure 3B of main
text. Figure SM2 6a shows that the variation of this parameter in absence of the virus (holding the
rest of the parameters at the value indicated in Table of main text), and with gene translation rates

VI =10 pgmL's™ , V™ =15 pg mL's ™, V& =20 pg mL's™, and V% =2 pg mL's™,

IxB
produces a set of trajectories that converge to ARS for values of k; [0, 0.5]. However, for k; (0.5,
0.8) the qualitative dynamical behavior of the circuit changes and each trajectory converge to a stable
node. This set of nodes form a succession of points with decreasing concentrations of IL-6 between

11
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10 and 18 pg mL™, and a increasing concentration of free NF kB between 1 to 12 pg mL™
(trajectories not shown). For k; €[0.8, 0.85) the trajectories converge to a stable node for which IL-6
concentration is ~ 18 pg mL™'m and the free NF kB concentration is ~ 12 pg mL™. For k;[0.85,
0.88) a bifurcation occurs giving rise to oscillations of increasing amplitude and frequency in NF kB
and IL-6 concentration, as the parameter k; increases its value. Finally, the circuit becomes unstable
for k;€[0.85, «).

The presence of the virus drastically changes the above dynamical behavior. When k; = 0, the only
possible state of the circuit is ARS (Figure SM2 6b). For kye(0,0.4) the system becomes unstable. In
the interval k; €[0.4, 0.69) each trajectory converge to a stable nodes with IL-6 concentration of 30 pg
mL™ and a NF kB concentration that varies from ~ 6 to 12 pg mL™. Each node represents an OSIS
state. In this case, when k;€[0.69, 0.75) a bifurcation occurs giving rise to oscillations of increasing

amplitude and frequency in NF kB and IL-6 concentration, as the parameter k; increases its value. In
this case, the amplitude of the oscillations is larger than in absence of the virus, and the oscillations

appear at a lower value of k;. For values of k; > 0.75 the circuit becomes unstable.
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Figure SM2 6- Effect of the variation of k;. a) In absence of the virus, and with high gene translation rates, the variation
of parameter k; produces the modification of the qualitative dynamics of the circuit from a tendency to remain in ARS (k;
< 0.5) to produce an oscillatory dynamics (k;[0.8, 0.85)). In all cases the maximum concentrations of IL-6 and free NF
kB are 20 and 12 pg mL™ respectively. b) In presences of the virus, in OSIS conditions, the circuit becomes unstable for
ki€ (0, 0.4). In contrast to panel (a), for each value of k, the trajectory converges to a node with high concentration of IL-
6 (~ 30 pg mL™) when k; €[0.4, 0.69). Oscillations occur at a lower value of k; (bifurcation point at k, = 0.69) indicating a
faster release of NF kB from the inhibitory effect of 1«<B due to the presence of Nsp5.

3.4) Effect of the diffusion rate of NF kB into the nucleus

The release of NF kB into the cytoplasm and its subsequent mobilization into the nucleus is a key
step in the activation of its target genes NF B, IL-6, Cox2, and 1xB. In the model the parameter that
controls this process is D, which in ARS has a value of 1 s™. In conditions of high translation
velocities of NF «B, IL-6, Cox2, and 1xB (10, 20, 2, and 15 pg mL™ s, respectively) variation in the
value of this parameter in absence of the virus is indicative of the form in which the activation of the
immune response depends on the localization of NF kB in the nucleus. We varied this parameter
from 0 to 5 s, holding the rest of the parameters at a constant value (Table 1 main text). We found
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that when D = 0 exists a stable node in the NF kB-IL-6 phase plane that corresponds to a IL-6
concentration of ~ 20 pg mL, and a NF kB concentration of ~5 pg mL™. In this case the
concentration of NF kB in nucleus and the probability of activation of its target genes are zero. This
result indicates that the mobilization of NF «B into the nucleus is a necessary condition to start the
immune response in the circuit of Figure 2 of main text, even in the presence of an external signal
o(t) = 10 pg mL™s™. For D&(0,5] the circuit enters in the ARS, and values of D > 5 s destabilizes
the circuit (Figure SM2 7a).

In presence of the virus, the response of the circuit to D = 0 is identical to the reported in panel (a),
indicating that neither the external signal «(t) nor the virus can start the immune response if NF kB
cannot be translocated into the nucleus (Figure SM2 7b). However, when De(0,12) the presence of
Nsp5 produce a series of steady responses in which IL-6 has a concentration of ~ 30 pg mL™, and
NF kB decreases from ~ 8 to ~ 2 pg mL™ as parameter D increases. This result indicates that the
virus increases the availability of NF B in the nucleus, promoting gene transcription in the circuit
and a strong immune response (OSIS). Values of D > 12 s™ destabilize the circuit.
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Figure SM2 7.- Effect of the variation of parameter D. a) In absence of movement of NF B into the nucleus (D = 0)
the circuit exhibits a stable node in absence of Nsp5 in which IL-6 concentration is ~ 20 pg mL™ and NF «B
concentration is ~ 5 pg mL™ . For values of De(0,5] the circuit enters in ARS, and values of D > 5 destabilize the circuit.
b) In presence of Nsp5 (OSIS), when D (0,12) the presence of Nsp5 produce a series of steady responses in which IL-6
has a concentration of ~ 30 pg mL™, and NF kB decreases from ~ 8 to ~ 2 pg mL™ as parameter D increases.

3.5) Effect of NF kB in the nucleus

In the nucleus of the type 2 alveolar lung cells, NF kB promotes the transcription of its target genes

NF B, IL-6, 1xB and Cox2. The concentration of NF kB in the nucleus is regulated by a series of
mechanisms whose intensity we represent by the parameter kqeg, Which in ARS has a value of 2 st
(Table 1 of main text). In conditions of high translation velocities of NF «B, IL-6, Cox2, and 1B (10,
20, 2, and 15 pg mL""s™, respectively) variation in the value of this parameter in absence of the virus
is indicative of the form in which the activation of the immune response depends on the availability
of NF B in the nucleus. We varied this parameter from 0 to 5 s, holding the rest of the parameters
at a constant value (Table 1 main text). We found that when kgeq = O the circuit becomes unstable,
indicating that the nuclear regulatory mechanisms of NF «B are necessary to produce a stable
immune response. For kqeg €(0,2) the trajectories in the NF kB — IL-6 phase plane converge to stable
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nodes for which IL-6 and cytoplasmic NF kB concentrations decrease (Figure SM2 8a). When Kgeg =
2 s the circuit enters in ARS, and for kqeq > 2 the circuit becomes unstable.

In presence of the virus, the qualitative dynamical behavior of the circuit drastically changes for Kgeg
€(0, 50). In this case the trajectories in the NF kB — IL-6 phase plane converge to numerous stable
nodes for which IL-6 and cytoplasmic NF kB concentrations decrease as Kqeq increases (Figure SM2
8b), indicating that Nsp5 enhances the nuclear concentration of NF B that, in turn, produces a raise
in the intensity of the inhibitory mechanisms required to regulate its activity. Each of this nodes
represents an OSIS, which can be only suppressed when Kgeq = 50 s and the circuit enters in the
ARS.
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Figure SM2 8.- Effect of the variation of parameter kqy. ) In conditions of high translation velocities of NF B, 1L-6,
Cox2, and 1B (10, 20, 2, and 15 pg mL™s™, respectively) variation in the value of this parameter in absence of the virus
is indicative of the form in which the activation of the immune response depends on the availability of NF «B in the
nucleus. For kgq (0,2) each trajectory converges to a stable node for which 1L-6 and cytoplasmic NF kB concentrations
successively decrease. When Kgeqg= 2§ ! the trajectories converges to the ARS. b) In presence of the virus, the qualitative
dynamical behavior of the circuit drastically changes for kgeg €(0, 50). In this case, each trajectory converges to a stable
node that represents an OSIS. When Kgeq = 50 §° ! the trajectories converges to the ARS. In both panels, when Kgeg = O the
circuit becomes unstable
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