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Abstract 
Tissue resident memory T cells (TRM) were first described in 2009. While initially the major 
focus was on CD8 TRM, there has been recently an increased interest in defining the phenotype 
and the role of CD4 TRM in diseases. Circulating CD4 T cells seed tissue CD4 TRM, but there 
also appears to be an equilibrium between CD4 TRM and blood CD4 T cells. CD4 TRM are 
more mobile than CD8 TRM, usually localized deeper within the dermis/lamina propria and 
yet may exhibit synergy with CD8 TRM in disease control. This has been demonstrated in 
herpes simplex infections in mice. In human recurrent herpes infections, both CD4 and CD8 
TRM persisting between lesions may control asymptomatic shedding through interferon 
gamma secretion, although this has been more clearly shown for CD8 T cells. The exact role 
of the CD4/CD8 TRM axis in the trigeminal ganglia and/or cornea in controlling recurrent 
herpetic keratitis is unknown. In HIV, CD4 TRM have now been shown to be a major target 
for productive and latent infection in cervix. In HSV and HIV co-infections, CD4 TRM 
persisting in the dermis support HIV replication. Further understanding of the role of CD4 
TRM and their induction by vaccines may help control sexual transmission by both viruses. 
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1. Introduction  
The ability of our immune system to develop memory B and T cells is integral for long-term 
protection against invading pathogens and is the key rationale underpinning vaccinations. 
Originally T cells were thought to be primarily recirculating between blood and secondary 
lymphoid tissues. Recently, studies have shown that tissue compartments accumulate a large 
pool of resident CD4 and CD8 T cells that are transcriptionally, phenotypically, and 
functionally distinct from circulating T cells and within different tissues [1-3]. Tissue resident 
memory (TRM) T cells are key targets in vaccination strategies as they mediate local immune 
responses [4] or directly interact with other immune cells [5]. The role of CD4 helper T cells 
(Th) in response to pathogens is highlighted by their ability to aid and direct CD8 T cells, B 
cells and innate immune cells. While memory T cells can recirculate between blood and tissues 
to deliver a quicker and more robust response upon re-exposure to the same pathogen, the TRM 
cells are poised to enhance this role as they are located at the entry portals for pathogens. 
However, their persistence in tissue after pathogen clearance, their mechanism of maintenance, 
and the properties that distinguish TRM in different tissues from circulating effector memory 
T cells (TEM) are still unclear. 
This review will summarise the ontogeny of CD4 and CD8 T cells, their identification, 
maintenance and their contributions to the local immune environment. We will also discuss 
their role in disease pathogenesis, specifically for herpes simplex virus (HSV) and human 
immunodeficiency virus (HIV) infection, how HSV infection increases the risk of HIV 
acquisition, and how TRM could be used to enhance therapeutic strategies or contribute to 
vaccine development, especially as there is currently no effective vaccine against HIV or HSV. 
 
2. CD4 T Cells in Blood 
2.1 Development of T Cells 
The common lymphoid precursors migrate from the bone marrow to the thymus to undergo the 
process of T cell maturation involving three steps of thymic selection [6-8]. Following the 
development of CD4 CD8 cells, T cell receptor (TCR) rearrangement occurs to select for 
functional, single-positive CD4 or CD8 TCRs. Cells displaying inadequate TCR and co-
receptor signalling are removed via apoptosis as they do not bind to B cells and antigen 
presenting cells (dendritic cells (DCs) and macrophages (Mfs)) with adequate affinity. The 
second selection involves a positive stimulation to select cells that can interact with major 
histocompatibility complex (MHC) molecules. MHC-I is present on all nucleated cells to allow 
antigen presentation to CD8 T cells while MHC-II is expressed on antigen presenting cells  and 
allows presentation to CD4 T cells [9]. The final selection or central tolerance removes self-
reacting thymocytes by apoptosis. However, some self-reactive T cells still enter the 
bloodstream. To counteract this, natural regulatory T cells (nTreg), constituting ~10% of 
human CD4 thymocytes [10] arise concurrently with naïve T cells (TN) to induce peripheral 
tolerance by (i) inhibiting the activation of self-reactive T cells and (ii) secreting anti-
inflammatory cytokines to shut down T cell-mediated immunity at the end of an immune 
response to prevent autoimmunity. Thymic selection eliminates more than 90% of thymocytes 
[6]. The remaining cells exit the thymus as TN and circulate between blood and secondary 
lymphoid organs (SLO) (lymph nodes, spleen and tonsils) where they await activation through 
the presentation of specific antigens. 
Thymic production of TN cells declines within the first 2 years of human life, is very low up 
to 15 years of age and by 35-40 years of life there is minimal thymic output [7]. T cells are 
primarily involved in tolerance, pathogen responses and immunological memory formation in 
childhood, while in adulthood they control infection, maintain homeostasis, regulate the 
immune system and maintain pathogen and auto-antigen surveillance. There have been two 
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prevailing theories regarding the ontogeny of memory cells, but neither has yet been proven: 
the progressive differentiation model [11-13], and the asymmetric division model [14].  
The progressive differentiation model suggests that there is a linear progression of memory 
cell differentiation, starting from TN, to stem cell memory (TSCM), central memory (TCM), 
transitional memory (TTM), effector memory (TEM), terminally differentiated effector 
memory (TEMRA) T cells and culminating in a large pool of short-lived effector T cells (Teff). 
How far the cells progress down this scale is determined by the consistency and strength of the 
inflammatory signal during the activation process. As cells follow this progression, they lose 
the ability to proliferate, but respond better and more quickly to pathogens via the release of 
effector cytokines [11-13] (Figure 1). The ‘asymmetric division model’ relies on the idea that 
a cells ‘fate’ is determined early, whereby any two daughter cells are not identical; one is 
committed to a memory cell and the other is committed to an effector cell [14]. Effector cells 
can be divided into seven major subsets, delineated by their surface protein expression, 
transcription factors and functional response [15]. However, their relationship with memory 
cells remains largely unclear in this model. 

 
Figure 1. The linear model of progressive differentiation. A) The differentiation of a TN cell 
into an activated phenotype that ultimately results in cell death. Once a CD4 T cell reaches its 
full differentiation potential, and depending on stimuli, it can be defined as one of 7 major 
effector helper subsets, with distinct surface markers, cytokine secretion profiles and overall 
functions. B) As a cell progresses down this linear path, it may diverge at any point depending 
on the strength and consistency of the stimulus. This divergence results in a memory cell 
phenotype depending on the early level of differentiation the cell has already experienced. 
These memory cells are defined by a range of surface marker expression and are distinguished 
by the strength of effector functions and proliferative capacities. According to this model, once 
a memory cell is reactivated, the cell must only travel down the linear progression to become 
a TEFF cell. This process cannot be reversed to an earlier subset.  
 
2.2 Effector CD4 T Cells in Blood 
Th1 cells primarily secrete IFN-γ to promote adaptive responses against intracellular pathogens 
[16]. They can also produce IL-2, IL-22 and TNF-α [17, 18]. Th2 cells express the transcription 
factor GATA-3 and secrete IL-4, IL-5 and IL-13. They maintain immunity against helminthic 
parasites but also regulate humoral responses by driving B cell proliferation and IgE class-
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switching of antibodies [19]. In contrast, Th9 cells express PU.1 and produce IL-9. They are 
implicated in allergic inflammation [20], tumor suppression [21], and autoimmune disease 
[22]. Th17 cells secrete IL-17, which promotes the expression of antimicrobial agents by 
epithelial cells to protect against mucosal pathogens [23]. Th17 cells can also produce IL-21, 
IL-22 and IL-26 [23, 24]. IL-22 maintains the structural integrity of the gut epithelial barrier 
and protects against mucosal pathogens by stimulating enterocyte production of antimicrobials 
[25]. As Th17 and Th22 cells both secrete IL-22, they share similar functions in preserving gut  
homeostasis [26]. Whilst both subsets express CCR5 and CCR6, Th22 cells are phenotypically 
distinguished from Th17 cells as they express CCR10 and AHR [17, 26, 27]. Regulatory T 
cells (Treg) modulate inflammation through the release of immunosuppressive cytokines (IL-
10 and TGF-β), consumption of IL-2, and therefore apoptosis of other T cells [28]. Tregs 
express CD25, CD27 and FoxP3, but lack CD127 [28-30]. Follicular helper T cells (Tfh) 
express CXCR5 and reside in the germinal centers of lymphoid follicles. They are involved in 
humoral immunity as they promote the class-switching and somatic hypermutation of 
antibodies, as well as the development of memory B cells [31]. Follicular regulatory T cells 
(Tfr) share transcription patterns with Treg and Tfh cells. They localise to the germinal centers 
of lymphoid follicles to inhibit the production of autoreactive antibodies by B cells [32] and to 
limit the frequency and activity of Tfh cells [33, 34]. 
 
2.3 Memory CD4 T Cells in Blood 
Effector CD4 T cells mediate immune responses that support the clearance of pathogens. 
Although many of these cells undergo apoptosis upon the resolution of infection, a small 
fraction differentiate into resting memory T cells to confer lasting immunity by promoting 
secondary responses during subsequent exposures [35]. It is currently unclear whether all the 
effector CD4 T cell subsets can differentiate into memory T cells. There are five subsets of 
memory T cells that differ in their proliferative and survival capacities: TSCM, TCM, TTM, 
TEM, and TEMRA. As with the effector CD4 T cell subsets, the memory CD4 T cell subsets 
are also characterised by varying expression patterns of chemokine receptors that facilitate their 
homing from the circulation towards peripheral sites [36]. 
TSCM cells constitute between 2-4% of all circulating T cells and are the least differentiated 
subset, acting as the precursors of TCM cells [37, 38]. They have enhanced longevity and self-
renewal capacities compared to the other memory T cell subsets [11]. TCM cells traffic 
between the blood and SLO. Upon antigenic stimulation, these cells sequentially differentiate 
into TTM cells and TEM cells to exert effector functions [35, 39]. TEMRA cells are terminally 
differentiated effector memory CD4 T cells that re-express CD45RA. Based on GPR56 
expression, GPR56- TEMRA cells are transcriptionally similar to TEM cells and have similar 
frequencies in the blood across individuals. In contrast, the frequency of the GPR56+ subset 
varies considerably, and these cells display cytotoxic features such as the expression of perforin 
and granzyme B [40]. 
2.4 The Paradigm Shift in T Cell Biology From Blood to Tissue  
Over 20 years ago, two circulating memory populations of T cells were defined: TCMs have 
high proliferative capacity and express CCR7hi allowing access to lymph nodes; TEMs have 
rapid cytotoxic response and are CCR7lo. Advanced technologies expanded the memory 
repertoire of T cell subsets (as discussed above [41, 42]), and a shift in focus from blood and 
lymph nodes to peripheral tissue sites revealed the existence of T cells which reside in tissues 
long after pathogen clearance [43] to provide long-term protective immunity. All tissues 
contain a large repertoire of resident memory T cells, which increases in numbers with age. 
This transition occurs during childhood in mucosal tissues (lungs and intestines) and in 
adulthood in lymphoid sites, with lymph nodes exhibiting the slowest transition to memory T 
cells [7]. How a TRM fits within the models of memory differentiation mentioned above is 
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currently unknown. Two recent studies demonstrated the ability of mouse CD8 TRM to leave 
tissue and join the circulating T cell pool as TCM or TEM following a reinfection with 
influenza or lymphocytic choriomeningitis virus (LCMV), respectively [44, 45]. Interestingly, 
at the transcriptional level, TRM were closer to TCM than TEM, thus providing a new ‘terrace 
model’ of differentiation [46]. The terrace model maintains the major points of the progressive 
differentiation model but allows a cell to move between residency and circulation at any stage 
of its differentiation. In humans, CLA+CD103+ cells that downregulate expression of CD69 
were found to exit the skin through draining lymphatics and enter the blood of healthy donors. 
In a skin graft model, the CLA+CD103+ cells would re-seed in the engineered human skin, but 
not the surrounding murine skin. In contrast to the CD8 studies, these cells did not require a 
re-stimulation in order to reseed in tissue sites of origin. These apparent contradictions may 
derive from t a difference in he migration processes of CD4 versus CD8 TRMs, or between 
mice versus humans. The terrace model finds a place for ‘residency’ within the existing models 
of T cell differentiation. It captures a relationship between residency and circulation, suggests 
a role for TRMs in infection and reinfection events and does not wholly diminish the models 
that came before it.  
 
3. Human CD4 Tissue Resident Memory T Cells 
3.1 Tissue Retention and Homing Markers on CD4 TRMs in Different Anatomical Sites 
A CD4 TRM cell is defined by its static presence long after pathogen clearance, the expression 
of tissue retention markers CD69, PD1 and/or CD103 (much less expression than for CD8 
TRMs), upregulation of the survival and homeostasis marker CD127 [47] and a decrease in 
markers that promote egress such as KLF2, CCR7, S1PR1 and CD62L [1, 48]. In addition, the 
upregulation or downregulation of certain markers such as CLA and CCR9 allows homing to 
specific tissues [1, 35] such as skin and colon, respectively [2]. While CD8 TRMs are more 
transcriptionally homogenous, the phenotypes of CD4 TRM cells are more heterogenous in 
different human tissue. In human skin, CD4CD69+ TRM cells have higher CD103 expression 
in epidermis compared to dermis [49], in contrast to TRMs in bowel expressing low CD103 
[2, 3]. This difference is derived from the local tissue environment: the skin is rich in TGF- 
and interactions of T cells with keratinocytes drive CD103 expression in a TGF--dependent 
manner [49]. In human gastrointestinal tissue (GIT), CD8 CD69+ T cells are either CD103 high 
or low with distinct functions [50] while CD4 CD69+ T cells do not express CD103 [2, 3]. 
CXCR6 was detected on T cells derived from lung, spleen colon, skin, lung and liver [1, 2] and 
contributes to CD8 TRM development by directing T cell homing [51-54]. CXCR3 is 
upregulated on brain derived CD69+ CD4 T cells [55]. The identification of CD4 TRMs with 
specific markers is challenging as their phenotype may vary according to the tissue type. 
In addition, the method of CD4 T cell isolation may influence the phenotype of these cells [56]. 
For example, in cervicovaginal lavage samples a substantial portion of migratory cells were 
identified as CCR7+CD69+ cells [57], while the enzymatic digestion of cervical tissue explants 
yielded cells with the phenotype CCR7–CD69+ [58], suggesting that CCR7+ cells are absent in 
cervix, or that CCR7 detection was hampered by enzymatic digestion.Cervicovaginal lavage 
does not represent the total TRM populations within the cervix, while the latter study used a 
more conventional method to isolate all TRMs. Similarly, when bronchial lavage and 
enzymatically digested lung tissue were compared, different proportions of CD69 and CD103 
expressing cells were found in both the CD4 and CD8 T cell subsets. Furthermore, the 
proportions of CD4+ cells in lavage samples were significantly lower than those isolated from 
airway and lung tissues [59]. Thus, the isolation methods used to study CD4 TRMs [1-3, 60, 
61] should be carefully considered in addition to the type of human tissues and whether the 
tissue source is healthy, inflamed or otherwise diseased.  
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3.2 Ontogeny of CD4 and CD8 TRMs in Mice and Humans  
In mice, CD69 expression combined with the downregulation of KLF2 and S1PR1 establish 
CD8 T cell tissue residency [62]. Both CD69 and CD103 were detected on mouse CD4 TRM 
T cells following Candida albicans infection [63]. However, TRMs in mice have been detected 
independently of CD69 expression in most healthy tissues, except kidneys [64]. With this 
inconsistency in mouse TRM cells, there is little direct evidence for what drives the 
establishment of human TRMs, much less CD4 T cells. To reveal potential early determinants 
for TRM cell residency, single cell RNA techniques were used to track the differentiation of 
CD8 T cells in mice during the course of LCMV infection [65]. Findings suggested that the 
local microenvironment dictates transcriptional changes that occur after a T cell reaches the 
tissue and that the early determinants may differ between tissues and exposure to different 
pathogens. A recent study assessed TRM formation in human lung tissue transplanted from an 
HLA-disparate donor [59]. Through single-cell RNA analysis of T cells (mainly CD8) in the 
enzymatically digested donor lung, which were mostly CD8 T cells, a mature-TRM and TRM-
like phenotype were identified in the recipient. Over time, the recipient’s T cells accumulated 
in the donor lung tissue, and acquired TRM-like phenotypes, with up-regulated expressions of 
Recombination Signal Binding Protein for Immunoglobulin Kappa J Region (RBPJ), 
supporting the idea of Notch signalling pathways’ involvement in cell-fate determinations and 
human TRM ontogeny [66]. Notch signatures have been identified in both CD4 and CD8 
TRMs in humans, but only in CD8 TRMs in mice. Mature human lung TRMs were 
characterized as long-lived, static CD8 T cells expressing transcription factors which were 
previously implicated in CD8 TRM ontogeny in mice: Hobit, Blimp-1, [67] and RUNX3 [68]. 
In mice, CD8 TRM ontogeny was recently shown to be driven primarily by Hobit in skin, gut, 
liver and kidney, whereas in lung it was dependent on Blimp-1 [69]. In summary, our current 
understanding of human TRM ontogeny is in its preliminary stages, as experimental 
approaches such as parabiosis (by which the blood circulation of two individuals are conjoined) 
cannot ethically be carried out in humans. Furthermore, both disease state and tissue type can 
influence conclusions [65].  
Tissue entry and exit: Before a cell enters a tissue, it undergoes a process of adhesion and 
rolling along endothelial surfaces in supplying capillaries [70]. This requires the expression of 
E- and P-selectin ligands on T cells [71]. Signals that arrest the rolling steps to allow migration 
differ between tissue types and between healthy and inflamed tissues. Endothelial cells 
in colon constitutively express CCL28 [72] and MAdCAM-1, which prevent cells from 
expressing CCR10 and the gut-homing receptor α47, respectively [73, 74] to exit tissues. 
Endothelial cells in skin constitutively express CCL17 and CCL27, which arrest cells 
expressing CCR4 [75] and CCR10 [76], respectively. In inflammation, expression of CCL20 
and CCL8 in inflamed skin arrest cells expressing CCR6 and CCR8, respectively [77, 78]. 
Lastly, the cell needs to adhere to and migrate across the endothelium e.g. mediated via LFA1-
ICAM1 and homophilic platelet/endothelial cell adhesion molecule (PECAM-PECAM) 
interactions, respectively is required [79]. The cell is then exposed to the signals that mediate 
maintenance. In mouse skin, CD103+ CD8 T cells are a slow-moving population located in 
epidermis whereas CD4 T cells are more ubiquitously distributed throughout tissues due to 
their motility and migratory function [71, 80]. Integrins induce motility as in mouse lung 
following infection with influenza; CD49a+ (integrin α1) CD8 T cells exhibited higher motility 
than their static CD103+ (integrin αE) CD8 T cell counterparts [81]. However, CD103 is 
expressed on egressing CD4 T cells in mice and human [82, 83]. CLA+CD103+CD4 T cells in 
draining lymph nodes of human skin (and in blood) are transcriptionally similar to those in 
tissues, raising doubts whether CD4 T cells do maintain prolonged residency. However, 
conjoining the blood circulations of two mice (parabiosis) demonstrated that CD4 TRMs are 
distinct from the recirculating counterparts [84] and their gene expression signatures are 
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specific to different tissues, lineages and migration capacities, broadening the heterogeneity of 
murine CD4 TRMs as mentioned above. Even though donor CD4 T cells were found 
infrequently in lung tissue after transplantation, and long-term mature CD8 TRMs 
predominated [59], these studies in mice indicate that CD4 T cells can remain resident to 
provide protection for prolonged periods of time.  
 
3.3 Maintenance of CD4 and CD8 TRMs via Cytokines and Cell Interactions 
Cytokines: Little is known about the contributions of cytokines towards to the development 
and maintenance of TRMs. IL-15 produced by keratinocytes, intestinal epithelium and 
monocytes [85], and IL-7 produced by human intestinal epithelium [86] are pro-survival and 
support homeostatic proliferation [87, 88]. The IL-7 receptor (CD127) is expressed on CD4 
TRMs derived from human GIT, lung, skin, colon, and cervix [2, 58, 61, 89] while the IL-2 
receptor chain consisting of the IL-15 receptor [CD122 (chain) and CD132 ( chain)] is 
enriched on CD4 TRMs in cervical tissue [58]. In mice skin, both IL-7 and IL-15 maintain 
CD8 TRM cells [89, 90] while IL-7 alone [91] or in combination with IL-15 [92] maintains 
CD4 TRMs. In human bone marrow, CD69+ T cells are associated closely with IL-15 
producing cells [93]. A combination of IL-2, IL-15 and TGF-induced CD8 murine ex-TRMs 
(cells that have re-entered circulation) to revert to a TRM phenotype as measured by the 
upregulation of CCR9 and CD69 [44]. TGF-regulates CD103 on CD8 T cells to induce a 
long-lived TRM phenotype or to immobilise them [49]. CD103-eCadherin interaction binds 
TRMs to keratinocytes [94]. However, in mice, CD103– CD8 TRM can also develop without 
TGF-in intestinal lamina propria [95], whereas CD103 induced by TGF-is required for 
TRM formation in the intestinal epithelium [96]. CD69 expression in CD8 TRM cells in mice 
does not rely solely on TGF- and requires IL-33, IFN-α/, TNF-α [96] and IL-12 [97], but 
not IFN-γ.  
Cell Interactions: CD4 helper T cells play a key role in priming cytotoxic CD8 T lymphocyte 
(CTL) responses and in promoting memory CD8 T cell development [98]. While migration of 
CD8 T cells into mucosal tissues of lung and intestine does not require CD4 help or 
inflammation [99], other peripheral mucosal sites such as the vagina rely on CD4 to mobilise 
and control CD8 migration from blood to the infected tissues via secretion of IFN-γ and the 
inflammatory chemokines, CXCL9 and CXCL10 in situ [100]. It has also recently been 
suggested that virus specific CD4 TRMs help develop anti-viral CD8 TRMs through IL-21 
secretion [4, 101].  
 
4. The Role of TRMs in HSV Infection 
HSV type 1 (HSV-1) predominantly causes oral, ocular and initial genital herpes while HSV-
2 causes initial and recurrent genital herpes. An estimated 16–17.6% of the world's population 
aged 15–49 years of age (596–655.7 million people) have genital HSV-1 and/or HSV-2 [102]. 
No vaccine is currently available, and the correlates of protection are only partly established 
[103]. The importance of both CD4 and CD8 T cells in response to HSV infection has been 
studied over many years and is known to operate at two sites: the neuronal ganglia and the 
skin/genital mucosa. At the neuronal ganglia CD4 and CD8 T cells surround the neurons where 
they control latency and suppress reactivation [104, 105]. In human trigeminal ganglia IFN-γ+ 
TNF-CD4 and CD8 T cells have been observed in clusters around neurons and recognise 
distinct HSV-1 epitopes [106]. However, whether these T cells were truly TRM cells was not 
determined. 
HSV-1 and 2 invade the stratified squamous epithelium of the mucosa lining the anogenital 
tracts. This epithelium consists of 7-10 layers of keratinocytes, a network of interconnected 
Langerhans cells (LCs) and the newly described type 2 DCs (cDC2s). In human recurrent 
genital herpes lesions, CD4 T cells infiltrate the dermis and lower epidermis first and 
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predominate in the first 12-48 hours [107]. They produce IFN-γ to combat HSV immune-
evasive mechanisms in infected keratinocytes [108] and to stimulate epithelial secretion of 
CXCL9 and CXCL10 for the recruitment CD8 T cells to the infection site [100]. The 
subsequent infiltration of CD8 T cells is strongly correlated with viral clearance [109]. 
In the human female genital tract, HSV-2 specific CD8 TRMs persist at the dermo-epidermal 
junction after lesion healing, surveying the adjacent peripheral nerve endings for HSV 
shedding [110, 111]. However, studies into the localisation and density of CD8 TRMs have 
revealed that there is spatial heterogeneity and that these cells are static and thus reliant on 
cytokines such as IFN-γ for the majority of their antiviral effect rather than cytotoxicity. Thus, 
HSV-2 can exploits gaps between the cytokine influence of these cells, enabling some viral 
shedding to occur at these gaps. [112, 113]. 
The role of CD4 TRMs in HSV infection has not been as well studied as that of CD8 TRMs, 
and thus their role is less clear. In mice it was shown that migrating and resident memory T 
cells intersperse to establish long-term memory against HSV-1;  however, key differences in 
the localisation of memory CD4 and CD8 T cells occurred following infection. CD8 memory 
T cells established a static, resident population in the epidermis at the original site of infection, 
while a dynamic population of CD4 T cells trafficked through the dermis and re-entered the 
circulation [71]. However, the authors could not rule out the existence of resident CD4 T cells 
that remain in the dermis long-term.  
Iijima and Iwasaki investigated whether they could establish a CD4 TRM population in the 
vagina of parabiotic mice that were immunised intravaginally with an attenuated strain of HSV-
2 [114]. CD4 TRMs were identified in memory lymphocyte clusters (MLCs) together with Mfs 
and DCs in vaginal submucosa and the surrounding hair follicles in the upper dermis of skin 
were the predominant site of CD4 TRM cells.Upon HSV-2 re-infection, mice relying on only 
circulating CD4 memory T cells could not fully suppress viral replication, whereas mice 
harbouring HSV-2 specific CD4 TRMs were fully protected. Therefore, the establishment of 
CD4 TRMs was critical for complete protection from disease. Furthermore, it was determined 
that CCL5 was upregulated in vaginal tissue following immunisation and that CCL5 was 
required to retain CD4 TRMs at the site of infection [114]. A subsequent mouse study found 
that CD4 TRMs were found in the dermis with most clustered in MLCs and around hair 
follicles after HSV infection. CCL5, secreted by Mfs, and maintained by constitutive IFN-γ 
secretion by CD4 TRMs, was critical in retaining the CD4 TRMs in these clusters [70, 82]. 
CD4 TRMs were mobile, much more than CD8 TRMs and able to migrate to distal areas of 
the skin in response to pathogens. These MLCs containing CD4 TRMs may be an ‘immediate 
response centre’ able to respond quickly to incoming pathogens. In contrast, circulating CD4 
TEMs would need to undergo all the phases of entry (rolling adhesion and migration) and 
proliferation to combat pathogens [70]. 
In human studies, an initial study in biopsies from recurrent herpes lesions showed that CD4 T 
cells along with CD8 T cells persisted at the site of reactivation for months after lesion healing 
[115] indicating a protective role of persisting CD4 T cells in localised tissue. Similarly to the 
murine studies, the authors found these populations localised in the upper dermis long after 
HSV-2 clearance, and also showed them interacting with dermal DCs [115]. In contrast, the 
resident memory CD8 T cells were more superficial at the dermo-epidermal junction. Enriched 
HSV-2 specificity of these persisting CD4 T cells in areas of prior HSV-2 reactivation [115] 
highlights the important role of CD4 TRMs in protection against HSV. The various myeloid 
and lymphoid cell types and their relationships in the human dermal clusters require further 
definition. Recently, a mathematical model of the spatial dispersions of CD4 and CD8 TRMs 
in human genital tract showed that in their absence, HSV-2 infection will continue to expand 
[116]. Furthermore, cytokines derived from a low density of HSV-2 specific CD4 TRMs can 
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rapidly diffuse to contain the spread of HSV-2 infection, thus highlighting the impact of CD4 
TRMs in eliminating HSV-2 infected cells [116].  
 
4.1 Herpes Keratitis 
More than 60% of new HSV-1 infections in the eye are epithelial keratitis [117-119] where 
HSV has infected the outermost layer of the cornea, the epithelium [120]. Herpes keratitis (HK) 
generally resolves on its own although antiviral therapy is often utilised to speed recovery and 
prevent damage to the cornea [121, 122]. The stroma is the thickest layer in the cornea and 
consists of organised collagen fibres [123] allowing transparency in the cornea which is 
essential for vision [124]. With recurrent episodes of HSV infection in the stroma, herpes 
stromal keratitis can lead to corneal opacification and can result in permanent vision vision loss 
[125]. A major complication from HSV-1 infection is ocular herpes, especially HK, resulting 
from reactivation of latent HSV infection in the trigeminal ganglion [126]. Physiological, 
environmental factors, and chemical stresses [120] allow the virus to travel via anterograde 
axonal transport [127] to the surface of the cornea [122, 128, 129]. HK is currently the leading 
cause of infectious blindness in developed countries [118, 120] and affects 1.5 million people 
globally each year [117, 119, 126, 130, 131]. Thus, there is a global need to develop a vaccine 
for HSV-1 and -2. 
 
4.2 Early Response to Herpes Keratitis Involves the Innate Immune System 
The host response to HSV infection in the eye is complicated and remains to be fully defined. 
Whilst there are many gaps in understanding the innate immune response to HK in humans, 
there has been much research in murine models of HK. Studies in mice have established that 
in response to HSV-1 infection, neutrophils are first to arrive at the site of infection [132, 133]. 
They arrive in two phases in a large influx and are believed to play an important role in clearing 
HSV from the cornea [134-136]. However, the second phase has also been shown to cause 
significant tissue damage and opacity in the cornea [137]. As the cornea is an avascular tissue, 
it was previously thought that the cornea was immune-privileged [138]. However, studies in 
normal murine corneas show that some immune cells of the innate immune system are present 
in this tissue [139-141]. Upon HSV-1 infection, conventional DCs (cDCs) and Mfs are 
activated and increase in numbers [142-146]. The depth of insight regarding the innate immune 
system in human tissue is limited. The depletion of cDCs in mice has shown increased scarring 
whilst the depletion of Mfs had no impact, suggesting that these cDCs are critical for 
maintaining corneal health during HSV infection [147]. Additionally, the depletion of natural 
killer cells in other mice studies showed that the incidence and severity of scarring in the stroma 
was significantly reduced [148, 149]. These studies indicate that natural killer cells are 
activated upon HSV infection and cause damage to the cornea in order to clear the virus. Ex 
vivo HSV infection of normal human corneas showed the co-localisation of DCs, LCs and Mfs 
with HSV infected corneal cells [150, 151]. The localisation of these antigen presenting cells 
in human tissue confirms similar studies in mice, suggesting that antigen presenting cells are 
involved in early immunopathology of HSV infection in the cornea.  
 
4.3 Late Stage Response to Herpes Keratitis Involves T Cells 
CD4 T Cells 
The later stages of HK display the presence of T cells that are particularly prominent in driving 
inflammation in the stroma [152, 153]. Mice studies show that upon HSV-1 infection, CD4 T 
cells appear in the cornea and continue to increase in numbers with time. Furthermore, the 
depletion of T cells showed that mice were less susceptible to tissue damage in the cornea upon 
HSV-1 infection. In the literature, the subset of CD4 T cells, specifically Th1 cells that produce 
IL-2 and IFN-γ, facilitate the influx of second wave neutrophils [134, 154, 155]. Thus, Th1 
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cells are considered responsible for the inflammation and scarring seen throughout the stroma. 
Another subset of CD4 T cells, Th17 cells which produce IL-17, also contribute to 
immunopathology as mice studies examining ocular HSV infection found reduced scarring in 
IL-17R knock-out mice [156]. Furthermore, in a donor cornea from a patient diagnosed with 
HK, IL-17 was expressed implicating Th17 cells in the pathogenesis of HK [157]. In contrast, 
CD4 Tregs limit scarring as scarring in the stroma was greater in mice that were Treg depleted 
before HSV infection [158-160]. Additionally, if Tregs were transferred adoptively to mice, 
corneas showed less scarring compared to controls [158, 159], suggesting that Tregs are 
beneficial to the corneal health during HK. 
CD8 T Cells 
At the level of the trigeminal ganglion, several groups have shown infiltration of CD8 T cells 
after primary infection in both humans and mice, and demonstrated that in mice these CD8 T 
cells synergise with CD4 T cells to control HSV-1 reactivation. Thus HSV-1 specific CD8 T 
cells  can migrate into the trigeminal ganglia and retain memory phenotype presumably as CD8 
TRMs, although this requires definitive proof in humans [161, 162]. More recently another 
group, using a virulent strain of HSV-1, has produced evidence that it is CD8 DCs which 
control such reactivation and that CD8 T cells are merely bystanders [163]. These 
contradictions are yet to be fully resolved. Other studies investigated subpopulations of CD8 T 
cells. Polyfunctional effector memory CD8 T cells were found in increased proportions in 
asymptomatic humans seropositive to HSV, in comparison to symptomatic patients with a 
history of recurrent HK and monofunctional CD8 T cells [164]. Furthermore immunisation 
with MHC-I restricted epitopes in adenoviral vectors in mice, induced together with the T cell 
chemokine CXCL-10, elicited a strong CD8 T cell-dependent protective immunity against HK 
[164],  suggesting the importance of inducing CD8 T cells in vaccine development [165]. In 
contrast another group has shown evidence for induction of corneal scarring, probably 
mediated by HSV glycoprotein K stimulated CD8 T cells [166]. Thus, protection or 
immunopathology may depend on different HSV antigens and requires further study. In 
summary, in primary murine HK CD4 T cells play a major immunopathologic role, and CD8 
T cells appear to offer both protection and immunopathology in different settings and is yet to 
be fully defined. However the role of CD4 and CD8 TRMs in the control or pathogenesis of 
recurrent HK at the level of the trigeminal ganglion or cornea is yet to be defined and 
technically very challenging to study. 
 
5. The Role of CD4 T Cells in HIV Infection 
It is well established that the natural course of untreated HIV infection is characterised by 
persistent HIV replication and a progressive decline in CD4 T cells which results in the onset 
of immunodeficiency [167]. Antiretroviral therapy (ART) can inhibit viral replication such that 
the viral load is reduced to clinically undetectable levels. It is however not curative owing to 
the presence of HIV that remains in a quiescent state in CD4 T cells which are unaffected by 
the immune system or ART [168]. Errors during reverse transcription give rise to defective 
proviruses that constitute more than 93% of latent proviruses in HIV-infected individuals on 
ART [169-171]. Though the prevalence of replication competent proviruses is low, they persist 
nonetheless as the cessation of sustained ART results in a rapid rebound of viral load [172]. 
The latent reservoir is therefore a key impediment towards the elimination of HIV in infected 
individuals. In this section, we review the roles of effector and memory CD4 T cell subsets in 
relation to HIV infection and persistence (Figure 2). 
 
  

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 31 December 2020                   doi:10.20944/preprints202012.0796.v1

https://doi.org/10.20944/preprints202012.0796.v1


 11

5.1 Effector CD4 T Cell Subsets and HIV Infection 
Th1 Cells 
In a recent study by Orlova-Fink et al., Th1 cells were found to express high levels of CCR5, 
correlating with in vitro infection assays which showed that these cells were susceptible 
towards infection by R5-tropic HIV, more so than with the X4-tropic counterpart [173]. In 
another study by Lee et al., genetically intact and potentially replication-competent HIV 
proviral DNA was found to be enriched within Th1-polarised CD4 T cells, compared to other 
functionally polarised CD4 T cell subsets derived from the peripheral blood of HIV-infected 
individuals on ART [174]. Such Th1-polarised cells were further found to have undergone 
clonal expansion, implicating them as a driving force towards the maintenance of the latent 
reservoir [174]. 
Th2 and Th9 Cells 
Limited studies have interrogated Th2 and Th9 cells in the context of HIV. It is however known 
that these cells are more permissive to infection with X4-tropic HIV than the R5-tropic strain 
in vitro, correlating with their high surface expression of CXCR4 but not CCR5 [173, 175]. 
X4-viral sequences have further been reported to be preferentially detected in Th2 and Th9 
cells derived from the peripheral blood of HIV-infected individuals [173]. 
Th17 Cells 
Th17 cells are highly permissive to HIV infection, in part due to their heightened expression 
of HIV receptors, but also their concurrent lack of autocrine CCR5 ligands and RNase proteins 
which can inhibit viral replication [176, 177]. In simian immunodeficiency virus (SIV)-
infected macaques and HIV-infected individuals, Th17 cells have been reported to be depleted 
in the peripheral blood and the intestinal mucosa [26, 178-180]. The depletion of such cells has 
been associated with functional perturbations of the intestinal epithelial barrier and is thought 
to promote microbial translocation as well as chronic inflammation [181]. Importantly, 
sustained virologic suppression by ART does not restore the Th17 cell population in the gut in 
the majority of HIV-infected individuals [182]. Although these cells typically home towards 
the gut via the CCR6-CCL20 chemotactic axis, this is impaired in ART-suppressed, HIV-
infected individuals as there is a decreased production of CCL20 by enterocytes in response to 
IFN-γ secretion by Th1 cells as well as IL-10 and TGF-β secretion by Tregs [183, 184]. 
Recently, Th17 cells were found to be enriched in the inner foreskin of uninfected men 
compared to the outer foreskin [185]. The dynamics of these cells in this tissue during HIV 
infection however are yet to be established. By contrast in the female reproductive tract, Th17 
cells have been implicated as preferential targets for infection during the vaginal transmission 
of SIV in macaques [186], and have further been found to be depleted in the cervix of HIV-
infected female sex workers [187, 188]. 
Th22 Cells  
In SIV-infected macaques, depletion of Th22 cells has been observed in the peripheral blood 
as well as the colon and rectum [26, 178]. Such findings are concordant with studies of HIV-
infected individuals which have also reported reduced frequencies of Th22 cells in these 
compartments [189-191], and this has been associated with damage towards the mucosal 
barrier and increased microbial translocation [191]. Although virologic suppression by ART 
does not restore the frequency of Th17 cells in the gut due to perturbations in the CCR6-CCL20 
chemotactic axis [182-184], Th22 cells by contrast are reconstituted [182]. These cells 
preferentially home towards the gut in a CCL20-dependent manner but can migrate via the 
CCR10-CCL28 chemotactic axis as an alternative when CCL20 levels are reduced as in ART-
suppressed HIV-infected individuals. It is important to note that despite the restoration of the 
gut Th22 cell population following ART intervention, these cells are unable to functionally 
compensate for the depletion of Th17 cells that persists [182]. Recently, Th22 cells were found 
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to be enriched in the outer foreskin of uninfected men compared to the inner foreskin [185]. 
The role of these cells in this tissue during HIV infection however remains to be explored.  
Regulatory T Cells 
In a study by Shaw et al., HIV-infected non-controllers were found to have higher frequencies 
of Tregs in the rectal mucosa compared to HIV-infected controllers and uninfected individuals 
[192]. Mucosal Tregs across all cohorts were however found to limit the proliferation of 
autologous non-Tregs to similar extents [192], pointing towards the preservation of their 
suppressive capacities during chronic HIV infection and the potential contribution of Tregs 
towards diminished HIV-specific T cell responses [29]. Although ART intervention can reduce 
the frequency of Tregs in the rectal mucosa, it does not normalise to levels prior to infection 
[193]. Similarly in the cervix, Tregs have been reported to be increased in frequency during 
chronic HIV infection and this persists despite sustained ART [194]. In a study by Li et al., it 
was determined that Tregs could inhibit HIV replication in resting CD4 T cells through a 
cAMP-dependent PKA pathway [195]. It has been postulated that during chronic HIV 
infection, this may contribute towards conditions that are conducive to HIV latency. 
Importantly, Tregs have also been implicated as a key cellular reservoir. In a separate study by 
McGary et al., CTLA-4+PD-1–CD4 T cells, which are mostly composed of Tregs, were found 
to harbor proviral DNA outside the lymph node follicles in ART-treated, SIV-infected 
macaques [196]. Such findings were also observed in HIV-infected individuals on ART [196]. 
Follicular Helper T Cells 
Tfh cells are expanded in the lymph nodes of macaques and humans during SIV and HIV 
infection respectively [197, 198], and accumulating studies have pointed towards the presence 
of proviral DNA in these cells suggesting their infection with SIV and HIV [199, 200]. 
Although Tfh cells express CXCR4, these cells lack CCR5 expression and yet R5-viral 
sequences have been reported to be preferentially detected in Tfh cells [200]. Recent studies 
have identified that SIV and HIV can infect Tfh precursor cells which express CCR5 [201]. 
Upon TCR stimulation, this precursor population downregulates CCR5 expression and 
differentiates into Tfh cells [201], and this reflects a possible pathway by which Tfh cells may 
become infected with SIV and HIV. Importantly, though CTLs can clear infected cells in extra-
follicular regions of lymph nodes [202], they have been found to be limited within the follicles 
[203]. Such findings, in combination with limited ART drug penetration in lymphoid tissues 
implicate follicular sites as sanctuaries for the persistent replication of HIV [204]. In a study 
by Banga et al., Tfh cells derived from the lymph nodes of ART-suppressed, HIV-infected 
individuals were found to be a key source of replication competent HIV proviruses [205], and 
so novel strategies to eliminate HIV will need to account for this unique cellular reservoir. 
Follicular Regulatory T Cells  
These cells are highly permissive to R5-tropic HIV ex vivo, more so than Tfh cells and this is 
attributable towards their elevated expression of CCR5 [206]. Using macaque models, several 
studies have reported significantly decreased ratios of Tfr cells to Tfh cells during chronic SIV 
infection compared to uninfection [207-209], negatively correlating with increased frequencies 
of autoreactive antibodies in the peripheral blood [207]. However, another study by Miles et 
al. found that the ratio of Tfr cells to Tfh cells was significantly increased during chronic SIV 
infection compared to uninfection [210]. In humans, Tfr cells were found to be more frequent 
in the lymph nodes in chronically HIV-infected individuals compared to in uninfected 
individuals [210]. By establishing an ex vivo human tonsil model of HIV infection, Miles et al. 
showed that Tfr cells were able to suppress the proliferation of Tfh cells as well as their 
production of IL-4 and IL-21 [210]. These cytokines support the maturation of high affinity B 
cell clones and so their reduced secretion by Tfh cells may explain the impaired B cell 
responses that are displayed by HIV-infected individuals [211]. The disparity between studies 
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nonetheless points towards the complexity regarding the role of the Tfr cell population in HIV 
infection and further studies are required to elucidate this. 
 
5.2 Memory CD4 T Cell Subsets and HIV Infection 
Stem Cell Memory T Cells 
CD4 TSCM cells are permissive to HIV infection, in part due to the decreased expression of 
HIV restriction factors such as APOBEC3G and SAMHD1 [212]. Whilst the contribution of 
these cells towards the latent reservoir is relatively low in the initial stages of ART, the CD4 
TSCM sub-reservoir remains highly stable over time as opposed to the other CD4 memory T 
cell sub-reservoirs which progressively contract, and so the contribution of TSCM cells 
increases proportionately over long-term ART [213]. 
Central, Transitional and Effector Memory T Cells 
Of the memory CD4 T cells, these subsets have been studied the most in relation to the latent 
HIV reservoir. In the peripheral blood of ART-suppressed HIV-infected individuals, two 
reservoirs have been identified which differ in their cellular compositions based on integrated 
HIV DNA. In individuals with restored CD4 T cell counts, TCM cells have been found to 
harbor the majority of HIV proviral DNA. This first reservoir is maintained by antigen-driven 
proliferation and the intrinsically long-lived nature of TCM cells [214]. By contrast, TTM cells 
have been found to be highly enriched for HIV proviral DNA in individuals with low CD4 T 
cell counts, and this second reservoir is thought to persist by means of homeostatic proliferation 
[214]. Importantly, integrated HIV DNA may however encompass defective proviruses [215], 
and a study by Hiener et al. found that TEM cells contained the majority of genetically intact 
and potentially replication competent HIV proviruses in the peripheral blood [216]. In other 
anatomical compartments such as the ileum and rectum, HIV proviral DNA has been reported 
to persist mostly in TEM cells in ART-suppressed HIV-infected individuals [217], though 
whether these cells also contain the majority of replication competent proviruses in these 
compartments is yet to be established. 
 
Terminally Differentiated Effector Memory T Cells 
Although CD4 TEMRA cells express high levels of CCR5, these cells are resistant to R5-tropic 
HIV infection presumably due to a block that occurs between viral entry and genomic 
integration. CD4 TEMRA cells however remain susceptible to X4-tropic HIV infection [218]. 
In terms of the latent HIV reservoir, these cells only marginally contribute towards the pool of 
integrated HIV DNA in the blood [214]. 
Tissue Resident Memory T Cells 
Recent studies have pointed towards a role for CD4 TRM cells as key targets for HIV infection 
and persistence, particularly in the female reproductive tract. In a study by Ma et al., CD4 
CD69+ TRM cells derived from the endometrium of uninfected women that displayed 
phenotypic features associated with Th1 (Tbet+) and Th2 (CRTh2+) cells were found to be a 
preferential target for HIV infection [219]. In a separate study by Cantero-Pérez et al., CD4 
CD69+ TRM cells derived from the cervix of uninfected women were found to be enriched for 
several proteins associated with susceptibility to HIV infection including α4β1, α4β7, CXCR4 
and CXCR6. These cells were found to be preferentially infected by HIV compared to their 
cervical CD4 CD69– non-TRM counterparts, consistent with previous findings that cervical 
CD4 T cells expressing α4β1, α4β7 or CD69 were preferential targets for HIV infection [220]. 
By comparing paired cervical tissue and peripheral blood samples derived from ART-
suppressed HIV-infected women, Cantero-Pérez et al. further found that up to 200-fold more 
viral DNA molecules were present per cell in cervical tissue compared to in blood. Importantly, 
CD4 CD69+ TRM cells were identified as the primary contributors to this tissue reservoir [58]. 
It should be noted however that the menstrual cycle may influence the proportion of CD4 
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CD69+ TRM cells in the female reproductive tract [221], and so by extension it may also affect 
the susceptibility of women towards HIV infection. In the colon and lymph node, CD4  CD69+ 
TRM cells have also been implicated as contributors towards the latent reservoir. By 
reactivating latently infected CD4 T cells derived from ART-suppressed HIV-infected 
individuals and tracing them back to their state before activation, Neidleman et al. found that 
latently infected cells of the colon and lymph node expressed CD69, suggesting that these cells 
were of a TRM phenotype [222]. Such findings collectively identify CD4 TRM cells as 
potential targets for novel therapeutics and merit further studies of this subset in other tissues 
associated with HIV infection. 
 

 
 
Figure 2. Summary of the key dynamics amongst CD4 T cell subsets during HIV infection in 
relevant anatomical compartments. Figure created with BioRender.com. 
 
6. HSV and HIV Coinfection 
6.1 Epidemiology 
Many studies and recent meta-analyses have demonstrated that prior infection with HSV-2 
increases the sexual acquisition of HIV approximately 3-fold. If HSV-2 infection is recent this 
increases to up to ~ 5-fold, likely because as when HSV-2 infection is newly acquired there is 
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an increased severity of ulceration, inflammation and shedding over the next year [223, 224]. 
African studies showed acquisition of HIV usually occurs in an inflamed genital tract with or 
without ulceration [225], and that HSV-2 is responsible for >50% of female HIV infections 
[226]. HIV is also shed though herpetic lesions [227]. 
6.2 Pathogenesis: The mechanism of HSV2-enhanced HIV transmission is likely 
multifactorial. HSV-2 genital ulcers disrupt the stratum corneum, facilitating HIV entry into 
the epidermis. Also, activated CD4 T cells and Mfs, target cells for HIV, infiltrate the upper 
dermis of herpes lesions, and remain between episodes, producing a persistent state of 
increased mucosal susceptibility [107, 111]. 
Zhu et al [115] examined HIV-1 replication in the dermal cellular infiltrate in sequential 
biopsies of HSV-2 lesions from patients with or without antiviral therapy. A mixed population 
of CD4 and CD8 T cells and myeloid DCs persisted at the sites of HSV-2 reactivation for 
months after healing, and was unaffected by Aciclovir therapy. Suspensions of the lesional 
CD4 T cells reacted to HSV-2 antigen and were enriched for expression of the chemokine 
receptor CCR5. Infection of these cells with an R5 strain of HIV showed higher concentrations 
of integrated HIV DNA in cells derived from healed genital lesion biopsies than in cells from 
control skin biopsies. Thus, the persistence and enrichment of CCR5+ CD4 T cells in the genital 
mucosa provides further evidence for the ability of these cells to support increased HIV 
replication and spread. The lack of effect of anti-HSV-2 therapy on this replication is also 
consistent with the lack of effect of these agents in vivo to reduce HIV acquisition. Further 
characterisation of the CD4 T cells as TRMs and the relative proportions of productive versus 
latently infected cells needs to be pursued.  
Although the major HIV target cells, CD4 T cells, are enriched in the dermis, HSV lesions are 
confined to the epidermis and yet enhance HIV acquisition. Coinfection or adjacent infection 
of epidermal LCs (or CD11c+ epi-cDC2s) may provide the conduit for HIV to reach dermal 
CD4 T cells. Anogenital LCs are major target cells for infection by both viruses [228, 229]. 
HIV and HSV have different and potentially converging interactions with DCs and T cells. 
HIV uses DCs for transfer to T cells where it replicates whereas HSV induces DC apoptosis 
[229-231] and uptake by bystander DCs for HSV antigen presentation to T cells. 
Our laboratory studies of HSV transport within LCs to dermal DCs in clusters raise the question 
of whether HIV may be transported along the same route, either in coinfected or accompanying 
activated LCs or epi-cDC2s to interact with infiltrating T cells, perhaps within cell clusters 
[231]. Our lab has also previously shown that HSV infected LCs and monocyte derived DC 
produce TNF-α which enhances expression of the HIV coreceptor CCR5, and therefore HIV 
infection of bystander LCs, supporting this hypothesis. TNF-α also enhances their migration 
[232]. In complementary studies, HSV exposed DCs released cytokines that reactivated HIV 
from latency in U1 cell lines [233]. 
Furthermore, in SIV-macaque models, SIV has been shown to infect both activated and 
‘resting’ T cells in the dermis/lamina propria of the genital mucosa, leading to the spread of 
infected activated T cells to the lymph nodes. Infection of the resting T cells may initiate latent 
infection of these cells, the major impediment to antiviral eradication of HIV. Thus, it is 
possible that resting CD4 TRMs in dermis between HSV recurrent lesions may be infected by 
HIV and become reactivated in the presence of pDCs and IFN[234] or latent in the presence 
of myeloid DCs, as shown in model systems [235].  
 
7. Vaccine Development  
7.1 Herpes Keratitis 
CD4 TRMs are yet to be identified in the normal cornea and during HK. However, given the 
destructive nature of CD4 T cells and the inconclusive role of CD8 T cells during HK, further 
definition of CD4 and CD8 subpopulations are essential for vaccine development to HSV. As 
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scarring from HK is a result of recurrent infection as opposed to primary ocular HSV infection, 
boosting the immune response via a vaccination may exacerbate the severity of scarring in the 
cornea [236-238]. Many vaccine trials typically exclude participants with a history of ocular 
HSV infection to prevent the potential exacerbation of corneal scarring [236]. However, as 
described earlier, success in producing immunity in mice with HSV epitopes inducing 
asymptomatic CD8 T cells is encouraging for vaccine design against HSV [164]. Continued 
efforts to define T cell responses in HK are vital in propelling the future of vaccine design. 
7.2 Genital Herpes  
Systemic (intramuscular) injection of a vaccine candidate containing glycoprotein D and 
adjuvant MPL/Alum was partially successful (58-74%) in HSV seronegative women but 
insufficient for licensure [239, 240]. Numerous candidates have been developed since 
including specifically mutated live attenuated dl 5, 29 HSV-2, RNA vaccines and gD deleted 
HSV, with some in clinical trials.  
Intradermal and mucosal application of vaccine candidates have also been tested in animal 
models. Gebhardt et al have suggested induction of CD8 TRMs might be an important target 
for vaccine induction [241] and this principle was adopted in the ‘prime and pull’ approach by 
Shin and Iwasaki [242]. This approach involves two steps: 1) priming of T cells by 
conventional systemic immunization and 2) recruitment of activated T cells to the genital 
mucosa by topical chemokine application. CD8 T cells, but not CD4 T cells, were retained in 
the long term using this combined approach. HSV spread was reduced and clinical disease 
prevented. As genital herpes is thought to predispose up to 50% of HIV acquisition in sub-
Saharan Africa, an HSV vaccine could potentially reduce HIV spread, and might prove to be 
more feasible than developing an HIV vaccine. 
7.3 HIV 
Currently, there is no effective vaccine against HIV. The modest success (31%) of the RV144 
HIV vaccine [243] was not replicated in the HVTN702 clinical trial, and neither vaccine 
elicited neutralizing Abs (nAbs) that maintained viral suppression in chronically infected HIV 
patients [244, 245] or prevented infection in rhesus macaques infected with SIV [246, 247]. 
Recently, macaques were immunized with an HIV envelope trimer which induced nAbs, and 
when combined with a viral vector, both nAbs and cellular immunity including CD8 TRM T 
cells were elicited [248]. After ten viral vaginal challenges, protection was observed with both 
vaccines (53.3% for trimer and 66.7% for viral vector and trimer, respectively). A nAb titer 
>300 was required for protection with trimer alone but with viral vector and nAb, titers <300 
were sufficient. In ex vivo vaginal tissue cultures, antigenic stimulation of T cells triggered 
antiviral responses in myeloid and CD4 T cells, indicating that cellular immune responses may 
reduce the threshold of nAbs required for superior and durable protection. While these data 
were generated in macaques, they highlight the potential role of human CD4 TRM in 
preventing or clearing infection and providing long-term protective immunity and suggest 
modalities for eliciting antigen-specific human TRM cells by vaccination. Accordingly, the 
induction of CD4 and CD8 TRM cells is a promising approach for designing effective vaccines 
against both HIV and HSV and may require specific adjuvants/chemokines to induce both CD4 
and CD8 TRM cells.  
 
8. Conclusions  
Understanding the biology of CD8 and CD4 TRMs and their interactions in their various tissue 
niches will advance the development of vaccines and immunotherapy. For HIV and HSV-1/2 
this is particularly important in the anogenital tract. For HSV-2, CD4 and CD8 TRMs are 
established after initial infection and then play a key role in controlling subsequent recurrences. 
However, CD4 TRMs are also an inadvertent target for HIV infection. Detailed studies of 
HIV/HSV-2 interactions with CD4 and CD8 TRM may help devise strategies for counteracting 
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the enhanced susceptibility to HIV acquisition that is mediated by HSV-2 infection. For both 
viruses, novel strategies to stimulate induction and maintenance of CD4 and CD8 TRM specific 
for HIV or HSV-2 might also lead to long lasting local protection. Such approaches will require 
careful studies of CD8 and CD4 TRMs in human anogenital tissue explants as well as 
comparisons to non-human primates and possibly humanised mice as appropriate animal 
models for vaccine development. 
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