

1 Use of ecologically-and evolutionary relevant transcriptomic data to infer functions of fungal pathogen gene
2 orthologues essential for limiting fungal stresses caused by interacting host plants and bacteria

3 Stefan Olsson^{1,2*#}, Osakina Aron³, Hongchen Li¹, Qingfang Li¹, Bjoern Ost Hansen^{1,4}, Wei Tang³, Zonghua
4 Wang^{1,3,5}, Guodong Lu¹, Wenhui Zheng¹

5 *# First and corresponding author

6 ¹State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture
7 and Forestry University, Fuzhou, China.

8 ²Plant Immunity Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou,
9 China

10 ³Fujian University Key Laboratory for Plant-Microbe Interaction, College of Life Science, Fujian Agriculture and Forestry
11 University, Fuzhou, 350002, China.

12 ⁴OomicsDriven, Østergade 76, DK-4340 Tølløse, Denmark

13 ⁵Institute of Oceanography, Minjiang University, Fuzhou, China

14

15 Authors contributions divided per authors

16 **SO** Initial idea. Hypotheses generation from data and from literature, co-regulation analysis related to HPI, overall
17 responsible for driving the work forward and methods development. Primary responsible for manuscript writing and the
18 analysis of data. Coordination of manuscript writing and corrections.

19 **O.A.** Research concerning MoCpa1 and MoADE4, Manuscript correction

20 **H.L.** Research concerning *F. graminearum* NO production. Manuscript correction

21 **Q.L.** Analysis of PARP/PARG in the secondary data. Manuscript correction

22 **BOH** Research concerning *F. graminearum* NO production and CK2 activity in *F. graminearum* and *M. oryzae* during
23 different HPI normalized for growth. Download and preparation of secondary data. Manuscript correction.

24 **W.T.** Research concerning MoCpa1 and MoADE4. Manuscript correction.

25 **Z.W.** Research concerning *F. graminearum* NO production, CK2 activity in *F. graminearum* and *M. oryzae* during different
26 HPI normalized for growth, MoCpa1 and MoADE4. Acquisition of financial support. Manuscript correction.

27 **G.L.** Research concerning *F. graminearum* NO production, Acquisition of financial support. Manuscript correction.

28 **W.Z.** Research concerning *F. graminearum* NO production. Manuscript correction.

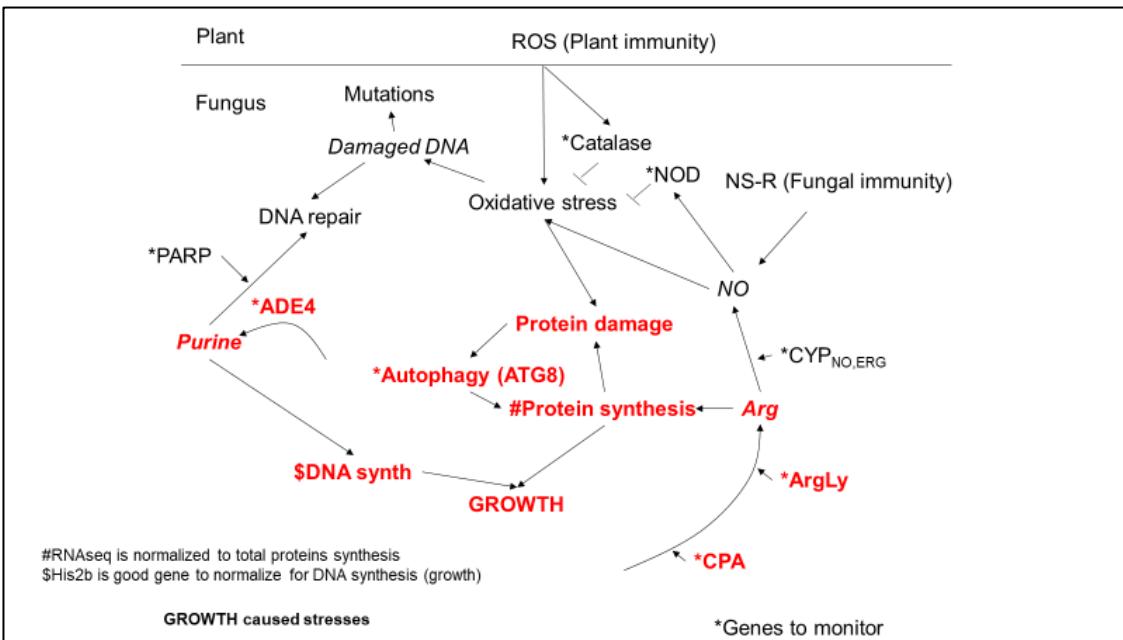
29

30

31 **ABSTRACT**

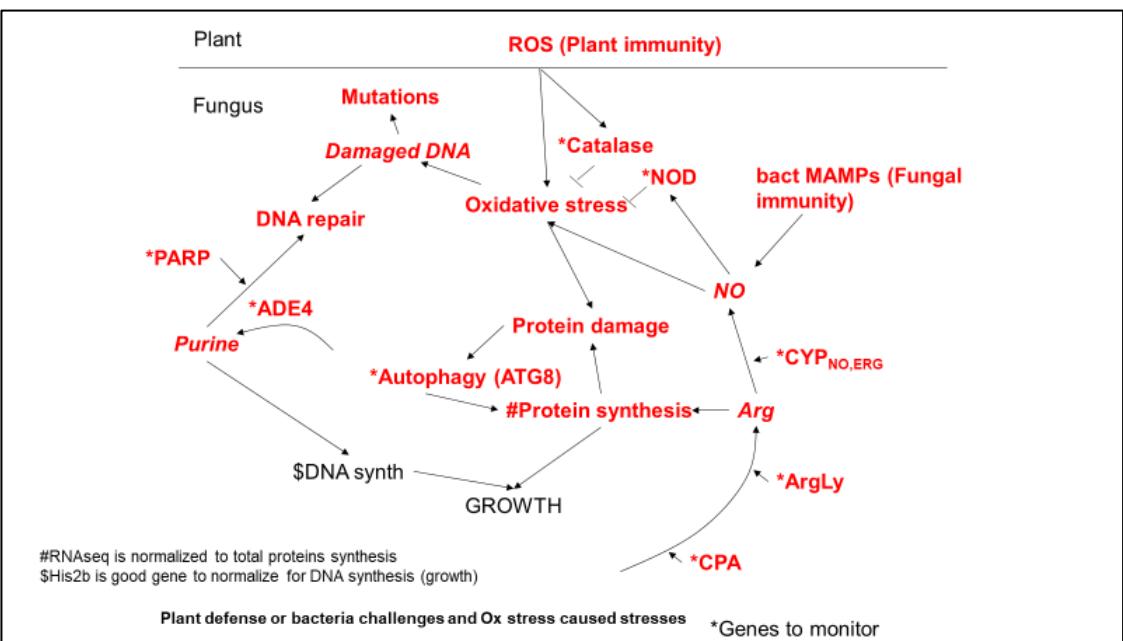
32 Key genes needed for maintenance and growth for the two pathogens, *Fusarium graminearum* and
33 *Magnaporthe oryzae*, were identified. These are genes that are induced in response to maintenance
34 requirements (stress) and growth requirements. The processes involved are synthesizing arginine,
35 synthesis of DNA-bases, nitric oxide synthesis needing arginine, autophagy, DNA synthesis, and
36 DNA repair. A simplified regulatory network for these key genes for both organisms was constructed
37 as a hypothesis for the work, and procedures previously developed to use sets of downloaded
38 transcriptomic data were used to test hypotheses concerning what time under the course of infection
39 of plants the key genes are expressed. The analysis shows that the transcription efforts (costs) to
40 maintain the fungal cells (maintenance) are high before infection and during early infection. During
41 the following biotrophic stage, maintenance activities drop, followed by a dramatic increase in the
42 necrotrophic stage transition. Finally, in the necrotrophic stage, maintenance is again lower despite
43 the high growth rate that can also cause stress. All identified genes' expressions behaved almost
44 similar with an increased expression in the biotrophy-necrotrophy transition for both fungi except the
45 DNA repair genes PARP/PARG that was not responding or absent (PARG) in the mainly clonal *M.*
46 *oryzae*. This PARG expression pattern might indicate that *M. oryzae* is more subject to evolution by
47 point mutations than *F. graminearum*, where sexual reproduction is frequent. The potential
48 consequences of this in the development and the accelerated breakage of host species resistance in a
49 Red Queen dynamics scenario are discussed. The analysis demonstrates the possibility of using large
50 transcriptome datasets and co-regulations between key genes to test hypotheses. This technique's
51 advantages complement molecular techniques that employ knockouts and over-expression of target
52 genes to suggest that genes' roles are discussed.

53


54

55 **INTRODUCTION**

56 Growth and maintenance are vital concepts both in cell biology and ecology. Maintenance is all the
57 activities needed to maintain the cell's integrity, including repairing proteins and DNA without making more
58 biomass [1]. Growth is simply the growing of biomass and cells' growth, including all proteins needed for
59 making new cells and maintenance, including the necessary new copies of the genomes [2]. However, the
60 maintenance concept has been questioned since it contains many different processes [3].


61 Wheat head blight caused by *F. graminearum* Schwabe (teleomorph stage: *Gibberella zeae* (Schwein.)
62 Petch) often results in significant crop losses in grains like wheat and barley [4]. *Magnaporthe oryzae* B.C.
63 Couch (teleomorph *Pyricularia oryzae* Cavara) cause rice blast resulting in yield and economic losses worldwide
64 [5]. Both fungi are studied by many researchers worldwide, and they are both considered model organisms
65 [6,7]. One interesting difference between them is that *F. graminearum* often reproduces sexually [8] while *M.*
66 *oryzae* is mainly clonal [9]. Genetically, these two Ascomycete pathogens are relatively closely related and
67 differ from yeast and *Penicillium/Aspergillus* species. Both fungi belong to the class *Sordariomycetes* but in
68 different orders. *F. graminearum* belongs to *Hypocreales* and *M. oryzae* to *Magnaporthales*. Most genes and
69 gene expression patterns are mirrored in the two species [10]. Both pathogens infect as biotrophs and switch
70 to necrotrophy at a later stage Hours Post Infection (HPI). They are exposed to environmental stresses at the
71 plant surfaces, including possible biotrophic stresses from other organisms. They enter the plant and
72 establishes biotrophic growth inside the plant. The plant defences are low at this time. At about mid-time (HPI),
73 the fungi become detected by the plant's innate immune system that starts attacking the intruders with radical
74 oxygen species (ROS). In response to this the pathogens switch to necrotrophy, killing the host cells and in the
75 case of *F. graminearum* producing the toxic secondary metabolites deoxynivalenol (DON) [4]. At the end of the
76 necrotrophic stage both fungi switch from biomass growth to conidia production emptying the vegetative
77 mycelium of biomass to form conidia that can spread to other plants and infect them. In a previous study we
78 found that the expression of the key autophagy gene ATG8 increases with HPI in both fungi and can be used
79 as indicator for HPI in downloaded expression data from a large number of experiments [10]. In the same study
80 we identified the His2b gene as an indicator of *de novo* DNA synthesis and growth since free histones not
81 bound to DNA are cytotoxic [10,11]. Maintenance expression of a specific gene is defined as the relative growth
82 rate normalized transcript expression of the gene, or in other words, gene expression normalized for DNA
83 synthesis [10].

84 We have previously studied conserved genes involved in fungal maintenance and growth. As the
85 primary gene regulated during autophagy ATG8 [12], the DNA repair gene PARP [13,14], and recently we have
86 worked with genes involved in the synthesis of DNA bases [15] and the amino acid arginine [16]. Arginine was
87 shown to be used together with oxygen to produce nitric oxide (NO), a ROS produced in fungal innate immunity
88 [17]. Plants trigger NO-production during the transition between biotrophy to necrotrophy, and when the
89 fungus is exposed to bacterial MAMPs (microbial-associated molecular patterns) [17]. Together, these genes
90 fit into a conceptual model for how these conserved genes necessary for growth and maintenance are likely
91 to be differentially expressed during different stages of a plant's plant pathogen colonization. During growth-
92 dominated stages, the purine synthesis genes are mainly used to make new DNA, while arginine synthesis is
93 primarily needed to make new proteins. ATG8 activity is also crucial for growth since growing fast causes a
94 need to recycle misfolded proteins, protein aggregates, and storage lipid droplets through autophagy [10,12,18]
95 (Fig. 1A).

96

A

97

B

98 **Figure 1.** Hypothesized transcriptional activity of identified genes **A**. During biotrophic growth and later stages of necrotrophy, the
 99 growth-related network marked red should be most active transcriptionally and reflected by the transcription of the respective gene.
 100 **B.** When the fungus is exposed to plant-induced stresses, the stress-related network marked red should be most active. There will be
 101 a focus on this network if gene expression is normalized using the His2b gene transcriptional expression [10] to highlight
 102 maintenance needed to counteract the plant ROS defences. CPA=MoCPA1 [19] and FgCPA1 (this study), ArgLy=MoArgLy [20] and
 103 FgArgLy (this study), CYP(NO,ERG)=FgCYP(NO,ERG) [17] and MoCYP(NO,ERG) (this study), ATG8=MoATG8 [21] and FgATG8 [12],
 104 PARP=FgPrp (this study) and MoPrp (this study), ADE4=MoADE4 [15] and FgADE4 (this study), NOD=FgNOD1 and FgNOD2 [17] and
 105 MgNOD and (this study), finally catalases Catalase=FgCAT1-5 (this study) and MoCAT1&3 (this study). For more info information on
 106 these genes, see Table 2.

107 This hypothesis that the stress weighted network (**Fig. 1B**) should be most active just before
 108 penetration and especially in the transition between biotrophy to necrotrophy when plant defences are
 109 activated was tested. In contrast, during biotrophic growth and later stages of necrotrophy, the growth-related
 110 network (Fig. 1A) should be more active. For *F. graminearum* and *M. oryzae*, we used 64 respective 47
 111 transcriptomes sampled at different times post-infection [10]. The activity of the genes of interest under non-
 112 growing conditions short time (<4h) after challenging with purified bacterial MAMPs in a dataset of 113

113 transcriptomes [17,22] was also tested for *F. graminearum*. Exposure to bacterial MAMPs triggers NO
 114 production, and the MAMPs responses should mainly be reflected as an increased response of the stress
 115 weighted network (**Fig. 1B**). The stress-weighted network should increase in expression with the expression of
 116 the cytochrome p450 gene (CYP(NO,ERG)) that is the gene mainly responsible for the intrinsic NO production
 117 with accompanying ROS stress [17].

118 The data supported the hypothesis, and also, it was found that the PARP gene necessary for DNA repair
 119 is expressed very differently in *M. oryzae* and *F. graminearum*. An orthologue for PARG necessary for de-
 120 PARylation of the PARP activity is absent in *M. oryzae*. It is suggested to interpret the found difference that
 121 this reflects the need for the mainly clonal *M. oryzae* [8,9] to generate variation through mutations to
 122 overcome host resistance changes without sexual recombination. Finally, the potential benefits of
 123 transcriptomic analyses for suggesting the relative importance of specific gene expressions and roles of genes
 124 under relevant natural conditions are discussed

125 **MATERIALS AND METHODS**

126 The procedures are briefly outlined in the Results and Discussion section and mainly comprise plotting
 127 of transcript expression data against transcript expression data (RNAseq or Affymetrix microarray data). All
 128 data used for this paper are secondary data and have been described in previous articles and are publicly
 129 available (**Table 1**). Candidate orthologous genes were identified through protein BLAST at NCBI (**Table 1**).

130 **Table 1. supplemental material available at public websites.**

RESOURCE	SOURCE	IDENTIFIER
Deposited Data		
<i>M. oryzae</i> transcriptomic data matrix covering a range of plant infection experiments	[10]	DOI: 10.6084/m9.figshare.7068857
<i>F. graminearum</i> transcriptomic data matrix covering a range of plant infection experiments	[10]	DOI: 10.6084/m9.figshare.7068860
<i>F. graminearum</i> transcriptomic data matrix covering a range of experiments of stationary <i>F. graminearum</i> mycelia in water exposed short times (1,2,4h) to purified bacterial MAMPs	[17] Supplementary data	DOI: https://doi.org/10.1101/2020.07.12.191361

131
 132 **Table 2. Genes analyzed in this paper and how these genes were identified**

From published papers or annotated at NCBI	Abbr. /ID	SOURCE
Fg or Mo genes		
Fg CYtochrome P450 CYP _(NO,ERG)	FgCYP _(NO,ERG) / FGSG_01000	[17]
Fg Nitric Oxide Dioxygenase1	FgNOD1/ FGSG_00765	[17]
Fg Nitric Oxide Dioxygenase2	FgNOD2/ FGSG_04458	[17]
Fg ATG8	FgATG8/ FGSG_10740	[12]
Mo ATG8	MoATG8/ MGG_01062	[21]
Fg Histone 2b	FgHis2b/ FGSG_11626	[10]
Mo Histone 2b	MoHis2b/ MGG_03578	[10]
Mo carbamoyl phosphate synthetase small subunit	MoCPA1/ MGG_01743	[16]
Mo Arg Lyase (ARG4)	MoArgLy/ MGG_17278	[20]
Mo Amido phosphoribosyl transferase	MoADE4/ MGG_04618	[15]
Mo Catalase1	MoCAT1/ MGG_10061	XP_003717445.1
Mo Catalase1	MoCAT3, MGG_06442	XP_003717126.1

Through BLAST comparison with proteins using NCBI BLAST (<https://blast.ncbi.nlm.nih.gov/Blast.cgi>)
***Fusarium graminearum* genes**

Organism (Code)	Annotated gene	Orthologue/ID	E-value (%ID)	Cover-age %
<i>M. oryzae</i>	MoCPA1 See above	FgCPA1 FGSG_09554	0.0 (79.82)	94
<i>M. oryzae</i>	MoArgLy See above	FgArgLy FGSG_03694	0.0 (70.11)	97
<i>M. oryzae</i>	MoADE4 See above	FGSG_05278 FgADE4	0.0 (65.60)	84
<i>Metarhizium robertsii</i>	MrBI-1 XP_007826493.1	FgBI1 FGSG_09422	0.0 (88.41)	100
<i>Aspergillus nidulans</i>	PrpA AAQ23182.1	FgPrp FGSG_05924	2e-175 (50.83)	78
<i>Saccharomyces cerevisiae</i>	CatA DAA12096.1	FgCAT1 FGSG_02881	9e-134 (43.27)	91
<i>S. cerevisiae</i>	CatA DAA12096.1	FgCAT2 FGSG_05695	1e-125 (42.31)	95
<i>S. cerevisiae</i>	CatA DAA12096.1	FgCAT3 FGSG_06596	2e-105 (40.00)	86
<i>S. cerevisiae</i>	CatA DAA12096.1	FgCAT4 FGSG_06554	6e-85 (41.97)	67
<i>S. cerevisiae</i>	CatA DAA12096.1	FgCAT5 FGSG_06733	1e-83 (39.34)	69
<i>Fusarium oxysporum</i>	FoPARG1 XP_018241514.1	FgPrg FGSG_09290	0.0 (70.34)	91

***Magnaporthe oryzae* gene (mostly identified through BLAST comparisons with *F. graminearum*)**

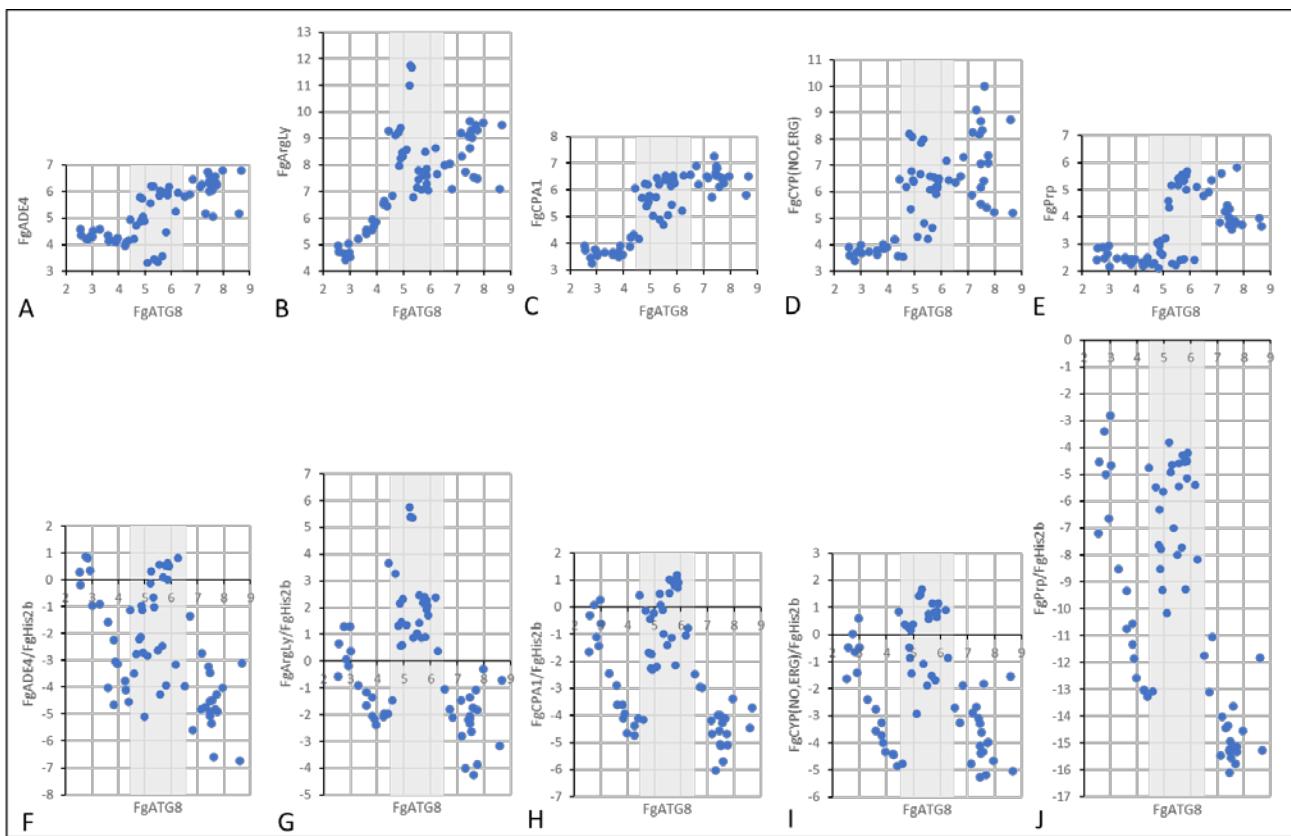
<i>F. graminearum</i>	FgCYP _(NO,ERG) See above	MoCYP1 _(NO,ERG) MGG_04432	0.0 (72.11)	99
<i>F. graminearum</i>	FgCYP _(NO,ERG) See above	MoCYP2 _(NO,ERG) MGG_04628	0.0 (55.78)	94
<i>F. graminearum</i>	FgNOD1 and 2 See above	MoNOD MGG_00198	2e-116 (42.73)	90
<i>Metarhizium robertsii</i>	MrBI-1 XP_007826493.1	MoBI1* MGG_00198	5e-145 (74.47)	100
<i>Aspergillus fumigatus</i>	PrpA AAQ23182.1	MoPrp MGG_08613	0.0 (48.24)	87

133

*Annotated as MoBI-4 at NCBI, XP_003720584.1

134

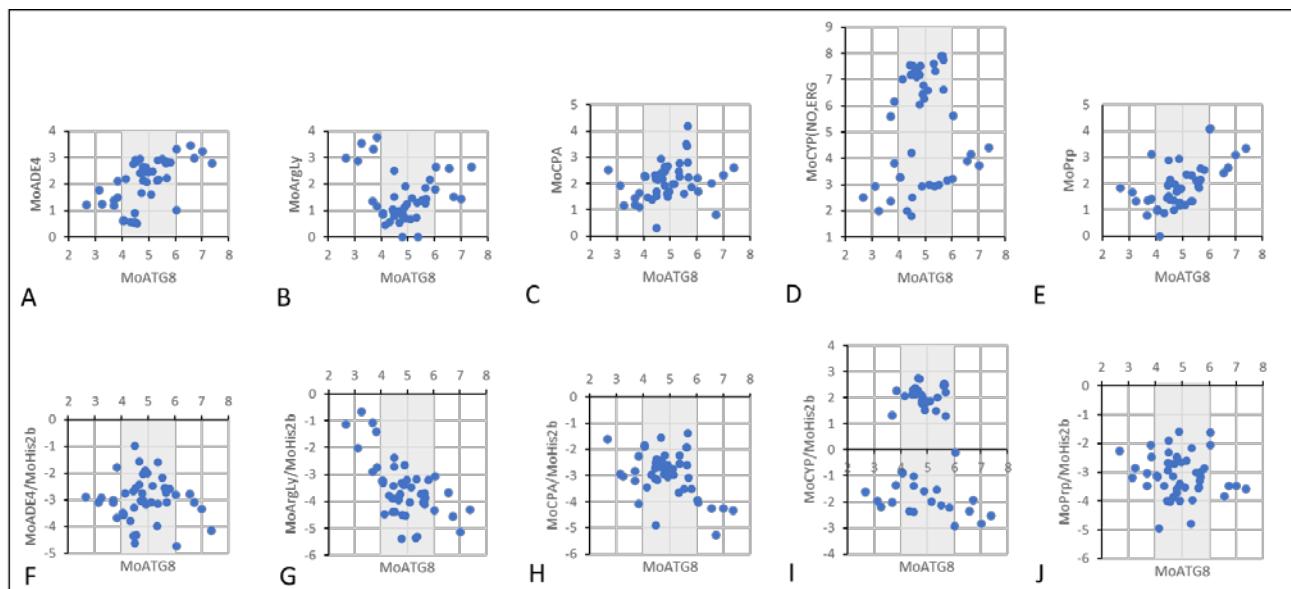
135 **Data handling and analyses of linear regression correlations**


136 All transcriptional data was handled and plotted in MS Excel and assembled into figure plates using MS
137 PowerPoint. Regression analyses were performed as Reduced Major Axis (RMA) regression to address random
138 variation in both the x and y variables [23] since measured data for the Log2 expression of two genes were
139 always compared. For these analyses, expression data were transferred to the statistical freeware
140 PAleontological Statistics [24] (PAST: https://palaeo-electronica.org/2001_1/past/issue1_01.htm). The linear
141 regressions parameters were subsequently used to plot fitted lines using M.S. Excel. P values for the null-
142 hypotheses of no correlation, and the probability that slopes for correlations of different gene pairs are
143 different are given in the relevant figure legends.

144

145 **RESULTS AND DISCUSSION**

146 Since the quality of the used transcriptome dataset is better for *F. graminearum* [10], this dataset was
147 first investigated for the expression of the five key genes (**Fig. 1**) and compared to the expression of the FgATG8
148 gene as an indicator of HPI [10]. The switch from biotrophy-necrotrophy occurs around LOG2 ATG8 expression
149 values of 4.5-6 as indicated by expression of the TRI4 gene involved in DON production needed for
150 counteracting plant defences [10,17]. All five key genes are upregulated at the shift from biotroph to
151 necrotrophy (**Fig. 2A-E**). All five genes show similar temporal patterns of growth-normalized gene expression
152 (**Fig. 2F-J**), supporting the presented hypothesis (**Fig. 1**). The genes appear essential for maintenance to handle
153 the cellular stresses at low HPIs (LowATG8 expression) and are then upregulated. After that, expression of the
154 genes decreases during biotrophy, followed by a substantial increase during the biotrophy-necrotrophy
155 transition. Finally, all genes' expression decreases again during necrotrophy, tending to a final rise at very late
156 necrotrophy.

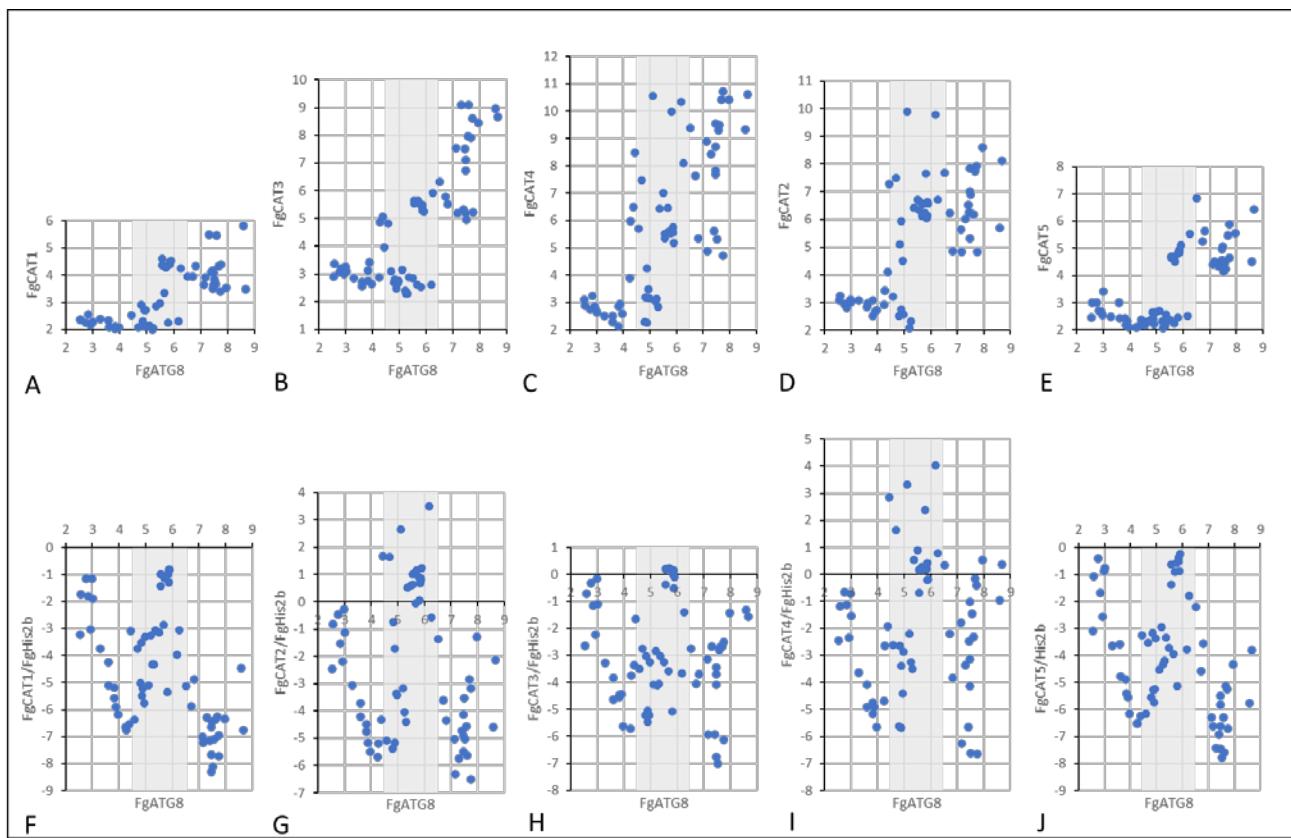

157 The shapes of these growth-normalized expression profiles are, in principle, W-shaped.

158
159
160
161
162
163
164

Figure 2. LOG2 expression of key genes compared to the LOG2 expression of the autophagy gene ATG8 is increasingly expressed during plant infection. The transition between biotrophy to necrotrophy occurs at LOG2 ATG8 expression values of 4.5-6. (A-E) Total expression (growth + maintenance related). (F-J) Maintenance-related, growth-normalized expression using FgHis2b for normalization vs. FgATG8 (HPI). All plots (A-J) are shown with equal scaling on both axes to facilitate comparisons. Grey areas mark the biotrophy/necrotrophy transition (Log2FgATG8=4.5-6.5).

165
166
167
168
169
170

For *M. oryzae*, as for *F. graminearum*, an increased transcription was observed for most of the five genes (Fig. 3A-E). Growth-normalized FgPrp was strongly upregulated, especially at the transition between biotrophy to necrotrophy, while this was not found for MoPrp (Fig. 3F-J). The lack of regulation in *M. oryzae* could indicate that very little ROS stress is experienced by the fungus in the transition between biotrophy to necrotrophy. Alternatively, MoPrp is not functionally regulated in response to DNA damages caused by oxidative stress since MoPrp can have lost both function and regulation.


171
172 **Figure 3.** LOG2 expression of key genes compared to the LOG2 expression of the autophagy gene ATG8 is increasingly
173 expressed during plant infection. The transition between biotrophy to necrotrophy occurs at LOG2 ATG8 expression values
174 4-6. **A-E.** Total expression (growth + maintenance related). **F-J.** Maintenance-related, growth-normalized expression using
175 MoHis2b for normalization vs MoATG8 (HPI). All plots (A-J) are shown with equal scaling on both axes to facilitate comparisons.
176 Grey areas mark the judged biotrophy/necrotrophy transition (Log2 MoATG8=4-6).

177 **Oxidative stresses due to hydrogen peroxide or nitric oxide**

178 The relative expression for all catalase (CAT) orthologues in both fungi was investigated to investigate
179 ROS stress. Catalase is needed to counteract intrinsically, and plant-made H₂O₂ nitric oxide dioxygenase (NOD)
180 orthologues are necessary to balance intrinsically and plant-made NO. Five decent candidate orthologues to
181 yeast (*Saccharomyces cerevisiae*) CatA, genes FgCAT1-5 were found for *F. graminearum* (**Table 2**). In *F.*
182 *graminearum*, there are two nitric oxide dioxygenase genes [17], and two orthologues to these were found in
183 *M. oryzae* (**Table 2**).

184 *F. graminearum* catalase gene responses

185 All five catalase orthologues are activated in the biotrophy to necrotrophy transition (**Fig. 4**). The
186 activation was pronounced when investigating the growth-normalized expression where the expression
187 profiles for all genes resembled the expression profiles for the PARP orthologue (FgPrp) (**Fig. 2E and J**).

188

189

190

191

192

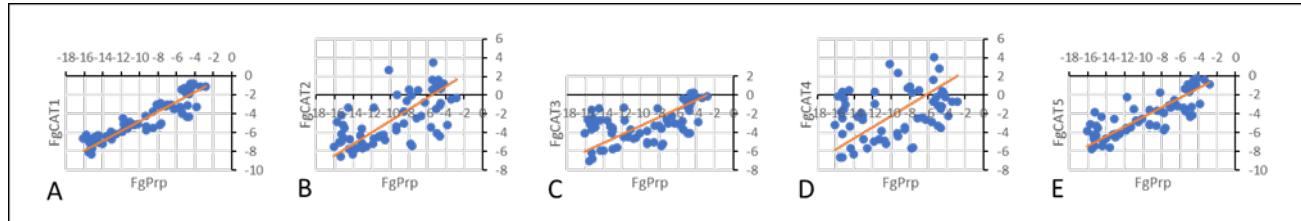
193

194

Figure 4 Expression of catalase orthologues in *Fusarium graminearum*. **A-E.** Expression vs FgATG8 (HPI). **F-J.** Growth-normalized expression using FgHis2b for normalization vs. FgATG8 (HPI). All plots (A-J) are shown with equal scale tick marks on both axes to facilitate comparisons. Grey areas mark the judged biotrophy/necrotrophy transition (Log2FgATG8=4.5-6.5).

195

196


197

198

199

200

If these genes' expression responds to oxidative stresses that cause DNA damage, they should be correlated with FgPrp expression, and when both gene expressions are growth-normalized, they are (Fig. 5A-E).

195

196

197

198

199

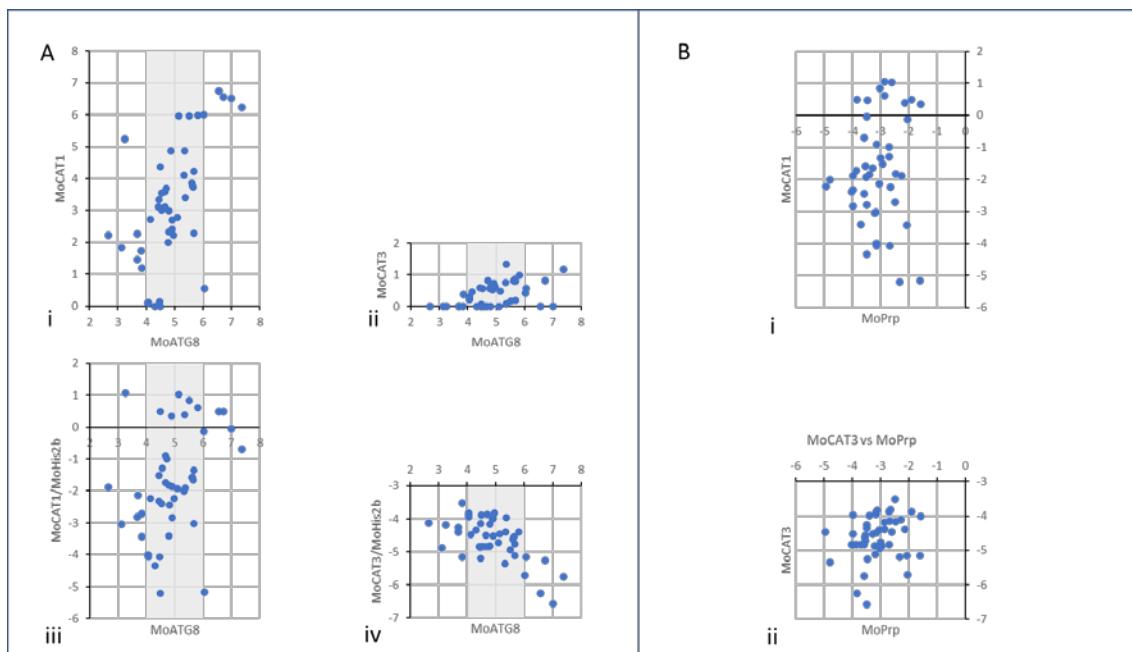
200

Figure 5.A-E. Catalase homologs vs FgPrp in *F. graminearum* both normalized for growth. There are strong correlations between the FgCATs and FgPrp, as expected if all FgCATs and FgPrp help the fungus against H₂O₂. All plots (A-E) are growth-normalized and shown with equal scaling on both axes to facilitate comparisons. RMA regressions are shown as red lines. P for not correlated where FgCAT1=1.32E-26, FgCAT2=9.97E-10, FgCAT3=1.62E-06, FgCAT4=2.24E-03, FgCAT5=6.06E-17. The slopes of all correlations were not significantly different since, in pairwise comparisons, they showed overlapping 95% confidence intervals for their calculated slopes.

201

M. oryzae catalase gene responses

202


203

204

205

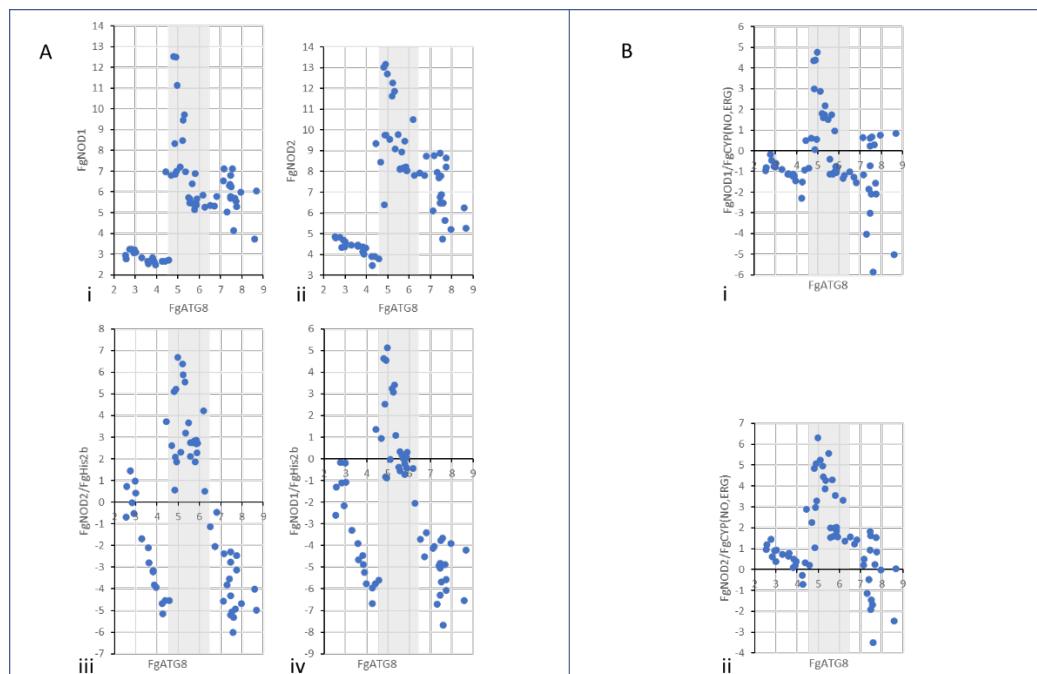
Two catalase gene orthologues are annotated for *M. oryzae* (Table 2). These were also only one of the catalase genes with BLAST similarities to yeast CatA. Of these, only MoCAT1 responds strongly by an upregulation in the transition between biotrophy to necrotrophy (Fig. 6A) and appears to stay high also growth-normalized in the whole necrotrophic stage at high MoATG8 expression (Fig. 6A-iii).

206

207
208
209
210
211
212
213

Figure 6. Catalase orthologues in versus MoATG8 (HPI). (Ai-ii) Expression of MoCAT1 and MoCAT3 versus MoATG8. (Aiii-iv) Expression of MoCAT1 and MoCAT3 versus MoATG8 normalized for growth rate (MoHis2B). All plots (A and B) are shown with equal scaling on both axes to facilitate comparisons. Grey areas (Ai-iv) mark the judged biotrophy/necrotrophy transition ($\text{Log2FgATG8}=4-6$). (Bi). Expression MoCAT1 and (Bii) MoCAT3 vs MoPrp. Both plots are growth-normalized and shown with equal scaling on both axes to facilitate comparisons. RMA regression gave P higher than 0.05 for no correlation with MoPrp. MoCAT1=0.59 and MoCAT3=0.14, indicating correlation not likely.

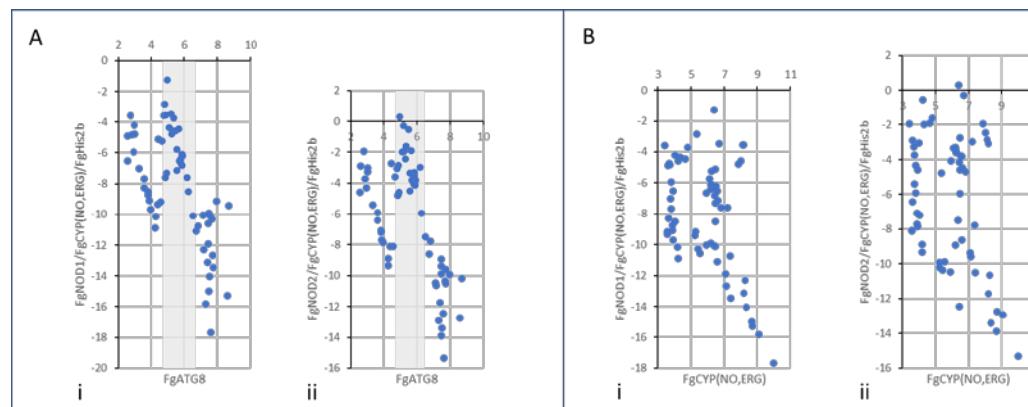
214
215
216
217
218
219
220


However, none of the two catalase orthologues is strongly positively correlated with the MoPrp gene (Fig. 6.B). That would be expected if any of these catalases helped the fungus defend against ROS-mediated DNA damages. It appears like MoPrp is not activated, although MoCat1 is activated, indicating that MoPrp might not be upregulated due to oxidative DNA damages. This non-regulation of MoPrp is a bit strange since the fungus needs to use catalase to withstand other damages when exposed to ROSs during necrotrophy (Fig. 6A-i and ii). Not activating or inhibiting the PARP gene can lead to increased mutations due to DNA damages [14,25].

221

222 *F. graminearum* responses to intrinsic NO or plant generated NO oxidative stress

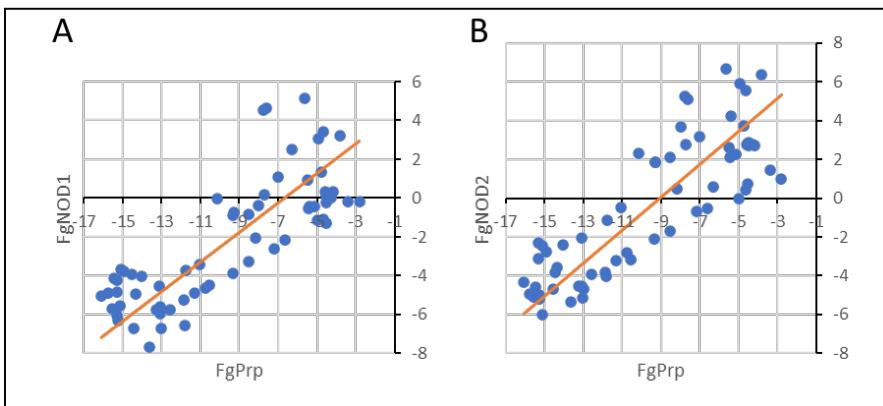
223
224
225
226
227
228
229
230


F. graminearum has two nitric oxide dioxygenase genes FgNOD1 and FgNOD2 (Table 2). Both genes are sharply upregulated in the transition between biotrophy to necrotrophy (Fig. 7-Ai,ii), most likely because of plant generated NO instead of intrinsically generated NO that seem to dominate at low expression levels of ATG8 (HPI). This pattern is even more pronounced when normalizing for growth (Fig. 7Aiii,iv). The likely response to plant-generated NO in the transition between biotrophy to necrotrophy is made even more probable if, instead, the NOD expression is normalized for the main protein involved in intrinsic fungal NO formation. Now it can be seen that there seems to be a balance between FgNODs and FgCYP(NO,ERG) before the biotrophy-necrotrophy transition (Fig. 7B). Thus, plant NO stress most likely dominates inside the plant,

231
232
233
234
235

Figure 7. FgNOD1 and FgNOD2 in *F. graminearum* vs. HPI (FgATG8). A and B without growth normalization C and D with growth normalization using FgHis2b. E and F with normalization for the NO forming CYP using FgCYP(NO,ERG). All plots (A,B) are shown with equal scale tick marks on both axes to facilitate comparisons. Gray areas mark the judged biotrophy/necrotrophy transition (Log2FgATG8=4.5-6.5).

236
237
238
239
240
241
242

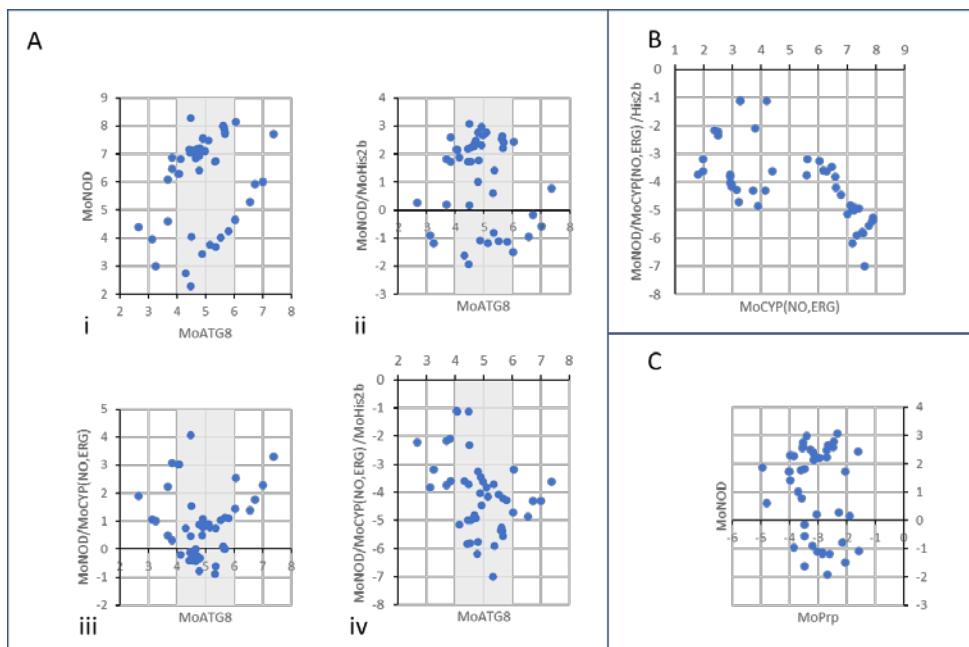

while intrinsically produced NO probably dominates at low ATG8 levels before infecting the fungus and biotrophy starts. The ratio of the expression of the two NOD genes per FgCYP(NO,ERG) (FgNOD1 or 2/FgCYP(NO,ERG)) as an indicator for intrinsically produced NO versus FgATG8 was plotted to see if intrinsically dominated NO is more likely at low FgATG8 levels (HPI), and it is (Fig. 8A). It was also plotted against intrinsic NO generation indicated by FgCYP(NO,ERG) expression (Fig. 8B). The results indicate that after the biotrophy-necrotrophy transition intrinsically produced, NO is negatively correlated with NO defences suggesting that these NO defences are most likely against plant-generated NO.

243
244
245
246
247
248

Figure 8. A shows NO stress (extrinsic) indicated as FgNODs/FgCYP(NO,ERG) is high at low HP and in the transition between biotrophy to necrotrophy but at high FgCYP(NO,ERG) expression (above 8-9) does not seem to be counteracted by NOD. B shows the same ratios plotted against FgCYP(NO,ERG) and shows that there is, in principle, an inverse relationship between intrinsic NO formation and defence against NO. Both plots (A,B) are shown with equal scale tick marks on both axes to facilitate comparisons. Grey areas (A) mark the judged biotrophy/necrotrophy transition (Log2FgATG8=4.5-6.5).

249
250
251

NO is highly mutagenic, and the expression of both NODs that indicate needed ROS defences due to NO is strongly correlated with PARP expression, suggesting that more DNA repair is needed at the high NO levels likely caused by the plant defences (Fig. 9A-B).

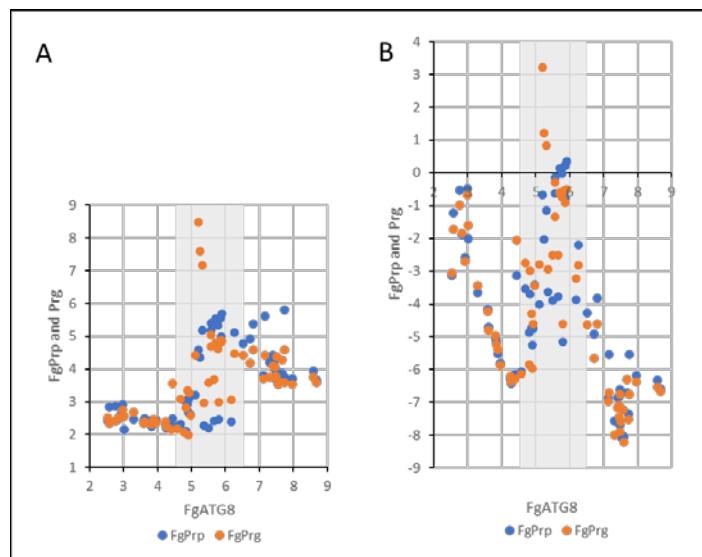

252

253 **Figure 9A-B.** The two FgNODs plotted versus FgPrp. Both are normalized for growth, indicating that both NODs help the fungus against NO produced by itself and/or by the plant. Both plots are shown with equal scaling on both axes to facilitate comparisons. RMA regressions are shown as red lines. P for no correlated where FgNOD1=1.56E-15 and 254 FgNOD2= 2.23E-18. The two correlations' slopes were not significantly different since, in pairwise comparisons, they showed 255 overlapping 95% confidence intervals for their calculated slopes. 256

257
258 In *M. oryzae*, there is only one good BLAST hit for a NOD orthologue, MoNOD (**Table 2**). For *M. oryzae*, 259 the regulatory pattern is less clear. However, as for *F. graminearum*, MoNOD is sharply upregulated in the 260 transition between biotrophy to necrotrophy (**Fig. 10Ai**). In this case, this is probably also because of plant- 261 generated NO instead of intrinsically generated NO but might also be aided by intrinsically formed NO in the 262 necrotrophic stage (at high MoATG8 levels). This pattern is even more pronounced when normalizing for 263 growth (**Fig. 10 Aii**) where it can be seen that the MoNOD is sharply upregulated in the biotrophy-necrotrophy 264 transition.

265 MoNOD is highly expressed (**Fig. 10Aii**) at the same time MoNOD/MoCYP(NO,ERG) ratio is low (**Fig. 266 10Aiii**) when growth adjusted, indicating that NO likely comes from the plant. At the late stages of infection, it 267 is also clear that NO from the plant probably plays a larger role since this expression ratio increases (**Fig. 10Aiii**).

268 The idea that plant NO stress likely dominates inside the plant while fungal intrinsically produced NO 269 probably dominates at low MoATG8 levels (low HPIs before entering biotrophy) was tested further. The NOD 270 gene expression ratio to MoCYP(NO,ERG) as an indicator for intrinsically produced NO versus MoATG8 was 271 plotted to see if intrinsically dominated NO is more likely at low ATG8 levels and it is (**Fig. 10Aiv**). To further 272 confirm that this ratio is negatively correlated at high levels, it was also plotted against MoCYP(NO,ERG) (**Fig. 273 10Bi**). During plant infection, gene expression of the gene for intrinsically produced NO seems to be negatively 274 correlated with the gene necessary for NO defences (Fig. 10Aiv, Bi), similar to the case for *F. graminearum* (**Fig. 275 8B**).



276

277 **Figure 10.** (Ai) MoNOD versus MoATG8 (HPI). (Aii) MoNOD growth-normalized as MoNOD/MoHis2b versus MoATG8 (HPI). (Aiii) 278 MoNOD MoCYP(NO,ERG) normalized versus MoATG8 (HPI). (Aiv) The ratio in Aii growth-normalized versus MoATG8 (HPI). (B) Same 279 Aiv but versus MoCYP(NO,ERG) showing an inverse relationship. (C) No Log2 relationship can be seen between MoNOD and MoPrp 280 expression as would be expected if both were active to protect against NO as radical. All plots (A-C) are shown with equal scaling on 281 both axes to facilitate comparisons. Grey areas (Ai-iv) mark the judged biotrophy/necrotrophy transition ($\text{Log2FgATG8}=4-6$)

282 Finally, since NO might damage DNA need to be repaired by MoPrp, MoNOD expression was compared 283 to MoPrp expression. If MoPrp is active in repairing DNA damages caused by NO, there should be a positive 284 correlation between MoPrp gene regulation and NOD gene regulation, as was noted for the similar relation in 285 *F. graminearum* (Fig. 9A-B), but no such pattern is visible (Fig. 10C). This lack of regulation supports that in *M. 286 oryzae*, increased DNA repair by MoPrp is not activated by the plant produced ROS as H_2O_2 and NO even if the 287 fungus is stressed by these plant produced ROS.

288 Since this difference between FgPrp and MoPrp transcriptional activation was found, it was 289 investigated if there can be differences in the “parylation toolbox” for the two fungi. Part of the PARP signalling 290 pathway is the enzyme poly(ADP-ribosyl) glycohydrolase (PARG), the de-PARYlation counterpart to PARP. 291 PARG enzymes have been described in *Fusarium oxysporum* (FoPARG) [26], and we found an orthologue in *F. 292 graminearum* (Table 2). The *F. graminearum* protein FgPrg has a high similarity and is identical to the FoPARG 293 around the active site. Many orthologues PARGs can be found in fungi, and PARGs appear to be well conserved. 294 However, there were no PARG orthologues to be found in *Magnaporthe* sp. To test if the PARG orthologue 295 seems to be active in *F. graminearum*, FgPrg expression, and the FgPrp expression in the *in planta* data, was 296 plotted together to see if they correlate and they are expressed in a 1/1 ratio at all stages of infection (Fig. 297 11A-B). For *M. oryzae*, the lack of a strong correlation of MoPrg with the ROS indicating genes (catalase and

298
299
300
301
302

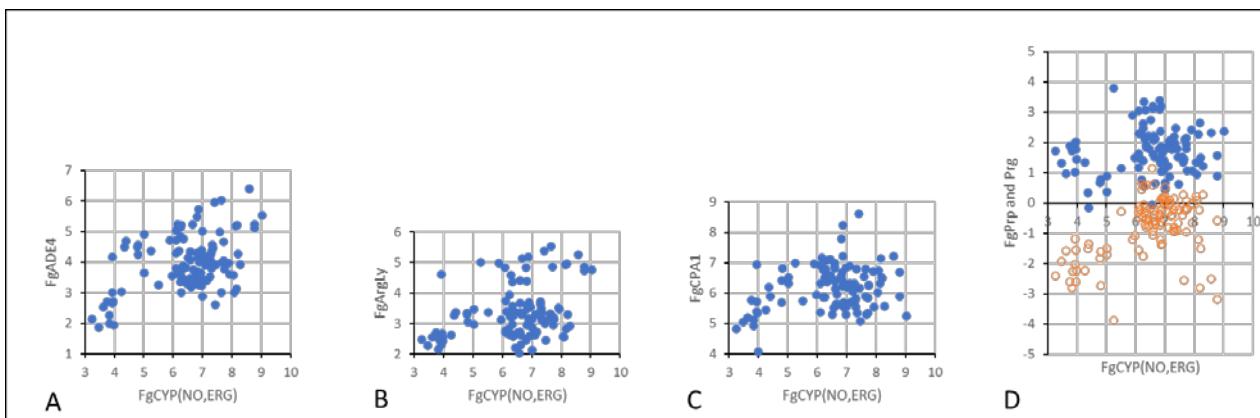
Figure 11 FgPrp putatively responsible for parylation, and FgPrg putatively responsible for de-parylation versus FgATG8 (HPI). A. The two genes expression versus FgATG8 (HPI). B. Growth-normalized. Blue dots=FgPrp and orange dots=FgPrg. Both plots (A,B) are shown with equal scale tick marks on both axes to facilitate comparisons. Grey areas mark the judged biotrophy/necrotrophy transition (Log2FgATG8=4.5-6.5).

303
304
305
306

NOD) (**Fig. 6B and 10C**) the ROS indicating genes (catalase and NOD) (**Fig. 6B and 10C**) and the lack of a MoPrp point to that MoPrp is not active, or at least not in the same way in *M. oryzae* as in *F. graminearum* or do not have the same role in repairing DNA-damage as the PARP/PARG system has in *F. oxysporum* [26].

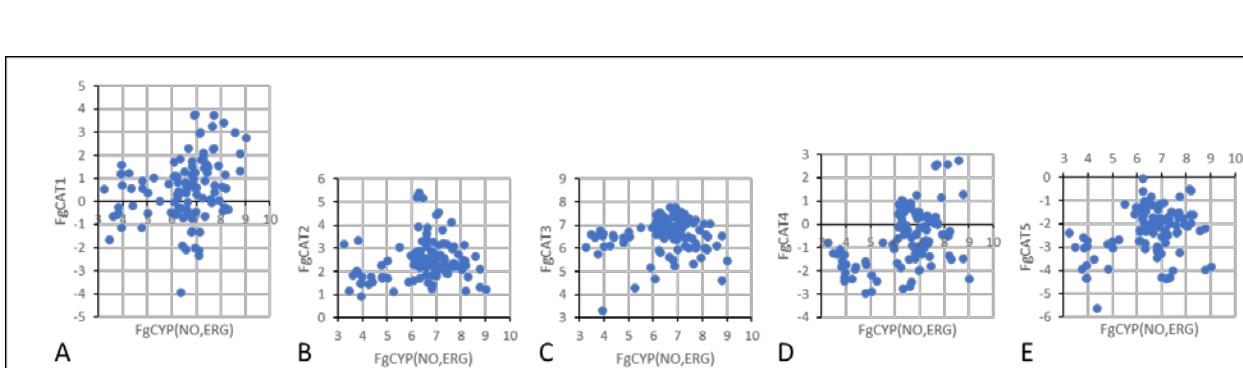
307
308

Non-growing *F. graminearum* challenged 0,1,2,4 h with bacterial MAMPs triggering NO formation.

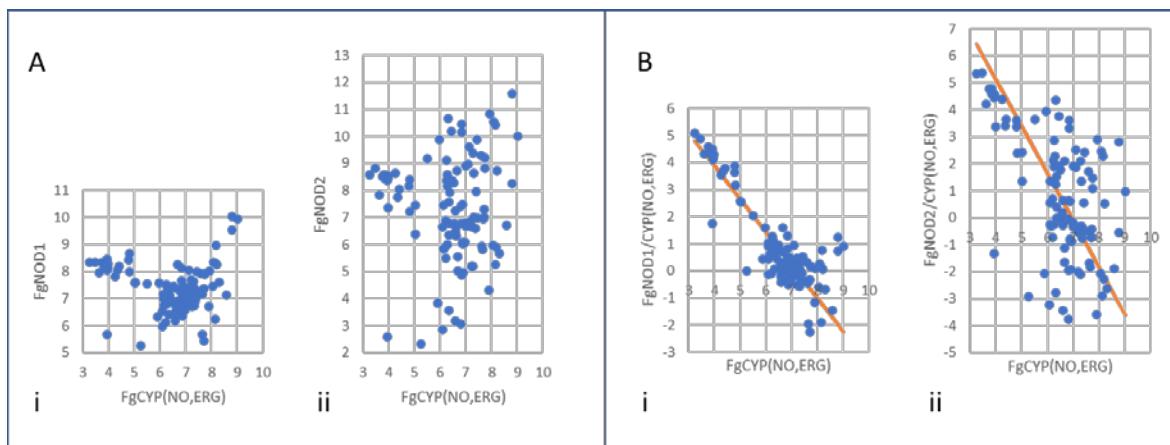

309
310
311
312
313
314
315

Since transcriptome data for 113 transcriptomes of non-growing *F. graminearum* mycelia short-term exposed to bacterial MAMPs in water under non-growing conditions are available from our previous studies [17,22], it was tested if the maintenance specific network (**Fig 1B**) is activated under these conditions. The ROS NO is produced in response to the bacterial MAMPs, and the FgCYP mainly causes the NO production (NO,ERG) [17,22] that is upregulated under these short-term non-growing conditions. FgATG8 is not differentially regulated; instead, CYP(NO,ERG) expression can be used as an indicator of increasing NO stress due to MAMPs challenges[17].

316
317
318
319
320
321
322
323

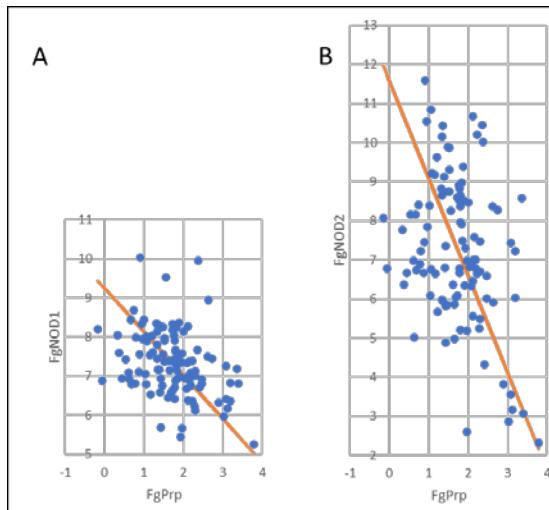

As can be expected, the genes responsible for producing arginine needed to produce NO are positively regulated with FgCYP(NO,ERG), purine synthesis FgCPA1 FgPrp FgPrg needed for DNA repair (**Fig. 12**). This regulation supports the notion that intrinsic NO production causes single-nucleotide mutations that need repair. Although the PARG gene FgPrg is upregulated, it does not entirely mirror the FgPrp gene found in the *in planta* data (**Fig. 11**). This lack of mirroring can be due to the short time nature of the experiments (1-4h) since protein parylation by PARP is a speedy process [27] and quite fast again removed by PARG [28]. It could also indicate an increase in protein PARylation signalling that is a likely part of a fast-reacting fungal innate immune response [29].

324


325
326 **Figure 12 (A-D).** Expression of 6 genes important for producing and counteracting NO when exposed to bacterial MAMPs. Five of the
327 genes were plotted versus *FgCYP(No,ERG)*, known to form NO when exposed to bacterial MAMPs. (D) shows a double plot of the
328 parylation gene *FgPRG* (blue dots) and the de-parylation gene *FgPrg* (orange dots). All plots are shown with equal scaling on both axes
329 to facilitate comparisons.

330
331 ROS counteraction seems to be mainly detected by the increased oxidative state through the
332 transcriptional regulator sensor dependent on oxidative stress formed S bridges in the stress transcription
333 factor YAP1 in yeast and its *F. graminearum* orthologue *FgAP1* [30]. Thus, the upregulation of the five catalases
334 are most likely indicative of general oxidative stress rather than specific sensing of NO or other intrinsically
335 generated ROSs (Fig. 13)

336
337 **Figure 13. (A-E)** Catalase gene expression seems to be higher at higher NO gene expression. All plots are shown with equal scaling on
338 both axes to facilitate comparisons.


339
340 The two NODs necessary to regulate NO concentrations specifically are upregulated with increased
341 expression of the NO generating *FgCYP(No,ERG)*, especially at the higher levels (Fig. 14Ai,ii). NOD1 is localized
342 in the cytoplasm and the nucleus, while NOD2 is not in the nucleus [17]. The *FgNOD1/CYP(No,ERG)* ratio can
343 be expected to be negatively correlated with *CYP(No,ERG)* to reach high levels of bacterial detection signalling
344 when exposed to MAMPs. Thus it is expected that a negative correlation between *FgNOD1/CYP(No,ERG)* ratio
345 and *Fg(CYP(No,ERG))* will be found, and that is indeed the case (Fig. 14Bi,ii). There is also a negative correlation
346 between *FgNOD2/CYP(No,ERG)*, but it seems less tightly co-regulated. *FgNOD2* is located in the cytoplasm and
347 cytoplasmic puncta [17]; it is less likely directly involved in affecting NO-induced transcription factors activity.
348 Since *FgNOD1* is located in the nucleus and cytoplasm [17] and probably the signalling system's central part,
349 lack of NOD1 activity allows NO to affect transcription factor activation downstream [17]. In support of this,
350 the expression of *FgNOD1* versus *Fg(CYP(No,ERG))* is not strongly responding but roughly constant (+-Log2=1)
351 over most of the *Fg(CYP(No,ERG))* expression range (Fig.14i).

352
353
354
355
356
357
358

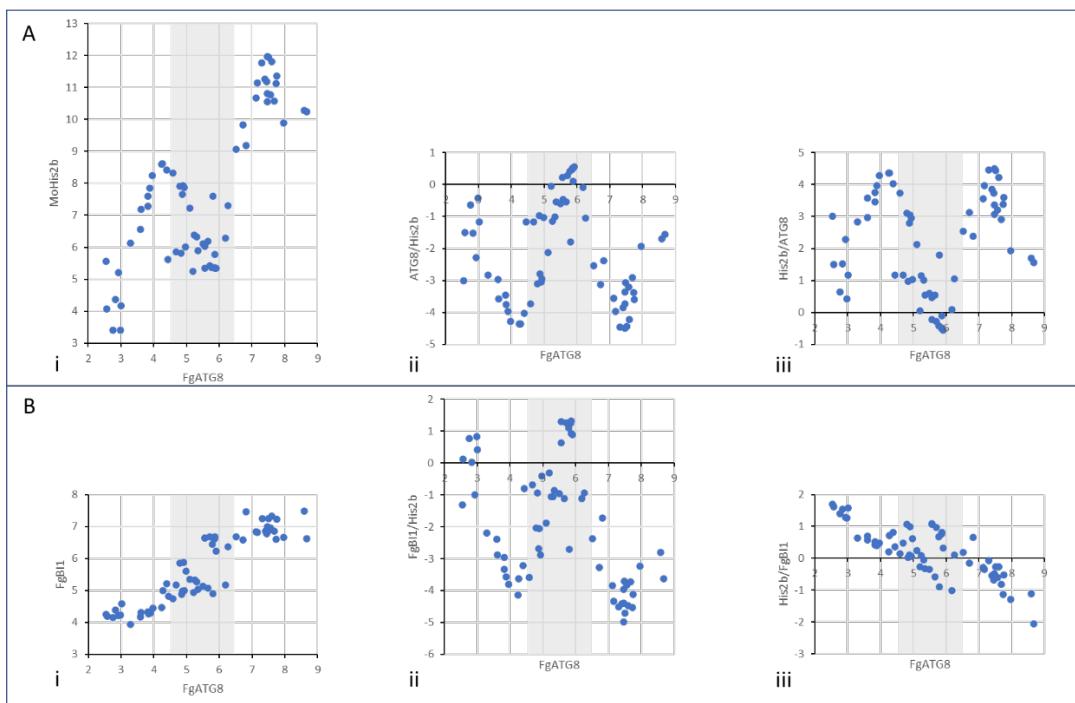
Figure 14. (Ai-ii) Both FgNOD genes increase in activity with NO gene expression, especially at the higher levels over 8. (Bi-ii) FgNOD/FgCYP(NO,ERG) decreases with increasing FgCYP(NO,ERG), indicating increased NO signalling. FgNOD1 localizes in the whole cytoplasm, and the nucleus [17] is negatively correlated and probably the main counterpart to FgCYP(NO,ERG). RMA regression (B) is shown as red lines. P for not correlated where $FgNOD1/CYP(NO,ERG)= 2.77E-31$ and $FgNOD2/CYP(NO,ERG)=2.16E-10$. Both correlations' slopes were not different since, in pairwise comparisons, they showed overlapping 95% confidence intervals for their calculated slopes. All plots are shown with equal scaling on both axes to facilitate comparisons.

359
360
361

Finally, under these conditions, the higher the level of NODs, the lower the concentration of NO should be, and consequently, there should be fewer DNA damages needing repair by PARP. Thus, NODs and PARP genes are expected to be negatively correlated, and they are (Fig. 15).

362
363
364
365
366

Figure 15. A-B the two FgNODs versus FgPrp. Negative correlations imply that when the FgNODs are high, there is less need for FgPrp under these non-growing conditions when bacterial MAMPs challenge the fungus since the FgNODs keep NO concentration low. RMA regression is shown as red lines. P for not correlated where $FgNOD1= 2.35E-04$ and $FgNOD2= 3.43E-04$. Both correlations' slopes were not different since, in pairwise comparisons, they showed overlapping 95% confidence intervals for their calculated slopes.


367

368 Potential relative roles of autophagy and apoptosis during the infection stages (HPI) in both fungi

369
370
371
372
373
374
375
376

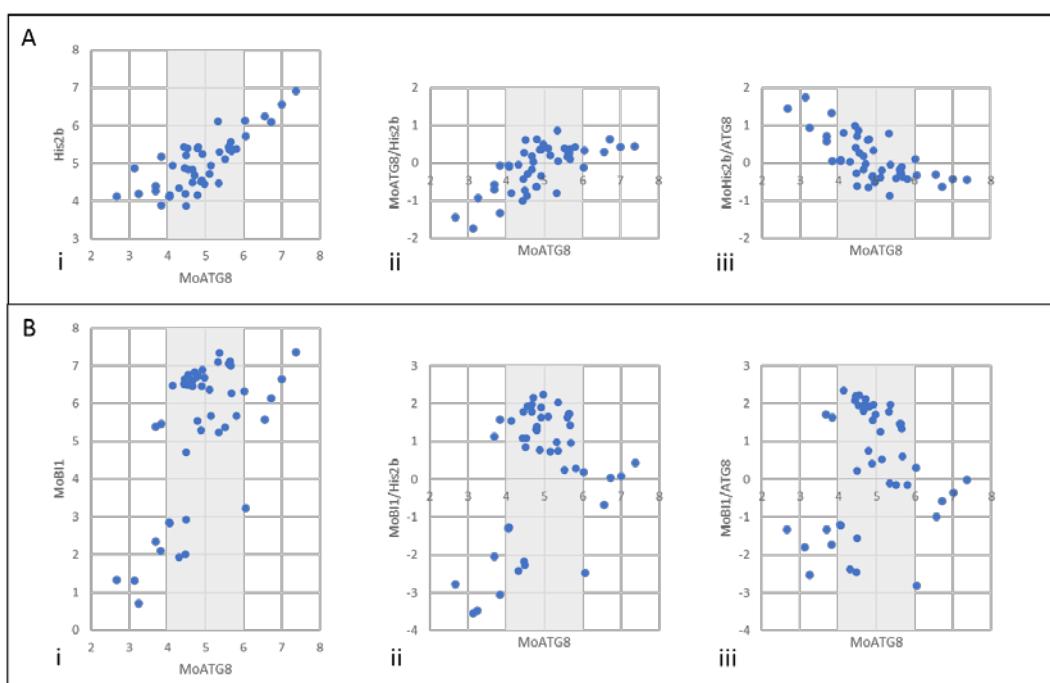
In *Metarhizium robertsii*, belonging to the same order as *F. graminearum* (Hypocreales), the expression of MrBI-1 has been identified as linked to apoptosis [31]. Apoptosis is needed to empty hyphae (autolysis) for the use of resources in other hyphae (reallocation of resources) or production of conidia [13]. There is only one orthologue to this gene in *F. graminearum*, FgBI1 (Table 2.). When investigating *F. graminearum* growth measured as FgHis2b expression versus HPI as measured by FgATG8 expression (Fig. 16Ai), FgHis2b expression increases different rates during the course of infection. However, FgATG8/FgHis2b expression that is indicative of the use of internal stored resources is high early, then drops during biotrophy, increases in the transition to necrotrophy, and then drops going into necrotrophy for increasing during the last conidiation stages of

377 necro trophy (**16Aii**). The mirror image of this, FgHis2b/FgATG8 (**16Aiii**), is consequently indicative of the use
 378 of external resources, in this case, plant biomass.

379
 380 **Figure 16.** Relationship between His2b (DNA synthesis and growth) and FgATG8 (use of stored resources and repair) versus FgATG8
 381 (HPI). (**Ai**) With increasing HPI (FgATG8), the fungus increases in growth (FgHis2b). (**Aii**) Growth corrected FgATG8 expression versus
 382 FgATG8 to indicate when internal resources are used. (**Aiii**) The mirror image of B shows when plant resources are used. (**Bi**) Showing
 383 that the apoptosis indicated by FgBI1 increases with FgATG8 (HPI). (**Bii**) Growth corrected FgBI1 indicates apoptosis is highest before
 384 plant entry and in the biotrophy necro trophy transitions. (**Biii**) Compared to autophagy, apoptosis decrease with FgATG8 (HPI). All plots
 385 are shown with equal scaling on both axes to facilitate comparisons. Grey areas mark the judged biotrophy/necro trophy transition
 386 (Log2FgATG8=4.5-6.5).

387 The expression of FgBI1 increases with FgATG8 (HPI) as expected (**Fig. 16Bi**) since the reallocation of
 388 resources from non-productive hyphae to productive hyphae are keys in mycelium development [32,33].
 389 Consequently, growth-normalized FgBI1 expression vs HPI (ATG8) also looks like the ATG8 curve (**Fig. 16Aii and**
 390 **Bii**). Apoptosis seems to play a slightly decreasing role compared to autophagy with increasing HPI (ATG8) since
 391 the ratio FgBI1/FgATG8 decrease with HPI (ATG8) (**Fig. 16iii**).

392 Figure 16 and previous figures show that five stages for wheat infection by *F. graminearum* can be
 393 suggested (**Table 3**).


394

395 **Table 3. Stages for the infection of rice by *F. graminearum* identified as identified by the regulation**

Stage No.	Activity	Stage	Log2 FgATG8 expression
1	Conidia start growing mainly on stored resources	Arrival-pre-penetration stage	<3
2	Infection hyphae enter the plant and grow considerably without stress from plant defences	Biotrophic stage	3-4.5
3	Plant discovers the invading and mounts defences. Biotrophic growth resources might also suddenly go scarce, causing intrinsic ROS-stresses.	Biotrophy-necrotrophy transition stage	4.5-6.5
4	Plant cells are killed or inhibited by DON. Growth resumes and reaches a higher growth rate.	The necrotrophic stage	6.5-8
5	Plant cells are consumed, and new growth stops, and fungus uses autophagy and a fair bit of apoptosis to evacuate vegetative mycelium and form spores.	The “emigration”-conidiation stage	>8

396

397 The situation for *M. oryzae* is similar but also different. The growth rate measured as His2b expression
 398 does not increase substantially until the transition to necrotrophy and the necrotrophic stage (Fig. 17A). At the
 399 switch to necrotrophy and in the necrotrophic stage, autophagy's relative importance to growth is higher,
 400 indicating stress and/or reallocation of nutrients through autophagy (Fig. 17A-C). On the other hand, apoptotic
 401 emptying of hyphae (autolysis) seems to be much more important at an earlier stage in *M. oryzae* than in *F.
 402 graminearum*. The emptying of vegetative hyphae can be indicative of considerable simultaneous both growth
 403 and sporulation triggered at the transition from biotrophy to necrotrophy as also apoptosis MoBI1 expression
 404 increases and stays high at the same level of MoATG8 expression (HPI) growth-normalized (Fig. 17Bii) and
 405 ATG8 normalized (Fig. 17Biii). However, for this fungus, there also seems to be a slight decrease before a final
 406 spurt in apoptosis (aiding conidiation) at the very high levels of MoATG8 expression (HPI) (Fig. 17Bii-iii).

407

408 **Figure 17** Relationship between His2b (DNA synthesis and growth) and MoATG8 (use of stored resources and repair) versus MoATG8
 409 (HPI). (Ai) With increasing HPI (MoATG8), the fungus increases in growth (MoHis2b). (Aii) Growth corrected MoATG8 expression versus
 410 MoATG8 to indicate when internal resources are used. (Aiii) The mirror image of B shows when plant resources are used. (Bi) Showing
 411 that the apoptosis indicated by MoBI1 increases with MoATG8 (HPI). (Bii) Growth corrected MoBI1 indicates that apoptosis is highest
 412 in the Biotrophy necrotrophy transitions. (Biii) Compared to autophagy, apoptosis is high at intermediate MoATG8 expression (HPI).

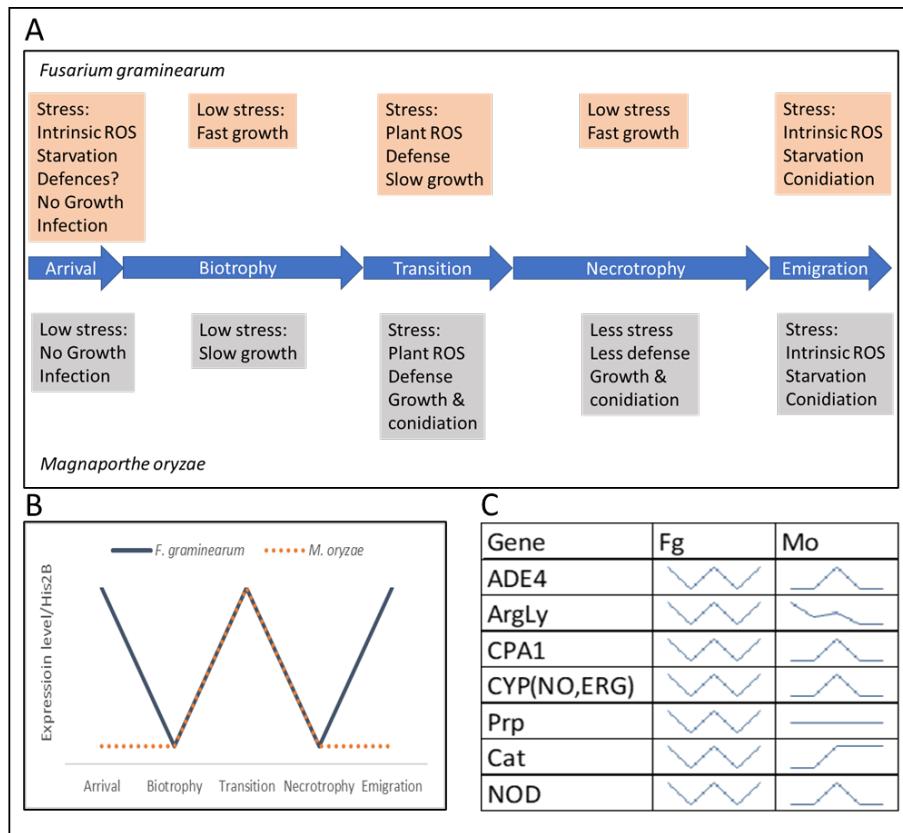
413 All plots are shown with equal scaling on both axes to facilitate comparisons. Grey areas (A,B) mark the judged
 414 biotrophy/necrotrophy transition ($\text{Log2FgATG8}=4-6$)

415

416 Figure 19 indicates that four stages of rice infection by *M. oryzae* can be suggested (Table 4).

417 **Table 4. Stages for the infection of rice by *M. oryzae* identified as identified by the regulation**

Stage No.	Activity	Stage	Log2 FgATG8 expression
1	No detectable extra stress in the pre-penetration stage or this stage is short, so not identifiable in the transcriptomic data		
2	The fungus infects and starts using plant resources biotrophically for slow growth/maintenance	Biotrophic stage	<4
3	Plant discovers the invading and mounts defences. Biotrophic growth resources might also suddenly go scarce, causing intrinsic ROS-stresses. The plant cells are killed, and the nutrients from the plant cells' degradation speed up fungal growth and increase stresses imposed by the plant defences. The plant ROS stresses induce melanization of fungal cell walls [34]. The fungus starts emptying mycelium to form conidia.	Biotrophy-necrotrophy transition stage	4-6
4	Plant cells are killed, and resources become scarce autophagy and apoptosis are used to empty mycelium and fill spores. This spore filling is probably caused mainly by apoptosis that starts already early in the transition from biotrophy to necrotrophy	The necrotrophic stage	>6

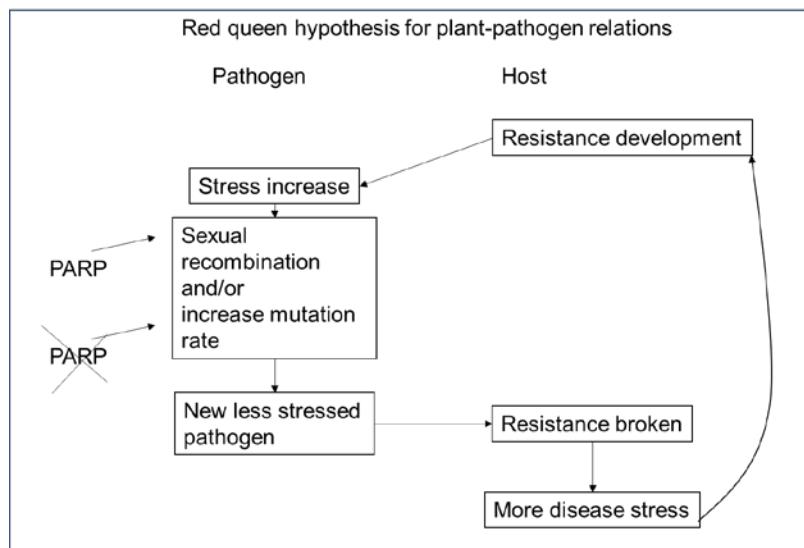

418

419 Compared to *F. graminearum*, the analysis indicates that *M. oryzae* does not have an extended
 420 necrotrophic stage with a buildup of vegetative mycelium but uses the host biomass and starts forming conidia
 421 and emptying the mycelium already at the start of the necrotrophic stage. It also appears that apoptosis could
 422 play a more critical role in this process for *M. oryzae* than for *F. graminearum*. This difference could be why
 423 relatively small lesions are seen for *M. oryzae* on rice leaves [6] compared to whole wheat grains and whole
 424 wheat heads or seedlings infected by *F. graminearum* [8]. The available resources for the Functional Mycelium
 425 Unit (FMU) [32,33] that is the fungal individual seems to be much smaller in *M. oryzae* and is reflected in short
 426 to non-existent "happy" non-stressed growth period in the necrotrophic stage.

427

428 **Conclusion**

429 **Testing the hypothesis:** The analysis supports the hypothesis presented in the introduction and discussed in
 430 the Results and Discussion (above). To summarize this, a conceptual model is presented (Fig. 18A). In this
 431 Figure 18, it can be seen that the genes responding to stresses and that are needed for maintenance are
 432 regulated in a W fashion with HPI (LOG2 ATG8 expression) in *F. graminearum* (Fig. 18B and C). For *M. oryzae*,
 433 the stress is similar in the transition between biotrophy to necrotrophy, but the stages before and after are
 434 generally not characterized by increased stress except for catalases indicating plant defences induced during
 435 necrotrophy (Fig. 18A). The shape of the response profile is not a W but more like a "wizard hat" (Fig. 18B and
 436 C).



437
438
439
440
441
442
443

Figure 18. A conceptual model for the plant interaction progression concerning the genes monitored from “arrival” to “departure” for the two plant pathogens, both having a biotrophic stage and a necrotrophic stage, and a transition stage in between. The model highlights the found similarities and differences. (A) “Timeline” of the different stages. (B) The generalized growth-normalized gene expression profile for the genes in Figure 1 showing the W-responses for *F. graminearum* and the “wizard hat” responses for *M. oryzae*. (C) Comparing the generalized gene-expression profiles in *F. graminearum* and orthologues in *M. oryzae* for the genes in Figure 1. See Figure 1 legend for gene abbreviations.

444 **Differences between *F. graminearum* and *M. oryzae* in PARP/PARG gene activation, and possible**
445 **consequences for their respective co-evolution with their hosts:** The only one of the genes identified to be
446 important in the network (Fig. 1 and 2) that did not follow the expected general pattern with increases in
447 expression in the biotrophy/necrotrophy transition for both fungi was PARP needed for DNA repair of point
448 mutations [25]. The PARP gene FgPrp is activated *in planta* for *F. graminearum*, but that does not happen for
449 the orthologue MoPrp in *M. oryzae* (Figs. 2E, 2J, 3E, 3J, 5A-E, 6B, 9, 10C). Besides, *M. oryzae* lacks an orthologue
450 to the FgPrg necessary for de-PARylation. *M. oryzae* is mainly clonal [9], while *F. graminearum* is commonly
451 sexually reproducing [8]. A non-functioning or non-reacting PARP/PARG system should, during infection and
452 exposure to plant ROS defences, lead to increased mutation rate as have been shown for an *F. oxysporum*
453 PARG mutant [26]. *F. graminearum* and *M. oryzae* are relatively closely related. However, they differ in
454 generating offspring genetic variation. *F. graminearum* uses sexual reproduction. The fungus is also
455 homothallic and self-fertile, having both necessary mating-type loci making it possible to combine favourable
456 mutations in haploid nuclei within the same thallus [7,8,35]. As mainly a clonal fungus [9], *M. oryzae* is
457 dependent on mutations within the same nucleus and/or epigenetic changes to overcome new host resistance
458 development. In conclusion, host ROS caused multiple mutations due to DNA-damages is mainly negative and
459 needs to be corrected in *F. graminearum*. However, for *M. oryzae*, although immediately lowering infection
460 success for the fungus, multiple DNA damages will speed up mutation rate [26] and shorten the number of
461 generations necessary to break plant resistance. Thus, in a pathogen with frequent sexual recombination,
462 especially if this is necessary for infection or triggered during infection, the sexual recombination can generate
463 collections of beneficial mutations in offspring strains to overcome plant resistance development. If
464 PARP/PARG is not activated or lost in a clonal pathogen, the host defences will generate stress that will increase

465 the pathogen's mutation rate. Both and especially the last creates a Red Queen dynamics for the host-
 466 pathogen relationship [36] since increased resistance in hosts creates increased stress in the pathogen that
 467 directly creates increased pathogen variation. This results in the fungus being able to break host resistance
 468 creating more disease in the host.....and so on and so on (**Fig. 19**). It could be expected that such an automatic host
 469 resistance caused increased mutation rate as indicated for *M. oryzae* is more beneficial to the fungus if fungal
 470 host range is narrow and infection cycles are short with ample production of infectious conidia.
 471

472
 473 **Figure 19.** Stress caused by the host causes sexual recombination or increased mutation rate of the fungal pathogens. A non-functioning
 474 PARP (PARP/PARG) can potentially increase the mutation rate to benefit a clonally reproducing pathogen.

475 **Eco-physiological ranges of abiotic and biotic conditions and gene expressions – the advantage of inferring
 476 gene functions from large sets of transcriptomic data:** Growth media are generally far too rich and outside
 477 eco-physiological ranges for the microorganism of study [33,37]. Under such conditions, genes are likely to
 478 show gene regulation mainly due to these artificial conditions and additional gene functions not seen within
 479 normal ranges [38]. Complete deletion of a gene not only removes that gene function from an early
 480 developmental stage (for example, spore germination) and can sometimes be considered lethal even if its role
 481 is not crucial at later stages. For most genes expressed at different levels during growth in the natural
 482 environment, a complete deletion creates a physiological situation far outside what the organism can
 483 theoretically meet in nature and is prone to cause artefacts in transcriptional adaptation and genetic
 484 compensation [39]. Artificial overexpression can cause similar problems by inducing expression levels far
 485 outside natural ranges. Protein overexpression is known to cause artefacts by forming protein complexes [40].
 486 Such overexpression is especially a problem if the gene product is cytotoxic if produced in surplus, like histones
 487 [11]. Analyzing correlations between gene expression of genes belonging to physiologically relevant connected
 488 processes in transcriptome datasets from natural conditions (not standard lab media) like in the present study
 489 can potentially overcome some of these limitations and should be interrogated more frequently by researchers.
 490 This insight also calls for developing tools for conditionally up or downregulation of genes and graded
 491 regulations. It also calls for *in-vitro* studies under environmentally more relevant nutrient availabilities and
 492 composition than routinely used. Most problematic for understanding the ecological relevant roles for genes
 493 is perhaps that no fungi are growing in isolation in nature. They are always surrounded by their characteristic
 494 microflora of bacteria [41] and other microorganisms. Lack of these interactions is also why transcriptomic
 495 studies of pathogens during natural infection of plants can be better trusted for inferring gene functions than
 496 “normal lab media”. For the organism in this study's focus, there is a lack of transcriptomic studies for *F. graminearum* on debris at different ages since incorporating the fungus into the soil on and in debris is part of
 497 its life cycle. For this fungus, there is also a lack of transcriptomic studies from the rhizosphere of seedlings at
 498 different times since a root tip passed since coming close to an inoculum might trigger fungal rhizosphere
 499

500 activities [42,43]. Such studies will be tricky since the amount of RNA will be tiny, but they are today possible
501 [44]. For *M. oryzae*, it is evident in the downloaded transcriptomic data [10] that the amount of RNA has not
502 been large since many genes lack expression data under many conditions. Thus, similar techniques for using a
503 small amount of RNA might solve future research problems.

504

505 **Author Contributions**

506 Conceptualization, Stefan Olsson; Data curation, Stefan Olsson and Bjoern Oest Hansen; Formal analysis,
507 Stefan Olsson; Funding acquisition, Zonghua Wang and Guodong Lu; Investigation, Stefan Olsson and
508 Quingfang Li; Methodology, Stefan Olsson and Bjoern Oest Hansen; Resources, Stefan Olsson, Osakina Aron,
509 Hongchen Li and Wenhui Zheng; Supervision, Stefan Olsson, Wei Tang and Zonghua Wang; Validation, Stefan
510 Olsson; Visualization, Stefan Olsson; Writing – original draft, Stefan Olsson; Writing – review & editing, Stefan
511 Olsson, Osakina Aron, Bjoern Oest Hansen, Zonghua Wang, Guodong Lu and Wenhui Zheng.

512

513

514

References

515 1. Lipson, D.A. The Complex Relationship between Microbial Growth Rate and Yield and Its Implications for
516 Ecosystem Processes. *Front. Microbiol.* **2015**, *6*, doi:10.3389/fmicb.2015.00615.

517 2. Dörter, I.; Momany, M. Fungal Cell Cycle: A Unicellular versus Multicellular Comparison. *Microbiol Spectr.*
518 **2016**, *4*, 1–20, doi:10.1128/microbiolspec.FUNK-0025-2016.

519 3. van Bodegom, P. Microbial Maintenance: A Critical Review on Its Quantification. *Microb. Ecol.* **2007**, *53*,
520 513–523, doi:10.1007/s00248-006-9049-5.

521 4. Ponts, N. Mycotoxins Are a Component of *Fusarium Graminearum* Stress-Response System. *Front.*
522 *Microbiol.* **2015**, *6*, doi:10.3389/fmicb.2015.01234.

523 5. Dean, R.; Van Kan, J.A.L.; Pretorius, Z.A.; Hammond-Kosack, K.E.; Di Pietro, A.; Spanu, P.D.; Rudd, J.J.;
524 Dickman, M.; Kahmann, R.; Ellis, J.; et al. The Top 10 Fungal Pathogens in Molecular Plant Pathology. *Mol.*
525 *Plant Pathol.* **2012**, *13*, 414–430, doi:10.1111/j.1364-3703.2011.00783.x.

526 6. Ebbole, D.J. *Magnaporthe* as a Model for Understanding Host-Pathogen Interactions. *Annu. Rev.*
527 *Phytopathol.* **2007**, *45*, 437–456.

528 7. Cavinder, B.; Sikkakolli, U.; Fellows, K.M.; Trail, F. Sexual Development and Ascospore Discharge in
529 *Fusarium Graminearum*. *J. Vis. Exp.* **2012**, doi:10.3791/3895.

530 8. Kelly, A.C.; Ward, T.J. Population Genomics of *Fusarium Graminearum* Reveals Signatures of Divergent
531 Evolution within a Major Cereal Pathogen. *PLOS ONE* **2018**, *13*, e0194616,
532 doi:10.1371/journal.pone.0194616.

533 9. Zhong, Z.; Chen, M.; Lin, L.; Han, Y.; Bao, J.; Tang, W.; Lin, L.; Lin, Y.; Somai, R.; Lu, L.; et al. Population
534 Genomic Analysis of the Rice Blast Fungus Reveals Specific Events Associated with Expansion of Three
535 Main Clades. *ISME J.* **2018**, *12*, 1867–1878, doi:10.1038/s41396-018-0100-6.

536 10. Zhang, L.; Zhang, D.; Liu, D.; Li, Y.; Li, H.; Xie, Y.; Wang, Z.; Hansen, B.O.; Olsson, S. Conserved Eukaryotic
537 Kinase CK2 Chaperone Intrinsically Disordered Protein Interactions. *Appl. Environ. Microbiol.* **2020**, *86*,
538 12.

539 11. Singh, R.K.; Liang, D.; Gajjalaiahvari, U.R.; Kabbaj, M.-H.M.; Paik, J.; Gunjan, A. Excess Histone Levels
540 Mediate Cytotoxicity via Multiple Mechanisms. *Cell Cycle* **2010**, *9*, 4236–4244, doi:10.4161/cc.9.20.13636.

541 12. Josefson, L.; Droce, A.; Sondergaard, T.E.; Sørensen, J.L.; Bormann, J.; Schäfer, W.; Giese, H.; Olsson, S.
542 Autophagy Provides Nutrients for Nonassimilating Fungal Structures and Is Necessary for Plant
543 Colonization but Not for Infection in the Necrotrophic Plant Pathogen *Fusarium Graminearum*.
544 *Autophagy* **2012**, *8*, 326–337, doi:10.4161/auto.18705.

545 13. Thrane, C.; Kaufmann, U.; Stummann, B.M.; Olsson, S. Activation of Caspase-like Activity and Poly (ADP-
546 Ribose) Polymerase Degradation during Sporulation in *Aspergillus Nidulans*. *Fungal Genet. Biol.* **2004**, *41*,
547 361–368, doi:10.1016/j.fgb.2003.11.003.

548 14. Kothe, G.O.; Kitamura, M.; Masutani, M.; Selker, E.U.; Inoue, H. PARP Is Involved in Replicative Aging in
549 *Neurospora Crassa*. *Fungal Genet. Biol.* **2010**, *47*, 297–309, doi:10.1016/j.fgb.2009.12.012.

550 15. Aron, O.; Wang, M.; Guo, J.; Otieno, J.F.; Zuriegat, Q.; Lu, S.; Li, M.; Wang, Z.; Tang, W. *De Novo* Purine
551 Nucleotide Biosynthesis Mediated by Amidophosphoribosyl Transferase Is Required for Conidiation and
552 Essential for the Successful Host Colonization of *Magnaporthe Oryzae* 2020a.

553 16. Aron, O.; Wang, M.; Mabache, A.W.; Wajjiha, B.; Yang, S.; You, H.; Wang, Z.; Tang, W. MoCpa1-Mediated
554 Arginine Biosynthesis Is Crucial for Fungal Growth, Conidiation, and Plant Infection of *Magnaporthe*
555 *Oryzae*. *bioRxiv* **2020**, doi:10.1101/2020.12.27.424512.

556 17. Zheng, W.; Li, H.; Ipcho, S.; Fang, W.; Hennessey, R.; Hansen, B.O.; Lu, G.; Wang, Z.; Newman, M.-A.;
557 Olsson, S. Evolutionary Conserved Nitric Oxide Synthesis Proteins Responding to Bacterial MAMPs Are
558 Located to the Endoplasmic Reticulum and Are Also Involved in Secondary Metabolite Synthesis and
559 Sterol Production. *bioRxiv* **2020**, <http://biorxiv.org/lookup/doi/10.1101/2020.07.12.191361>,
560 doi:10.1101/2020.07.12.191361.

561 18. Wong, E.; Cuervo, A.M. Integration of Clearance Mechanisms: The Proteasome and Autophagy. *Cold*
562 *Spring Harb. Perspect. Biol.* **2010**, *2*, 1–19, doi:10.1101/cshperspect.a006734.

563 19. Aron, O.; Wang, M.; Mabeche, A.W.; Wajjiha, B.; Yang, S.; You, H.; Wang, Z.; Tang, W. MoCpa1-Mediated
564 Arginine Biosynthesis Is Crucial for Fungal Growth, Conidiation, and Plant Infection of *Magnaporthe*
565 *Oryzae* 2020b.

566 20. Zhang, Y.; Shi, H.; Liang, S.; Ning, G.; Xu, N.; Lu, J.; Liu, X.; Lin, F. MoARG1, MoARG5,6 and MoARG7
567 Involved in Arginine Biosynthesis Are Essential for Growth, Conidiogenesis, Sexual Reproduction, and
568 Pathogenicity in *Magnaporthe Oryzae*. *Microbiol. Res.* **2015**, *180*, 11–22,
569 doi:10.1016/j.micres.2015.07.002.

570 21. Veneault-Fourrey, C.; Barooha, M.; Egan, M.; Wakeley, G.; Talbot, N.J. Autophagic Fungal Cell Death Is
571 Necessary for Infection by the Rice Blast Fungus. *Science* **2006**, *312*, 580–583,
572 doi:10.1126/science.1124550.

573 22. Ipcho, S.; Sundelin, T.; Erbs, G.; Kistler, H.C.; Newman, M.-A.; Olsson, S. Fungal Innate Immunity Induced
574 by Bacterial Microbe-Associated Molecular Patterns (MAMPs). *G3 GenesGenomesGenetics* **2016**, *6*,
575 1585–1595, doi:10.1534/g3.116.027987.

576 23. Harper, W.V. Reduced major axis regression: Teaching alternatives to least squares. In *In K. Makar, B. de*
577 *Sousa, & R. Gould (Eds.), Sustainability in statistics education. Proceedings of the Ninth International*
578 *Conference on Teaching Statistics (ICOTS9, July, 2014)*; The Netherlands: International Statistical Institute.
579 iase-web.org [© 2014 ISI/IASE]: Flagstaff, Arizona, USA, 2014; p. 4.

580 24. Hammer, O.; Harper, D.A.T.; Ryan, P.D. PAST: Paleontological Statistics Software Package for Education
581 and Data Analysis. 9.

582 25. Javle, M.; Curtin, N.J. The Role of PARP in DNA Repair and Its Therapeutic Exploitation. *Br. J. Cancer* **2011**,
583 *105*, 1114–1122, doi:10.1038/bjc.2011.382.

584 26. Araiza-Cervantes, C.A.; Meza-Carmen, V.; Martinez-Cadena, G.; Roncero, M.I.G.; Reyna-Lopez, G.E.;
585 Franco, B. Biochemical and Genetic Analysis of a Unique Poly(ADP-Ribosyl) Glycohydrolase (PARG) of the
586 Pathogenic Fungus *Fusarium Oxysporum* f. Sp. *Lycopersici*. *Antonie Van Leeuwenhoek* **2017**, *11*,
587 doi:10.1007/s10482-017-0951-2.

588 27. Krüger, A.; Bürkle, A.; Hauser, K.; Mangerich, A. Real-Time Monitoring of PARP1-Dependent PARylation
589 by ATR-FTIR Spectroscopy. *Nat. Commun.* **2020**, *11*, 2174, doi:10.1038/s41467-020-15858-w.

590 28. O'Sullivan, J.; Tedim Ferreira, M.; Gagné, J.-P.; Sharma, A.K.; Hendzel, M.J.; Masson, J.-Y.; Poirier, G.G.
591 Emerging Roles of Eraser Enzymes in the Dynamic Control of Protein ADP-Ribosylation. *Nat. Commun.*
592 **2019**, *10*, 1182, doi:10.1038/s41467-019-08859-x.

593 29. Lasola, J.; Hodgson, A.; Sun, X.; Wan, F. The PARP1/ARTD1-Mediated Poly-ADP-Ribosylation and DNA
594 Damage Repair in B Cell Diversification. *Antibodies* **2014**, *3*, 37–55, doi:10.3390/antib3010037.

595 30. Montibus, M.; Ducos, C.; Bonnin-Verdal, M.-N.; Bormann, J.; Ponts, N.; Richard-Forget, F.; Barreau, C. The
596 BZIP Transcription Factor Fgap1 Mediates Oxidative Stress Response and Trichothecene Biosynthesis But
597 Not Virulence in *Fusarium Graminearum*. *PLOS ONE* **2013**, *8*, 12.

598 31. Chen, Y.; Duan, Z.; Chen, P.; Shang, Y.; Wang, C. The Bax Inhibitor MrBI-1 Regulates Heat Tolerance,
599 Apoptotic-like Cell Death and Virulence in *Metarhizium Robertsii*. *Sci. Rep.* **2015**, *5*, 10625,
600 doi:10.1038/srep10625.

601 32. Olsson, S. Nutrient translocation and electrical signalling in mycelia. In *The Fungal Colony* (Eds. N.A.R Gow,
602 G.D. Robson and G.M. Gadd); Gow, N.A.R., Robson, G.D., Gadd, G.M., Eds.; Cambridge University Press:
603 Cambridge, United Kingdom, 1999; pp. 25–48 ISBN 978-0-511-54969-4.

604 33. Olsson, S. Colonial growth of fungi,. In *Biology of the Fungal Cell*; Howard, Gow, N.A.R., Eds.; The Mycota;
605 Springer Berlin Heidelberg, 2001; pp. 126–141.

606 34. Crowe, J.D.; Olsson, S. Induction of Laccase Activity in *Rhizoctonia Solani* by Antagonistic *Pseudomonas*
607 *Fluorescens* Strains and a Range of Chemical Treatments. *Appl. Environ. Microbiol.* **2001**, *67*, 2088–2094,
608 doi:10.1128/AEM.67.5.2088-2094.2001.

609 35. Mirzaghaderi, G.; Hörandl, E. The Evolution of Meiotic Sex and Its Alternatives. *Proc. R. Soc. B Biol. Sci.*
610 **2016**, *283*, 20161221, doi:10.1098/rspb.2016.1221.

611 36. Brockhurst, M.A.; Chapman, T.; King, K.C.; Mank, J.E.; Paterson, S.; Hurst, G.D.D. Running with the Red
612 Queen: The Role of Biotic Conflicts in Evolution. *Proc. R. Soc. B Biol. Sci.* **2014**, *281*, 20141382,
613 doi:10.1098/rspb.2014.1382.

614 37. Zengler, K. Central Role of the Cell in Microbial Ecology. *Microbiol. Mol. Biol. Rev.* **2009**, *73*, 712–729,
615 doi:10.1128/MMBR.00027-09.

616 38. Pérez-Llano, Y.; Rodríguez-Pupo, E.C.; Druzhinina, I.S.; Chenthamara, K.; Cai, F.; Gunde-Cimerman, N.;
617 Zalar, P.; Gostinčar, C.; Kostanjšek, R.; Folch-Mallol, J.L.; et al. Stress Reshapes the Physiological Response
618 of Halophile Fungi to Salinity. *Cells* **2020**, *9*, 525, doi:10.3390/cells9030525.

619 39. Zimmer, A.M.; Pan, Y.K.; Chandrapalan, T.; Kwong, R.W.M.; Perry, S.F. Loss-of-Function Approaches in
620 Comparative Physiology: Is There a Future for Knockdown Experiments in the Era of Genome Editing? *J. Exp. Biol.* **2019**, *222*, jeb175737, doi:10.1242/jeb.175737.

622 40. Hölzel, M.; Rohrmoser, M.; Orban, M.; Hömig, C.; Harasim, T.; Malamoussi, A.; Gruber-Eber, A.;
623 Heissmeyer, V.; Bornkamm, G.; Eick, D. Rapid Conditional Knock-down–Knock-in System for Mammalian
624 Cells. *Nucleic Acids Res.* **2007**, *35*, e17–e17, doi:10.1093/nar/gkl1055.

625 41. Deveau, A.; Bonito, G.; Uehling, J.; Paoletti, M.; Becker, M.; Bindschedler, S.; Hacquard, S.; Hervé, V.;
626 Labbé, J.; Lastovetsky, O.A.; et al. Bacterial–Fungal Interactions: Ecology, Mechanisms and Challenges.
627 *FEMS Microbiol. Rev.* **2018**, *42*, 335–352, doi:10.1093/femsre/fuy008.

628 42. Olsson, S.; Nordbring-Hertz, B. Microsclerotial Germination of *Verticillium Dahliae* as Affected by Rape
629 Rhizosphere. *FEMS Microbiol. Ecol.* **1985**, *31*, 293–299.

630 43. Olsson, S.; Bååth, E.; Söderström, B. Growth of *Verticillium Dahliae* Kleb. Hyphae and of Bacteria along
631 the Roots of Rape (*Brassica Napus* L.) Seedlings. *Can J Microbiol* **1987**, *33*, 916–919.

632 44. Kanter, I.; Kalisky, T. Single Cell Transcriptomics: Methods and Applications. *Front. Oncol.* **2015**, *5*,
633 doi:10.3389/fonc.2015.00053.

634