Article

# Simultaneous chemical and sensory analysis of cat urine and feces with headspace solid-phase microextraction and GC-MS-olfactometry

Chumki Banik 1, Jacek A. Koziel 1\*, and James Li 2

- Department of Agriculture and Biosystems Engineering, Iowa State University, 4350 Elings Hall, Ames, IA 50011, USA; <a href="mailto:cbanik@iastate.edu">cbanik@iastate.edu</a> (C.B.); <a href="mailto:koziel@iastate.edu">koziel@iastate.edu</a> (J.K.)
- <sup>2</sup> Nestle Purina, 1 CheckerBoard Sq. St. Louis, MO 63164, USA; <u>James.li2@rd.nestle.com</u> (J.L.)
- \* Correspondence: koziel@iastate.edu; Tel.: +1-515-294-4206

**Abstract:** The association between human and cat (*F. catus*) is well known. This domestic animal is also known for its malodorous urine and feces. The complexity of the odorous urine and feces impacts human life by triggering the human sensory organ in a negative way. The objective of this research was to identify the volatile organic chemicals (VOCs) and associated odors in cat urine and feces using gas chromatography-mass spectrometry and simultaneous sensory analysis of fresh and aged samples. The solid-phase microextraction (SPME) technique was used to pre-concentrate the VOCs emitted from urine or feces samples. Twenty-one compounds were identified as emitted from fresh urine, whereas 64 compounds were emitted from fresh feces. A contrasting temporal impact was observed on the emission of VOCs for urine and feces. On aging, the emission increased to 36 detected chemicals for stale urine, whereas only 17 chemicals were detected in stale feces. Not all compounds were malodorous; some compounds had a pleasant hedonic smell to the human nose. Although trimethylamine, low molecular weight organic acids, and ketones were contributors to the odor to some extent, phenolic compounds and aromatic heterocyclic organic N compounds generated the most intense odors and substantially contributed to the overall malodor, as observed by this study. This work might be useful to formulate cat urine and feces odor remediation approaches to reduce odor impacts.

Keywords: feline, smell, odor, SPME, GC-MS-O, VOCs, felinine

#### 1. Introduction

The companion between human and cat (*F. catus*) is more than 8,000 years old [1]. The market research statistics by the American Veterinary Medical Association counted 74 million domestic cats in the USA in a report presented in 2012 [2]. This popular companion of humans is building their importance in human life as a family member. While cat owners love their cats, they have a less positive relationship with their cats' litterbox due to several factors, including the smell of urine and feces.

The potent odor of domestic cat urine caused a continually growing research interest (Table1). Improved separation and identification techniques were used over the decades to report compounds with a catty smell. One of the responsible specific amino acid felinine excreted by the Felidae family does not have a specific odor, but the degradation products of felinine are odorous. Fractionation and separation of felinine and its derivatives were done using paper chromatographic techniques and spot tests in earlier studies [3]. Using GC-MS total ion chromatogram of the cat urine headspace analysis, Miyazaki et al. (2006) identified a total of 25 compounds in the male domestic cat urine [4]. They reported the urinary protein Cauxin to be involved in felinine production. Felinine, the sulfur-containing amino acid, is carried in the cat bloodstream as 3-methylbutanolglutathione (MBG) [5]. An increase in testosterone concentration can increase the free Felinine in the male and female cat [6] because testosterone increases the production of MBG and shifts the distribution of MBG metabolites

towards the generation of free felinine. In addition to felinine, several organic chemicals can be emitted from the cat urine and feces, depending on the age and sex-related factors of cats.

Cat urine and feces contain several volatile and non-volatile compounds that help to recognize sex and species [7]. These volatile compounds emitted through the urine and feces also act as chemical signaling in mammals to define their territory, dominance, and reproduction [8,9]. The stray and domestic cats also use urine as chemical signaling and intend to bury their feces around the home range [10], and that odor of cat urine and feces can be annoying to humans. Research articles have been published that are focused more on the odorous components in cat urine and less on feces, although both waste products are putrid. The concentration of VOCs emitted by cat feces can significantly differ with the cat age and sex irrespective of the food diet or habitat, like 1-butanol in feces found significantly less in concentration in female cats and indole and phenol like odorous compounds can increase with the age of male cats. Moreover, the aging of the cat urine and feces emits odorous chemicals.

A recent study by Suzuki et al., 2019 reported a significant impact of time (fresh and 24 h) on VOC released from the same urine sample, and the reason was provided to be the degradation of VOCs by bacteria in urine, urinary enzymatic reaction, or oxidation [11]. Fresh cat urine does not emit a strong odor and can be described as 'ammonia-' and 'savory-like'; however, on interaction with soil, bacteria can emit cat urine smell describes as 'intensely fishy' [12]. These experiments were set to find the cat species chemical signaling for habituation-dishabituation and may not guide to resolve odor issues for human annoyance. Simultaneous chemical identification and sensory analysis of the VOC data from cat excrete by the human nose is still limited; moreover, a simple technique and temporal data set are always in need to build the odor profile emitted from cat urine and feces. The water intake by cats can vary with their food diet, and the volume of water intake can end up in a release of different amounts of urine or feces samples [13].

It is only a decade that scientist is using solid-phase microextraction (SPME) for biological sample VOC extraction. It is considered as a non-invasive sampling device that extracts biomarkers for early diagnosis of advanced or chronic diseases or reports impurity in food samples to assess food quality [14]. The study also reported that SPME is 10-50 times more efficient than any static headspace sampling. Moreover, the use of SPME able to extract volatile organic compounds (VOCs) from a biological sample in both *ex vivo* and *in vitro* and analyze using GC-MS. This approach of sample extraction can reduce sample preparation steps and extract the chemicals without modifying its original form. The use of SPME fiber has only recently been reported for marking fluid extraction and identification of *Panthera tigris* subspecies [8]. There is not any research data recorded as per our knowledge on odorous chemicals emitted by urine and fecal samples of domestic cat species using SPME-GC-MS-O chemical and sensory analysis. This current study designed is to find out the temporal behavior of odorous compounds emitted from cat urine and feces in a non-invasive way for the betterment of human territory.

The current study's objective is to use SPME fiber extraction to identify odorous VOCs emitted from fresh and aged urine and feces of domestic cat species. This SPME-GC-MS-O will simplify the chemical and sensory characterization of odorous compounds emitted from cat urine and feces. May also answer the question: Is it possible to predict the odor intensity using GC-MS chemical analysis? This study might also help formulate cleaners and other remediation techniques to reduce cat urine and feces odor problems in the long term.

Table 1: Literature related to domestic cat urine and feces sample preparation for chemical and sensory analysis to identify and compare the chemical constituents of the cat excretes

| Species                          | Sample type            | Sample preparation                                  | Chemical*<br>analysis         | Sensory<br>analysis | Identified compounds                                                                          | Study purpose                                                                                                                                                  | Reference                               |
|----------------------------------|------------------------|-----------------------------------------------------|-------------------------------|---------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| Domestic<br>Cat<br>(Felis catus) | Urine                  | Solvent extraction and derivatization               | Paper<br>chromatography       | Not<br>conducted    | Felinine and amino acids                                                                      | Separation of felinine and its derivatives                                                                                                                     | Westall,<br>R.G. 1953<br>[3]            |
| Domestic<br>Cat<br>(Felis catus) | Urine                  | Solvent extraction<br>and membrane<br>concentration | HPLC, GC-MS-<br>headspace     | Not<br>conducted    | Carboxylesterases cauxin, felinine and felinine derivatives.                                  | To identify hydrolyzed products of cauxin and degradative products of felinine.                                                                                | Miyazaki,<br>M. et al.<br>2006 [4]      |
| Domestic<br>Cat<br>(Felis catus) | Urine and<br>blood     | Solvent extraction and derivatization               | HPLC                          | Not<br>conducted    | Felinine, N-acetylfelinine,<br>creatinine, testosterone, and<br>estradiol                     | Quantify felinine<br>and NAcFel and<br>report effects of<br>testosterone and<br>estradiol on free<br>felinine, NAcFel,<br>and c-<br>glutamylfelinylgly<br>cine | Hendricks,<br>W.H. et al.<br>2008 [6]   |
| Domestic<br>cat<br>(Felis catus) | Urine and soiled urine | Solvent extraction                                  | UPLC-MS, GC-<br>MS-O, and NMR | GC-MS-O             | 34 volatile and non-volatile chemicals synthesized and reported. 14 odor attributes reported. | Identify the key<br>odorants in cat<br>urine                                                                                                                   | Starkenma<br>nn, C. et al.<br>2014 [12] |

| Domestic<br>Cat<br>(Felis catus)                  | Fresh feces                               | Gas sampling                   | GC-MS    | Not<br>conducted  | 24 volatile organic<br>compounds | Sex and age determination using volatile compounds emitted from fecal samples          | Uetake, K.<br>et al.<br>2017[10]    |
|---------------------------------------------------|-------------------------------------------|--------------------------------|----------|-------------------|----------------------------------|----------------------------------------------------------------------------------------|-------------------------------------|
| Domestic<br>Cat<br>(Felis<br>silvestris<br>catus) | Anal sac<br>secretions                    | Sorbed onto Tenax<br>TA tube   | TD-GC-MS | Olfactory of cats | 10 free fatty acids              | Olfactory<br>habituation-<br>dishabituation to<br>determine<br>behavioral<br>bioassays | Miyazaki,<br>T. et al.<br>2018 [17] |
| Domestic<br>Cat<br>(Felis<br>silvestris<br>catus) | Fresh and up<br>to 24 h aged<br>cat urine | GC X GC-MS VOC preconcentrator | GC-MS    | Olfactory of cats | 36 compounds                     | Discriminate<br>temporal changes<br>and individual<br>differences in<br>urine          | Suzuki, S.<br>et al. 2019<br>[11]   |

HPLC: High-performance liquid chromatography; GC-MS: Gas chromatography; UPLC-MS: Ultra-performance liquid chromatography-mass spectrometry, NMR: Nucleic magnetic resonance

#### 2. Materials and Methods

## 2.1. Cat urine and feces collection

The cat urine and feces samples were collected at Nestlé Purina pet facility. Freely collected urine and feces samples were homogenized and immediately frozen at -20 °C upon collection. Urine and feces samples were shipped in a cooler box with dry ice protection via next day air to Iowa lab for analysis.

# 2.2. Sample storage

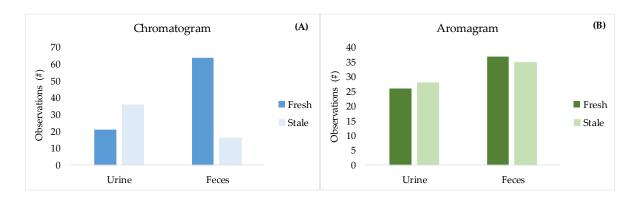
After receiving the samples from the sample collector, all urine and feces samples were stored at -20  $^{\circ}$ C until they were analyzed. A week before analysis, they were moved to a freezer at – 4  $^{\circ}$ C and thawed on the analysis day in the morning at lab temperature (24  $^{\circ}$ C) for 3-4 hours. Each sample was then weighed approximately 1g into an amber color 10 ml vial in duplicate using a disposable dropper or spatula. The aging of urine and feces was performed at lab temperature, and the extraction was performed at 37  $^{\circ}$ C.

## 2.3. Multidimensional gas chromatography-mass spectrometry olfactometry

All sample analysis of cat urine and feces were completed using the multidimensional gas chromatograph-mass spectrometer olfactometer (GC-MS-O). All compounds emitted from the sample vial headspace were extracted using SPME fiber of 2 cm  $50/30~\mu m$  DVB/PDMS/Carboxen (57248-U, Supelco, Bellefonte, PA, USA). The samples were heated to 37 °C during extraction to enhance the emissions. A 50 min extraction time was used for all of the extractions except an additional 10 min extraction was done for a fresh urine sample for comparison purposes. A schematic of the method is given in the appendix (Figure A1).

All the cat urine vials were kept at lab temperature (24  $^{\circ}$ C) for two weeks, and the feces samples were aged at lab temperature for one week to do the extraction of the aged urine and feces samples. These vial caps were left closed to avoid samples drying out and opened for a couple of minutes in the air every other day to avoid complete anaerobic situations. On the analysis day, the vials were closed for the VOCs to equilibrate and accumulate for an hr under lab condition, and then the vial was put on a hot plate set at 37  $^{\circ}$ C for 10 minutes before inserting the SPME fiber to extract the headspace VOCs for 50 mins.

After the extraction, the SPME fiber loaded with odorants inserted into the 260 °C GC injector for thermal desorption of samples to the GC columns and separation and analysis using MS and olfactometer. The GC-MS-O analysis was performed on an Agilent 6890 GC with a restrictor guard column, non-polar capillary column (BP-5, 30.0 m x 530  $\mu$ m inner diameter x 0.5  $\mu$ m thickness, SGE, Austin, TX, USA) and polar capillary column (BP-20, 30.0 m x 530  $\mu$ m inner diameter x 0.5  $\mu$ m thickness, SGE, Austin, TX, USA) connected in series. The sample flow was split 3:1 via an open split interface to an olfactometry port and mass spectrometer, respectively. The GC oven temperature was programmed at the initial 40 °C for 3 min, followed by ramping up to 240 °C at a rate of 7 °C/min, where it was maintained for 8.43 min. The quadrupole MS was using electron ionization mode with ionization energy of 70 eV during operation, and the full scan range was 34 to 350 m/z.


The odor event was detected by the panelist, and the aromagram peak is the intensity of the aroma event. The trained panelist was recording the start and end of the odor event, a description of the odor event, and the odor intensity. The odor intensity was evaluated on a 0-100% scale, where 0% means no odor, and 100% means the strongest odor detected by the panelist. A humidified air was constantly delivered at a rate of 5.7 psi to the panelist's nose to reduce the dry out of the mucus membrane during the analysis. Aromagrams for odors were generated using Aromagram software (version 6.0, Microanalytics, Round Rock, TX, USA).

Analysis of the compounds and data files were generated from Agilent Chemstation software, and the peaks were identified using PBM-Benchtop software and matched using Wiley 7 and NIST database library.

#### 3. Results

## 3.1. Identification of volatile organic compounds in cat urine and feces using GC-MS-O:

The use of simultaneous sensory analyses (via GC-MS-Olfactometry) enabled the detection of malodors that GC-MS could not detect (Figure 1). For example, the 10 min equilibration and 50 minute SPME extraction of 1-week old stale feces headspace had only 16 detectable compounds (via GC-MS), while the use of human nose enabled detection of as many 35 distinct odors (via GC-MS-Olfactometry). However, for fresh feces, GC-MS detected as many as 64 compounds, but the human nose (via GC-MS-Olfactometry) detected 37 distinct compounds. Tables 1 and 2 contain the odor descriptions for the chemical compounds matched with the NIST and Wiley7 chemical library. A list of the odor description is provided in the supplementary material (Tables S1-S6). The difference in the number of events occurs because a human nose is sensitive compare to a chemical analyzer. Moreover, each chemical can possess a distinct aroma or aroma pattern, and more than one chemical could have a similar aroma.



**Figure 1.** Comparison of the number of compounds detected in the headspace of fresh/stale urine and feces using: GC-MS analysis (Part A - Chromatogram) and GC-MS-Olfactometry analysis (Part B - Aromagram).

The refrigerated fresh urine produced 21 compounds and 26 odor events whereas, the 15 days old urine produces as many as 36 compounds, and the number of odor events was 28. Not all compounds could be classified as 'malodors.' Some of the compounds had a 'pleasant' hedonic smell, even in stale urine and feces samples. Phenolic compounds were among the most intense odors and a substantial contributor to malodors.

# 3.2. Temporal effect on volatile organic compounds in cat urine:

Exposure of SPME fiber to the urine sample improved the accumulation of several chemical compounds. A faint odor was recorded by the panelist, but the description was missing at this low concentration. The fresh urine had a mild odor, and upon short SMPE exposure did not reveal much information on odorous compounds. A short exposure of the fiber to the urine sample extracted most of the low molecular weight VOCs that long exposure time of SPME extracted. However, the high molecular weight VOCs were unable to reach the exposed fiber at short fiber exposer, and so the high molecular weight VOCs are absent in the list (Table 2). Moreover, the intensity of the many chemicals was low in concentration (low PAC) to distinguish the odor between different chemicals. The use of the GC-MS-olfactometer, however, senses the odors of phenolic compounds at short SPME exposure to the hedonic urine sample, although the odor intensity was low.

A dynamic aging temporal change was observed in the number of chemical compounds, odor events, and odor intensity observed in the headspace analysis of the urine and feces samples. Fresh cat urine has weak odor intensity and odors described as urine, indole, and animal-like. Stale urine has many intense odorous compounds (Table 2). A foul smell was recorded by the panelist at an RT of 2.7 min, possibly of the compound tri-methyl amine, although no compound was identified by the GC-MS. The identified compounds increased from 19 to 34 and worth mentioning that N containing compounds like pyrazine, pyrrole, pyrimidine, and some other ketones, aldehyde, and alcohols showed up with aging of the urine whereas dimethyl disulfide like malodors compound was only present in fresh urine. However, the intensity of the odor for the compounds present in the aged urine was higher than the fresh urine, as noticed by increasing the PAC. The presence of 2-Heptanone (fruity smell), limonene (mint-like smell) was observed in fresh urine samples for both long and short extraction time that was missing in the aged urine samples; however, jasmone (flowery smell) like good smell odor showed up in the aged urine sample absent in the fresh urine analysis (Table 2).

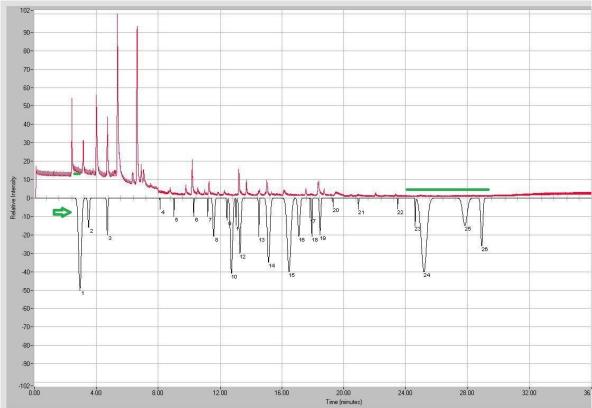



Figure 2. An overlay of aromagram and total ion chromatogram of the **fresh** cat urine exposed to SPME fiber for 50 min at 37 °C. An increase in black color signal height represents an increased intensity of odor, and the chromatogram is in the red color TIC signal. The green zone is showing that trace level concentration of malodors can produce an intense olfactory response detected by the panelist using GC-MS-O.

The trace amount of odorous phenolic compounds had high odor intensity in both fresh and stale urine. The odor intensity of some compounds present in trace amount was substantially higher in the green region in Figure 2; this odor intensity was also recorded in the stale cat urine as revealed by the aromagrams from GC-MS-olfactometer. It is quite evident that time and possibly temperature are factors in releasing odor to the atmosphere from cat urine or feces samples as both time and temperature are drivers to diffuse these VOCs and help to move from a source to a sensory organ.

Table 2: Compounds identified in the headspace of fresh and stale cat urine on short and long exposure to the SPME fiber

| Compounds                | Retention<br>time<br>(min) | Odor<br>description*             | Odor<br>description<br>panelist | % Match with NIST & WILEY7 | CAS#      | Fresh<br>urine, 10<br>min<br>exposure<br>to SPME<br>at 24 °C | Fresh urine,<br>50 min<br>exposure to<br>SPME at 37 °C | Stale urine,<br>50 min<br>exposure to<br>C SPME at 37<br>°C | Ion (% relative intensity)                 |
|--------------------------|----------------------------|----------------------------------|---------------------------------|----------------------------|-----------|--------------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------|
|                          |                            |                                  |                                 |                            |           | MS Det                                                       | ector response                                         | e, peak area                                                |                                            |
|                          |                            |                                  |                                 |                            |           | counts                                                       | (PACs), arbit                                          | rary units                                                  |                                            |
| Carbon disulfide         | 3.09                       |                                  |                                 | 72                         | 75-15-0   |                                                              |                                                        | 52,104                                                      | 76(100), 58(10), 78(8), 44(5)              |
| Acetone                  | 3.13                       | Fruity <sup>b</sup> ,<br>Camphor | Soil, fruity                    | 63/74                      | 67-64-1   | 236,687                                                      | 1,222,443                                              | 2,285,446                                                   | 43(100), 58 (30), 42(8)                    |
| Propanal, 2-methyl-      | 3.38                       | Pungent <sup>a</sup> ,<br>malt   |                                 | 79                         | 78-84-2   |                                                              |                                                        | 66,637                                                      | 41(100). 43(70), 72(70), 40(40)            |
| 2-Butanone               | 4.00                       |                                  | Fruity                          | 68/79                      | 78-93-3   | 632,475                                                      | 4,102,112                                              | 2,778,630                                                   | 43(100), 72(30), 57(8), 42(5)              |
| Butanal, 3 methyl-       | 4.62                       | Cocoaª,<br>almond                | •                               | 93                         | 590-86-3  |                                                              |                                                        | 378,438                                                     | 41(100), 44(80), 43(78), 58(50),<br>39(45) |
| 2-Butanone, 3methyl-     | 4.71                       |                                  | Sweet,<br>chemical              | 72                         | 563-80-4  | 516,109                                                      | 2,132,140                                              | 1,126,561                                                   | 43(100), 86(20), 41(18)                    |
| Silanol, trimethyl-      | 5.08                       |                                  |                                 | 76                         | 1066-40-6 |                                                              |                                                        | 381,502                                                     | 75(100), 45(30), 47(12), 76(5)             |
| 2-Pentanone              | 5.4                        |                                  | grassy                          | 72                         | 107-87-9  | 1,448,327                                                    | <i>7,777,</i> 565                                      | 2,602,556                                                   | 43(100), 86(20), 41(12), 71(10)            |
| 2-Pentanone, 4-methyl    | 6.34                       |                                  |                                 | 86                         | 108-10-1  |                                                              | 518,121                                                | 59,465                                                      | 43(100), 58(40), 42(25),<br>57(25),85(22)  |
| 2-Pentanone, 3 methyl    | 6.64                       |                                  |                                 | 83                         | 565-61-7  | 1,846,692                                                    | 7,433,319                                              | 1,662,796                                                   | 43(100), 57(40), 41(35), 72(30)            |
| Dimethyl, disulfide      | 7.07                       | Oniona, putrid                   |                                 | 93                         | 624-92-0  |                                                              | 684,042                                                |                                                             | 94(100), 45(50), 79(50), 46(25)            |
| Pyrazine                 | 8.04                       | • 1                              |                                 | 83                         | 290-37-9  |                                                              |                                                        | 747,153                                                     | 80(100), 53(45), 58(40), 52(15),<br>51(10) |
| 3-Pentanone 2,2-dimethyl | 8.7                        |                                  | Burnt                           | 58                         | 564-04-5  |                                                              |                                                        | 121,125                                                     | 57(100), 41(22), 114(10), 86(5)            |
| 3-Buten-1-ol, 3-methyl-  | 9.18                       |                                  |                                 | 63                         | 763-32-6  |                                                              |                                                        | 196,830                                                     | 41(100), 56(90), 68(80), 86(25)            |
| 4-Heptanone              | 9.80                       |                                  |                                 | 86                         | 123-19-3  | 172,967                                                      | 730,516                                                |                                                             | 43(100), 71(90), 41(30), 114(20)           |
| 2-Propanol, 1-propoxy    | 10.2                       |                                  |                                 | 50                         | 1569-01-3 |                                                              |                                                        | 2,845,241                                                   | 45(100), 43(95), 41(50), 73(48),<br>42(40) |

| Pyrazine, methyl-          | 10.36 | Popcorna                | Sweet          | 93 | 109-08-0   |         |           | 329,275   | 94(100), 67(50), 40(20), 39(18),                   |
|----------------------------|-------|-------------------------|----------------|----|------------|---------|-----------|-----------|----------------------------------------------------|
| 0.11                       | 10.50 |                         |                | 04 | 110 10 0   | 0.4.400 | 100 505   |           | 53(12)                                             |
| 2-Heptanone                | 10.59 |                         |                | 81 | 110-43-0   | 94,433  | 420,707   | 226.665   | 43(100), 58(75), 71(20), 114(7)                    |
| Prenol                     | 10.63 |                         |                | 74 | 556-82-1   |         |           | 226,665   | 71(100), 41(60), 39(55), 53(50),                   |
| 3-Heptanone, 2-methyl-     | 11.03 |                         |                | 74 | 13019-20-0 | 69,259  | 225,824   | 111,557   | 67(30), 68(30)<br>57(100), 43(75), 85(75), 41(60), |
| 3-1 leptarione, 2-ineuryi- | 11.03 |                         |                | 74 | 13019-20-0 | 09,239  | 223,624   | 111,557   | 71(50)                                             |
| Pyrazine, 2,5-dimethyl     | 12.25 | Roast beafa,            |                | 93 | 123-32-0   |         |           | 2,865,550 | 108(100), 42(70), 39(35), 40(20),                  |
|                            |       | medicine,<br>cocoa      |                |    |            |         |           |           | 81(15)                                             |
| Cyclohexane, ethyl-        | 13.26 |                         |                | 59 | 1678-91-7  | 181,554 | 1,793,164 | 952,512   | 83(100), 55(70),112(45), 41(40),                   |
|                            |       |                         |                |    |            |         |           |           | 56(40)                                             |
| Limonene                   | 13.7  | Camphor,                |                | 97 | 138-86-3   | 142,286 | 1,182,493 |           | 68(100), 93(85), 67(80), 79(45)                    |
|                            |       | lemon,                  |                |    |            |         |           |           |                                                    |
|                            |       | orange, citrus          |                |    |            |         |           |           |                                                    |
| Pyrrole                    | 13.96 |                         |                | 94 | 109-97-7   |         |           | 1,226,880 | 67(100), 39(48), 41(43), 40(31),<br>38(18)         |
| Benzaldehyde               | 15.3  |                         | Sweet, fruity  | 95 | 100-52-7   |         |           | 1,331,202 | 106(100), 105(95), 77(90), 51(45),                 |
|                            |       |                         |                |    |            |         |           |           | 50(30)                                             |
| N-Acetyl pyrrole           | 15.43 |                         |                | 83 | 609-41-6   |         |           | 2,069,470 | 67(100), 109(45), 43(32), 40(20),<br>39(20)        |
| ?                          | 17.60 |                         |                |    |            | 189,683 | 104,228   |           | 57(100), 85(95), 43(85),95(85),                    |
|                            |       |                         |                |    |            |         |           |           | 41(80)                                             |
| Pyrimidine                 | 17.86 |                         |                | 50 | 289-95-2   |         |           | 497,501   | 80(100), 43(50), 123(30), 57(25)                   |
| Acetophenone               | 17.88 | Must, flower,<br>almond | smoke          | 88 | 98-86-2    |         | 104,228   |           | 105(100), 77(80), 51(30), 120(28)                  |
| Methoxy phenyl oxime       | 18.39 |                         |                | 63 |            | 422,536 | 1,904,766 | 636,563   | 133(100), 151(60), 135(22)                         |
| 5-Methyl-2                 | 18.93 |                         | Plastic, burnt | 74 | 13679-70-4 |         |           | 49,628    | 125(100), 126(88), 97(60), 53(20),                 |
| thiophenecarboxaldehyde    |       |                         |                |    |            |         |           |           | 45(20)                                             |
| 3,3-dimethyl-4             | 19.08 |                         |                | 81 |            |         |           | 93,069    | 69(100), 41(88), 134(30), 39(30),                  |
| thiapentan-1ol             |       |                         |                |    |            |         |           |           | 89(20), 56(20)                                     |
| 1,2-Ethanediol, 1-phenyl-  | 19.66 |                         |                | 63 | 93-56-1    |         |           | 107,385   | 79(100), 107(95), 77(80), 51(40)                   |
| Benzyl alcohol             | 20.42 | Sweet, flower           |                | 91 | 100-51-6   |         |           | 560,858   | 79(100), 108(40), 77(32), 94(30)                   |

|                     |       | mothball                  | animal        |     |            |         |         |                                              |
|---------------------|-------|---------------------------|---------------|-----|------------|---------|---------|----------------------------------------------|
| Indole              | 28.38 | Burnt,                    | Smokey,       | 93  | 120-72-9   | 60,593  | 155,847 | 117(100), 90(40), 89(39), 45(20)             |
| p-Acetylaniline     | 25.9  |                           | Foul, urinous | 94  | 99-92-3    |         | 102,642 | 120(100), 135(60), 92(48), 65(35),<br>43(10) |
| hydroxytoluene      |       |                           |               |     |            |         |         |                                              |
| acid<br>Butylated   | 25.61 |                           |               | 82  | 128-37-0   | 41,207  |         | 41(40)<br>205(100), 57(48), 220(20), 41(20)  |
| 4-Hydroxy-2nonenoic | 24.68 | Minty                     |               | 63  | 21963-26-8 |         | 53,921  | 84(100), 55(80), 43(50), 125(40),            |
| •                   |       | flower                    |               |     |            |         |         | 41(50), 149(50)                              |
| Jasmone             | 24.13 | smoke<br>Jasmine,         |               | 96  | 488-10-8   |         | 358,180 | 79(100), 164(80), 91(70), 110(60),           |
| p-Cresol            | 23.37 | Medicine,                 | Smokey        | 93  | 106-44-5   | 228,817 | 651,731 | 107(100), 108(80), 77(20), 39(20)            |
| Phenol              | 22.12 | Phenol,<br>Plastic, rubbe | <b>.</b>      | 91  | 108-95-2   |         | 21,533  | 94(100), 66(30), 39(25), 65(20)              |
| 70.                 | 22.12 | TO 1                      | butter        | 0.4 | 100.07.0   |         | 04 700  | 0.4/4.00\ /.//0.0\ 0.0/0.0\ /.//0.0\         |
| Dimethyl sulfone    | 20.46 | Sulfur, burnt             | Smoke,        | 71  | 67-71-0    | 158,852 |         | 79(100), 94(45), 45(20), 108(15)             |

<sup>\* [15] &</sup>amp; [16]

# 3.3. Temporal effect on volatile organic compounds in cat feces:

Several volatile fatty acids (VFAs) and phenolic compounds contributed to overall cat feces odors. However, the phenolics appreciably contributed to the overall feces odor. The aged feces (1week old) showed a significant drop in the number of emitted compounds in the headspace (Table 3), and so the aging process was not further carried out. The VFAs dominated in the cat feces were isobutyric, propanoic, butanoic, hexanoic, and acetic. Among the phenolics, phenol, p-cresol, and guaiacol, and the aromatic heterocyclic 1H-indole and 3-methyl indole were the contributors to the overall odor. The stale cat feces had trimethylamine, a rotten fish-like odor that chemical was not identified by GC-MS in fresh feces sample. However, a fish-like foul odor was recorded by the odor panelist (Figures 3 and 4). The observation supports the fact that a trace level concentration can be sensed by living sensory organs.

Table 3: Compounds identified in the headspace of fresh and stale cat feces.

| Compounds                                  | Retention | Odor                                        | Description        | %       | CAS#       | Fresh     | Stale Feces**  | Stale       | Ion (% relative intensity)                         |
|--------------------------------------------|-----------|---------------------------------------------|--------------------|---------|------------|-----------|----------------|-------------|----------------------------------------------------|
|                                            | time      | description                                 | by panelist        | Match   |            | Feces*    | short          | Feces^^     |                                                    |
|                                            | (min)     | published                                   |                    | library |            |           | equilibrium    | long        |                                                    |
|                                            |           | work*                                       |                    |         |            |           |                | equilibrium | ı                                                  |
|                                            |           |                                             |                    |         |            |           | ctor response, |             |                                                    |
|                                            |           |                                             |                    |         |            | counts (  | PACs), arbitra |             |                                                    |
| Trimethyl amine                            | 2.76      | Fisha                                       | Foul, fishy        | 83      | 75-50-3    |           | 1,395,179      | 1,237,586   | 58(100), 59(40), 42(32), 57(5)                     |
| Acetone                                    | 3.14      | Fruity <sup>b</sup> ,<br>Camphor            |                    | 63      | 67-64-1    | 2,036,156 |                |             | 43(100), 58(30), 42(5)                             |
| Acetic acid, methyl ester                  | 3.28      |                                             | Chemical,<br>sweet | 80      | 79-20-9    | 1,774,983 |                |             | 43(100), 74(30), 59(10)                            |
| 2-Butanone                                 | 4.01      |                                             |                    | 70      | 78-93-3    | 4,100,865 |                |             | 43(100), 72(20), 57(5),42(5)                       |
| Methyl propionate                          | 4.26      |                                             | butter             | 88      | 554-12-1   | 4,300,327 |                |             | 57(100), 88(40), 59(30), 45(5)                     |
| Butanal, 3-methyl-                         | 4.62      | Fruity <sup>a</sup> ,<br>nutty              |                    | 68      | 590-86-3   |           |                | 172,874     | 43(100), 39(62), 44(60), 58(35),<br>71(20), 86(20) |
| Butanal, 2-methyl-                         | 4.70      |                                             |                    | 59      | 96-17-3    |           |                | 64,220      | 41(100), 57(75), 58(60)                            |
| Butanoic acid, methyl ester                | 4.90      |                                             |                    | 74      | 623-42-7   | 474,339   |                |             | 43(100), 71(55),87(40), 41(40), 59(30)             |
| Propanoic acid, ethyl ester                | 5.49      |                                             |                    | 85      | 105-37-3   | 2,831,917 |                |             | 57(100), 75(18), 74(15), 102(15),<br>45(10)        |
| n-Propyl acetate                           | 5.66      |                                             |                    | 76      | 109-60-4   | 1,738,458 |                |             | 43(100), 61(40), 73(20), 42(10), 41(8)             |
| Butanoic acid, methyl ester                | 5.88      |                                             |                    | 95      | 623-42-7   | 8,965,644 |                |             | 74(100), 43(90), 71(70), 41(40),<br>87(30)         |
| Propanoic acid, 2-<br>methyl-, ethyl ester | 6.3       | Citrus <sup>b</sup> ,<br>fruity,<br>buttery | Herbaceous         | 81      | 97-62-1    | 348,148   |                |             | 43(100), 71(40), 41(30), 116(20)                   |
| 2-Pentanone, 3-methyl-                     | - 6.6     | •                                           |                    | 63      | 565-61-7   | 121,781   |                |             | 43(100), 57(40), 41(35), 72(30)                    |
| 3-Octene, (E)-                             | 6.7       |                                             | Mint               | 75      | 14919-01-8 | 127,564   |                |             | 41(100), 55(98), 70(40), 112(40)                   |

| Butanoic acid, 2-                         | 6.96  |                                                      |                    | 86 | 868-57-5  | 439,900   | 88(100), 57(80), 41(50), 85(25)             |
|-------------------------------------------|-------|------------------------------------------------------|--------------------|----|-----------|-----------|---------------------------------------------|
| methyl-, methyl ester                     |       |                                                      |                    |    |           |           |                                             |
| Methyl isovalerate                        | 7.04  |                                                      |                    | 88 | 556-24-1  | 1,341,790 | 74(100), 43(40), 59(35), 85(30),<br>41(25)  |
| 1-Butanol                                 | 7.13  |                                                      |                    | 72 | 71-36-3   | 612,423   | 56(100), 41(70), 43(40), 42(30),<br>55(20)  |
| Butanoic acid, ethyl<br>ester             | 7.62  |                                                      |                    | 95 | 105-54-4  | 6,640,131 | 71(100), 43(80), 88(55), 41(30),<br>60(20)  |
| Propanoic acid, propyl ester              | 7.86  |                                                      |                    | 90 | 106-36-5  | 9,397,738 | 57(100), 75(50), 43(20), 87(10)             |
| Acetic acid, butyl ester                  | 8.16  |                                                      |                    | 72 | 123-86-4  | 416,938   | 43(100), 56(40), 73(20), 41(19),<br>61(15)  |
| Methyl valerate                           | 8.48  |                                                      | Foul               | 93 | 624-24-8  | 4,637,137 | 74(100), 85(38), 57(35), 43(30),<br>41(30)  |
| Butanoic acid, 2-<br>methyl-, ethyl ester | 8.77  |                                                      | Floral             | 93 | 7452-79-1 | 498,859   | 57100), 102(70), 41(40), 85(35),<br>74(20)  |
| Butanoic acid, 3-<br>methyl-, ethyl ester | 8.96  |                                                      |                    | 85 | 108-64-5  | 242,635   | 43(100), 88(68), 41(60), 71(50),<br>85(45)  |
| 1-Pentanol                                | 9.46  |                                                      |                    | 76 | 71-41-0   | 1,917,299 | 42(100), 55(85), 41(70), 70(60)             |
| Acetoin                                   | 9.76  |                                                      |                    | 63 | 513-86-0  | 584,798   | 43(100), 45(60), 70(15), 55(10), 88(8)      |
| 2-Propanol, 1-propoxy-                    | 10.19 |                                                      |                    | 83 | 1569-01-3 | 125,926   | 45(100), 43(90), 73(42), 41(30),<br>59(28)  |
| Butanoic acid , propyl ester              | 10.27 |                                                      | Chemical,<br>sweet | 95 | 105-66-8  | 7,807,628 | 71(100), 43(70), 89(60), 41(30),<br>42(20)  |
| Pentanoic acid, ethyl<br>ester            | 10.40 |                                                      |                    | 95 | 539-82-2  | 3,496,629 | 88(100), 85(95), 57(70), 60(40),<br>101(30) |
| 2-Heptanone                               | 10.52 | Soap <sup>a,b</sup> ,<br>Fruity,<br>sweet,<br>cheese |                    | 79 | 110-43-0  | 55,224    | 43(100), 58(75), 71(10), 114(7)             |
| Propanoic acid, butyl ester               | 10.6  | - 3-0-2                                              |                    | 76 | 590-01-2  | 1,373,814 | 57(100), 56(35), 75(30), 41(20)             |

| Heptanal                                   | 10.8  | Citrus <sup>a</sup> , fat,<br>rancid               |                                  | 83 | 111-71-7   | 68,145     |                        | 70(100), 44(97), 41(82), 43(75),<br>55(60)  |
|--------------------------------------------|-------|----------------------------------------------------|----------------------------------|----|------------|------------|------------------------|---------------------------------------------|
| Acetic acid, pentyl ester                  | 10.9  |                                                    |                                  | 79 | 628-63-7   | 246,282    | 88,580                 | 43(100), 70(40), 61(25), 55(22),<br>42(20)  |
| Butanoic acid, 2-<br>methyl-, propyl ester | 11.42 |                                                    |                                  | 70 | 37064-20-3 | 836,785    |                        | 57(100), 103(80), 85(85), 41(60),<br>42(45) |
| Butanoic acid, 3-<br>methyl-, propyl ester | 11.6  | Bitter <sup>b</sup> ,<br>sweet,<br>apple<br>fruity |                                  | 90 | 557-00-6   | 3,074,917  |                        | 85(100), 103(68), 41(60), 43(59),<br>57(58) |
| 1-Hexanol                                  | 11.9  | Resin <sup>a</sup> ,<br>flower,<br>green           | Floral,<br>banana                | 72 | 111-27-3   | 812,614    |                        | 56(100), 43(62), 55(50), 41(48),<br>42(40)  |
| Pentanoic acid, 4-<br>methyl-, ethyl ester | 12.11 | O                                                  |                                  | 56 | 25415-67-2 | 61,216     |                        | 88(100), 101(70), 43(60), 99(55),<br>55(35) |
| Propanoic acid, pentyl ester               | 12.21 |                                                    |                                  | 79 | 624-54-4   | 528,515    |                        | 57(100), 70(80), 43(45), 55(40),<br>41(25)  |
| Pyrazine, 2,6-dimethyl-                    | 12.39 | Cocoaª,<br>meat                                    |                                  | 88 | 108-50-9   | 490,854    | 49,044                 | 108(100), 42(55), 39(35), 40(30),           |
| 2-Heptanone 5-methyl-                      | 12.52 |                                                    | Herbaceous,<br>grassy,<br>earthy | 81 | 18217-12-4 | 127,769    |                        | 43(100), 58(40), 71(38), 70(25),<br>41(20)  |
| Acetic acid                                | 12.6  | soura                                              | sour, nutty                      | 96 | 64-19-7    | 33,638,253 | 159,486,602 74,310,817 | 43(100), 45(88), 60(60)                     |
| Pentanoic acid, propyl ester               | 12.95 |                                                    |                                  | 68 | 141-06-0   | 4,421,968  |                        | 85(100), 103(75), 57(70), 41(60)            |
| Propanoic acid, pentyl ester               | 13.25 |                                                    | Grassy, soil                     | 63 | 624-54-4   | 741,201    |                        | 57(100), 70(40), 75(40), 43(40),<br>55(25)  |
| 5-Hepten-2-one-6-<br>methyl-               | 13.52 |                                                    | Old cheese                       | 95 | 110-93-0   | 228,324    |                        | 43(100), 41(60), 108(40), 69(40),<br>39(28) |
| 3-Octanol                                  | 14.08 |                                                    |                                  | 72 | 589-98-0   | 171,440    |                        | 59(100), 83(60), 55(60), 43(55),<br>44(48)  |
| Butanoic acid, 3-<br>methyl-, butyl ester  | 14.16 |                                                    |                                  | 63 | 109-19-3   | 157,326    |                        | 85(100), 57(85), 41(80), 103(72),<br>56(70) |

| Propanoic acid                       | 14.31 | Pungent <sup>a</sup> ,<br>rancid           | Unpleasant,<br>butter              | 93                   | 79-09-4   | 54,686,812  | 9,605,716   | 66,087,807 | 74(100), 45(72), 73(60), 57(40)                     |
|--------------------------------------|-------|--------------------------------------------|------------------------------------|----------------------|-----------|-------------|-------------|------------|-----------------------------------------------------|
| Propanoic acid, 2-<br>methyl-        | 14.93 |                                            | Medicinal                          | 85                   | 79-31-2   | 11,986,638  | 13,857,212  | 16,723,011 | 43(100), 41(55), 73(42), 39(25),<br>88(10)          |
| Benzaldehyde                         | 15.30 | almond <sup>b</sup>                        | Butter                             | 93                   | 100-52-7  | 2,215,240   |             |            | 106(100), 105(95), 77(95), 51(45),<br>50(25)        |
| Butanoic acid                        | 16.04 |                                            |                                    | 95                   | 107-92-6  | 113,602,470 | 123,858,474 | 85,788,896 | 60(100), 73(40), 41(22), 40(20)                     |
| Butanoic acid, 3-<br>methyl-         | 16.84 |                                            | Sweet,<br>fruity                   | 83                   | 503-74-2  | 76,585,646  | 61,915,734  | 38,769,616 | 60(100), 41(60), 74(42), 87(30)                     |
| 2-Methyl-4-decanone                  | 17.60 |                                            |                                    | 70<br>(NIST<br>only) | 6628-25-7 | 116,081     |             |            | 57(100), 85(95), 41(85), 95(85),<br>43(80), 113(30) |
| Acetophenone                         | 17.88 | Must <sup>a,b</sup> ,<br>flower,<br>almond | Smokey                             | 88                   | 98-86-2   | 359,940     |             |            | 105(100), 77(80), 120(30), 51(28)                   |
| Pentanoic acid                       | 18.02 |                                            |                                    | 76                   | 109-52-4  | 108,458,001 | 52,809,697  | 24,373,275 | 60(100), 73(45), 41(20), 45(18)                     |
| Pentanoic acid, 4-<br>methyl-        | 19.13 |                                            | Butter,<br>basmati rice,<br>butter | 85                   | 646-07-1  | 3,286,558   |             |            | 57(100), 60(80), 41(75), 73(75),<br>55(62)          |
| Hexanoic acid                        | 19.81 |                                            |                                    | 83                   | 142-62-1  | 3,822,922   | 325,897     |            | 60(100), 73(55), 41(32), 87(12)                     |
| o-Guaiacol                           | 20.42 | Smoke <sup>a</sup> ,<br>medicine           | Woody,<br>wild                     | 95                   | 90-05-1   | 4,755,984   | 283,513     |            | 109(100), 124(90), 81(70), 53(20)                   |
| Benzeneethanol                       | 21.24 |                                            |                                    | 91                   | 60-12-8   | 384,960     |             |            | 91(100), 92(50), 122(25), 65(20)                    |
| Benzene propanoic acid, methyl ester | 21.93 |                                            |                                    | 93                   | 103-25-3  | 210,723     |             |            | 104(100), 91(60), 164(30), 105(30)                  |
| Phenol                               | 22.10 | phenola                                    | Medicinal                          | 96                   | 108-95-2  | 10,114,684  | 2,023,698   | 315,371    | 94(100), 66(35), 65(25), 39(25)                     |
| 2-Dodecanone                         | 22.5  |                                            |                                    | 85                   | 6175-49-1 | 77,879      |             |            | 58(100), 43(90), 71(35), 59(30),<br>41(22)          |
| Benzenepropanoic acid, ethyl ester   | 23.01 |                                            |                                    | 85                   | 2021-28-5 | 148,940     |             |            | 104(100), 91(45), 105(30), 107(28),<br>178(20)      |
| p-Cresol                             | 23.30 | Smoke <sup>a</sup> ,<br>medicine           | Medicinal                          | 93                   | 106-44-5  | 39,957,137  | 3,947,249   | 1,376,506  | 107(100), 108(80), 77(20), 39(20)                   |

| Phenol, 4-ethyl-  | 24.80 | Musta  | Foul,      | 94  | 123-07-9 | 1,021,035  | 103,774 |         | 107(100), 122(30), 77(20),106(8)            |
|-------------------|-------|--------|------------|-----|----------|------------|---------|---------|---------------------------------------------|
| Butylated         | 25.10 | _      | unpleasant | 96  | 128-37-0 | 182,612    | 52,706  |         | 205(100), 220(25), 57(15), 204(15)          |
| hydroxytoluene    |       |        |            |     |          |            |         |         |                                             |
| Indole            | 28.38 | Burnta | Medicinal, | 96  | 120-72-9 | 69,332,928 | 195,879 | 810,599 | 117(100), 90(40), 89(39), 45(20)            |
| D' d IDI d I c    | 20.00 |        | unpleasant | 0.4 | 04.66.0  | 01.50      |         |         | 140/100) 455/00) 145/00) 150/10)            |
| Diethyl Phthalate | 29.08 | -      |            | 94  | 84-66-2  | 81,563     |         |         | 149(100), 177(23), 117(20), 150(10), 176(7) |
| Indole, 3-methyl- | 29.2  | Fecala | Urinous,   | 71  | 83-34-1  | 78,683     |         |         | 130(100), 131(50), 149(20), 117(15),        |
|                   |       |        | animal     |     |          | •          |         |         | 77(10)                                      |

<sup>\*50</sup> min exposure to SPME at 37 °C; \*\*15 min equilibrium & 50 min exposure to SPME at 37 °C; ^^24 hrs equilibrium and 50 min exposure to SPME at 37 °C; odor verified with a Flavornet and b Good Scent Company \* [15] & [16]

The fresh feces on 50 minutes exposure to SPME fiber caused several ketones, aldehydes, esters, acids phenols to accumulate to SPME fiber. Among these identified chemicals, most of the high molecular compounds have a smoke, medicinal, animal, and foul smell, whereas the low molecular weight chemicals are more of a chemical, sweet, fruity, and grassy or earthy smell. From this, it is more obvious that the high molecular weight phenolic and N aromatic heterocyclic compounds are the contributors to the overall smell of the fresh feces.

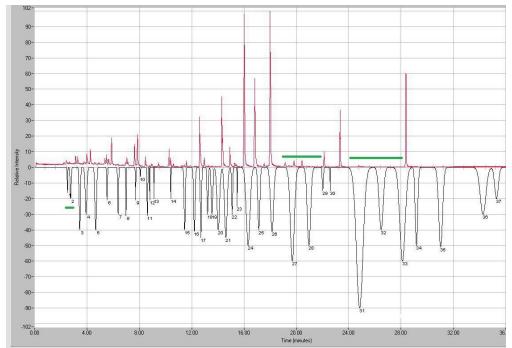



Figure 3. An overlay of aromagram and total ion chromatogram of the **fresh** cat feces exposed to SPME fiber for 50 min at 37 °C. An increase in black color signal height represents an increased intensity of odor, and the chromatogram is in the red color TIC signal. The green zone is showing that trace level concentration of malodors can produce an intense olfactory response detected by the panelist using GC-MS-O.

The compounds with high molar masses that appeared after the retention time of 20 minutes or higher had intense malodors. It is interesting to mention that for stale feces, a short equilibration time of 10 min resulted in missing many low molecular weight compounds, and several high molecular weight compounds had high PAC like p-cresol, phenol, and guaiacol than long equilibration time of 24 h. In stale feces, the primary contributor like 3-methyl indole was missing, and phenolics had lower PAC (4-ethyl phenol, p-cresol, and phenol) than phenolics in fresh feces headspace. The odor intensity of the many chemicals, including phenolic compounds, were similar in the stale cat feces, as revealed by the GC-MS-olfactometer. The aromagrams of feces samples show that the presence of odorants even in the below detection limit concentration for GC-MS can cause a considerable odor impact (green arrow in Fig 3 & 4) problem. Aromagram also revealed that compounds that not in the GC-MS data can contribute to overall odor, thus, trigger the human nose to react to the odorants.

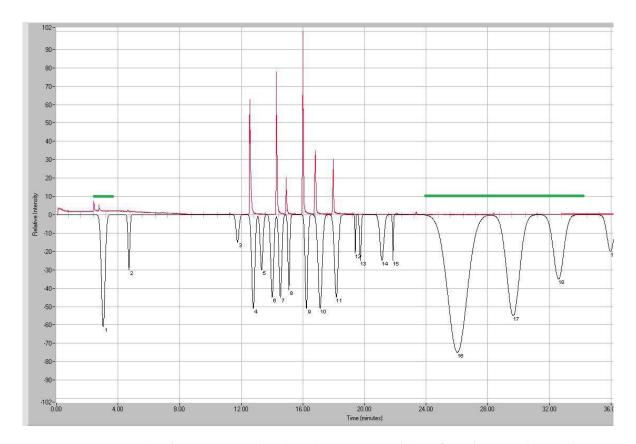



Figure 4: An overlay of aromagram and total ion chromatogram of the **stale** cat feces, equilibrated for 24 h and exposed to SPME fiber for 50 min at 37 °C. An increase in black color signal height represents an increased intensity of odor, and the chromatogram is in the red color TIC signal. The green zone is showing that trace level concentration of malodors can produce an intense olfactory response detected by the panelist using GC-MS-O.

#### 4. Discussion

The focus of this study is to report the malodorous VOCs in domestic cat urine and feces and the influence of aging of urine and feces on the emitted VOCs. Domestic cats spray urine to mark their territory, and the odor is unpleasant to many people. The concentration of volatile compounds can differ by age and sex of the species [10]. This study reported several VOCs emitted from fresh cat urine and feces that were not reported in previous studies. The precursor of many sulfur-containing compounds, felinine, was not identified in this research [6]. As reported by Miyazaki et al., (2018), the presence of fishy odor in the headspace of domestic cat anal sac secretions suggests that cat urine can produce distinct fishy odorous trimethylamine is also present in our findings of the distinctive fishy odor in the fresh and stale feces but not in fresh or aged urine headspace [17]. Feral male cat sprays urine more often than females [18] and uses unburied feces as scent-marking [19], and the released volatiles in both cases could be offensive to humans; the odor gets even worse with time although the VOC concentrations get into trace level in feces sample with time (Fig 4). This current study recorded the odor description of the emitted VOCs that were never reported before for a cat urine and feces study. In addition to phenolics as a major odor contributor, indoles are prominent in stale urine, and organic acids and indoles are prominent in fresh urine odor.

The use of SPME sampling techniques has allowed easy pre-concentrating of sample preparation without the use of a solvent or derivatization of the VOCs responsible for the nuisance to human sensory organs. The volatile compound types and the relative PACs emitted by urine and feces significantly changed over time, even under laboratory conditions. The total number of compounds increased for the aged urine sample and decreased for the aged feces samples. Many esters and acidic VOCs were dropped in number for the aged feces, either degraded to other compounds by microbial community present in the sample, oxidized, or lost to the atmosphere during the aging process [11].

A number of phenol, alcohol, aldehyde, amines, s-compounds, ketones, and acids reported in this study were emitted from the urine of lion, tiger, and domestic cat species as reported in previous studies (Table 4) [4,8,20]. Many VOCs emitted from the cat feces samples, as reported in this study, were also reported to be emitted from swine manure samples [21]. In addition, a few VOCs extracted by SPME and reported in this study are found to be common in the SPME extraction from cold-hardy grapes samples [22]. Characteristic odor compounds 2,5 dimethyl pyrazine from the lion urine indicates the evolutionary similarities between animals. These observations also indicate the fact that SPME in a combination of GC-MS-O for the headspace extraction is better than only GC-MS. Overall, SPME reduces the sampling time for volatile or semivolatile compound determination than a traditional sampling technique [23], and this technology can be developed more to the future assessment of quantitative analysis of these odorous constituents characteristic to the overall smell of urine or feces sample.

Table 4: Some literature recorded VOCs emitted from urine, feces, and fruits of different biological species common finding in the current study

| Compounds        | CAS#             | Lion    | Tiger     | Cat urine | Swine      | Grapes     | Current |
|------------------|------------------|---------|-----------|-----------|------------|------------|---------|
|                  |                  | urine   | urine     | (Miyazaki | manure     | (Rice et   | study   |
|                  |                  | (Soso   | (Soso     | 2006) [4] | (Yin-      | al., 2019) |         |
|                  |                  | &Koziel | &Koziel   |           | cheyung et | [22]       |         |
|                  |                  | 2017)   | 2016) [8] |           | al., 2006) |            |         |
|                  |                  | [20]    |           |           | [21]       |            |         |
| Phenol           | 108-95-2         | X       | Χ         |           | X          |            | X       |
| p-Cresol         | 106-44-5         | X       | X         | X         | X          |            | X       |
| Phenol,4-ethyl-  | 123-07-9         |         |           |           | X          |            | X       |
| 3-Octanol        | 589-98-0         |         |           |           | X          |            | X       |
| 1-Butanol        | 71-36-3          |         | X         |           | X          | Χ          | Χ       |
| 1-Hexanol        | 111-27-3         |         | X         |           | X          | Χ          | Χ       |
| Benzyl alcohol   | 100-51-6         |         |           |           |            | Χ          | Χ       |
| 3-Buten-1-ol, 3- | 763-32-6         |         |           | X         |            |            | Χ       |
| methyl-          |                  |         |           |           |            |            |         |
| Benzeneethanol   | 60-12-8          | X       | Χ         |           | X          |            | Χ       |
| Dimethyl         | 624-92-0         | X       |           |           | X          |            | X       |
| disulfide        |                  |         |           |           |            |            |         |
| Dimethyl sulfone | 67-71-0          |         |           | X         |            |            | Χ       |
| Benzaldehyde     | 100-52-7         | Χ       | Χ         | X         | X          | Χ          | Χ       |
| Butanal, 3-      | 590-86-3         | Χ       | Χ         |           |            |            | Χ       |
| methyl-          |                  |         |           |           |            |            |         |
| Isobutyraldehyde | 78-84-2          |         |           |           |            | Χ          | Χ       |
| Trimethyl amine  | 75-50-3          | Χ       | Χ         |           |            |            | Χ       |
| 2-Dodecanone     | 6175-49-1        |         |           |           | X          |            | Χ       |
| 2-Heptanone      | 110-43-0         |         | Χ         |           | Χ          |            | Χ       |
| 2-Pentanone      | 107-87-9         | Χ       |           |           |            |            | Χ       |
| 3-methyl 2-      | 565-61-7         |         |           |           | Χ          |            | Χ       |
| pentanone        |                  |         |           |           |            |            |         |
| 2-Butanone       | 78-93-3          | X       | Χ         | Χ         | X          | Χ          | Χ       |
| Acetone          | 67-64-1          | Χ       | Χ         | Χ         | X          | Χ          | Χ       |
| 5-Hepten-2-one,  | 110-93-0         |         |           |           | Х          |            | Χ       |
| 6-methyl-        |                  |         |           |           |            |            |         |
| Acetophenone     | 98-86-2          |         |           |           | X          | Χ          | Χ       |
| Jasmone          | 488-10-8         |         |           | Χ         | X          |            | Χ       |
| Indole           | 120-72-9         | Χ       | Χ         |           | X          |            | X       |
| 3-methylindole   | 95-20-5          | -       | -         |           | X          |            | X       |
|                  | , c <b>=</b> c c |         |           |           |            |            |         |

|                    | 100 =0 0 | 3.4 | 37 |   |   |   | 1/ |
|--------------------|----------|-----|----|---|---|---|----|
| Pyrazine, 2,6      | 108-50-9 | X   | X  |   |   |   | X  |
| dimethyl -         |          |     |    |   |   |   |    |
| Acetic acid        | 64-19-7  |     |    | X | X | X | Χ  |
| Butanoic acid      | 107-92-6 |     |    | X | X |   | X  |
| Pentanoic acid, 2- | 79-31-2  |     |    |   | X |   | X  |
| methyl-            |          |     |    |   |   |   |    |
| Butanoic acid, 3-  | 503-74-2 |     | Χ  |   | X |   | Χ  |
| methyl-            |          |     |    |   |   |   |    |
| Pentanoic acid     | 109-52-4 |     |    |   | X | X | Χ  |
| Propanoic acid     | 79-09-4  |     |    |   | X |   | Χ  |
| Hexanoic acid      | 142-62-1 |     |    |   |   | X | Χ  |
| Butanoic acid, 3-  | 503-74-2 |     |    | X |   |   | Χ  |
| methyl             |          |     |    |   |   |   |    |
| Carbon disulfide   | 75-15-0  |     |    |   |   | X | Χ  |
| Butanoic acid,     | 105-54-4 |     |    |   |   | Χ | Χ  |
| ethyl ester        |          |     |    |   |   |   |    |

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1,

Table S1: Aroma description as recorded by the panelist for fresh cat urine 10 min extraction,

Table S2: Aroma description as recorded by the panelist for fresh cat urine 50 min extraction,

Table S3: Aroma description as recorded by the panelist for stale cat urine 50 min extraction,

Table S4: Aroma description as recorded by the panelist for fresh feces 50 min extraction,

Table S5: Aroma description as recorded by the panelist for stale feces 15 min equilibrium, 50 min extraction,

Table S6: Aroma description as recorded by the panelist for stale cat feces, 24 h equilibrium and 50 min extraction

**Author Contributions:** conceptualization, J.K and J.L.; methodology, J.K., J.L. and C.B.; formal analysis, C.B.; investigation, C.B.; resources, J.K.; data curation, C.B.; writing—original draft preparation, C.B.; writing—review and editing, J.K., and J.L.; visualization, C.B..; supervision, J.K.; project administration, J.K.; funding acquisition, J.K."

**Funding:** This research was funded by Nestlé Purina Pet Care Company. Partial support came from the Iowa Agriculture and Home Economics Experiment Station, Ames, Iowa. Project no. IOW05556 (Future Challenges in Animal Production Systems: Seeking Solutions through Focused Facilitation) sponsored by Hatch Act and State of Iowa funds.

**Acknowledgments:** The authors would like to thank Baitong Chen, Jisoo Wi, Myeongseong Lee, and Zhanibek Meiirkhanuly for technical support in the laboratory.

**Conflicts of Interest:** The authors declare no conflict of interest.

**Data Availability Statement:** The original contributions presented in the study are included in the article and the Supplementary Materials; further inquiries can be directed to the corresponding author.

## Appendix A

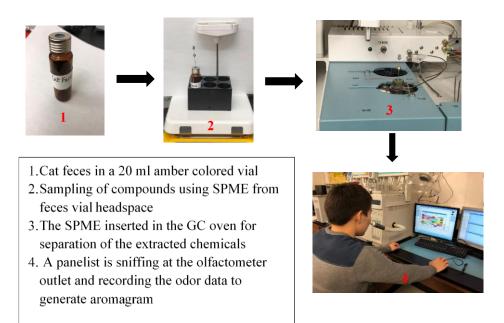



Figure A1: Schematic representation of the cat urine, feces and soiled litter sample preparation and analysis

## References

- Morris, D. Cat World: A Feline Encyclopedia. 1997, Penguin Reference, ISBN 0670100064, New York, NY, USA.
- American Veterinary Medical Association. U.S. pet ownership statistics. Available online: https://www.avma.org/resources-tools/reports-statistics/us-pet-ownership-statistics (accessed on 31 December 2020)
- 3. Westall, R.G. The amino acids and other ampholytes of urine 2. The isolation of a new Sulphur-containing amino acid from cat urine. *Biochem. J.* **1953**, *55*(2), 244-248.
- 4. Miyazaki, M.; Yamashita. T.; Suzuki. Y.; Saito. Y.; Soeta. S.; Taira. H.; Suzuki. A. A major urinary protein of the domestic cat regulates the production of Felinine, a putative pheromone precursor. *Chem. & Biol.* **2006**, 13, 1071-1079.
- Rutherfurd, K.J.; Rutherfurd. S.M.; Moughan. P.J.; Hendricks. W.H. Isolation and characterization of a felinine containing peptide from the blood of the domestic cat (*Felis, catus*). *J. Biol. Chem.* 2002, 277, 114-119.
- 6. Hendriks, W.H.; Rutherfurd-Markwick. K.J.; Weidgraaf. K.; Ugarte. C.; Rogers. R. Testosterone increases urinary free felinine, N-acetylfelinine and methylbutanolglutathione excretion in cats (Felis catus). J. *Animal Physiology and Animal Nutrition* **2008**, 92, 53-62.
- 7. Miyazaki, M.; Miyazaki. T.; Nishimura. T.; Hojo. W.; Yamashita. T. The chemical basis of species, sex and individual recognition using feces in the domestic cat. *J. Chem. Eco.* **2018**, 44, 364-373.
- 8. Soso, S.B.; Koziel, J.A. Analysis of odorants in marking fluid of Siberian tiger (*Panthera tigris altaica*) using simultaneous sensory and chemical analysis with headspace solid-phase microextraction and multidimensional gas chromatography-mass spectrometry-olfactometry. *Molecules* **2016**, *21*, 834-856. doi:10.3390/molecules21070834
- 9. Miyazaki, M.; Nishimura, T.; Hojo, W.; Miyazaki, T.; Laine, R.A.; Yamashita, T. Potential use of domestic cat (Felis catus0 urinary extracts for manipulating the behavior of free-roaming cats and wild small fields. *Appl. Anim. Behav. Sci.* **2017**, *196*, 52-60.
- 10. Uetake, K.; Abumi. T; Suzuki. T.; Hisamatsu. S.; Fukuda. M; Volatile faecal components related to sex and age in domestic cats (*Felis catus*). *J. App. Animal Res.* **2017**, *46*, 766-770.

- 11. Suzuki, C.; Miyazaki. T.; Yamashita. T.; Miyazaki. M.; GC X GC-MS-based volatile profiling of male domestic cat urine and olfactory abilities of cats to discriminate temporal changes and individual differences in urine. *J. Chem. Eco.* **2019**, 45, 579-587.
- 12. Starkemann, C.; Niclass, Y.; Cayeux, I.; Brauchli, R; Gagnon, A. Odorant volatile sulfur compounds in cat urine:occurrence of (+/-)-3,7-dimethyloct-3-sulfanyl-6-en-1-ol and its cycteine conjugate precursor. *Flavour and Frag. J.* **2014**, *30*(1), 91-100.
- 13. Funaba, M.; Uchiyama, A.; Takahashi, K.; Kanako, M.; Yamamoto, H.; Namikawa, K.; Iriki, T.; Hatano, Y.; Abe, M. Evaluation of effects of dietary carbohydrate on formation of struvite crystals in urine and macromineral balance in clinically normal cats. *Am J Vet Res.* **2004**, *65*(2), 138-142.
- 14. Bojko, B.; Reyes-Garces, N.; Bessonneau. V.; Gorynski. K.; Mousavi. F.; Silva E.A.S.; Pawliszyn. J.; Solid-phase microextraction in metabolomics. *Trends in Anal. Chem.* **2014**, *61*, 168-180.
- 15. Flavornet. Available online: http://flavornet.org/flavornet.html (accessed on 31 December 2020).
- 16. Good Scent Company. Available online: http://www.thegoodscentscompany.com/search.html (accessed on 31 December 2020)
- 17. Miyazaki, T.; Nishimura, T.; Yamashita, T; Miyazaki, M. Olfactory discrimination of anal sac secretions in the domestic cat and the chemical profiles of the volatile compounds. *J. Ethology.* **2018**, 36(1), 99-105.
- 18. Natoli, E. Behavioural responses of urban feral cats to different types of urine marks. *Behaviour* **1985**, 94, 234-243
- 19. Ishida, Y.; Shimizu, M. Influence of social rank 0n defecating behaviours in feral cats. *J. Ethol.* **1998**, *16*, 15-21. doi:10.1007/BF02896349
- 20. Soso, S.B.; Koziel, J.A. Characterizing the scent and chemical composition of *Panther leo* marking fluid using solid-phase microextraction and multidimensional gas chromatography-mass spectrometry-olfactometry. *Scientific Reports* **2017**, *7*, 5137-5152.
- 21. Lo, Y.C.; Koziel, J.A.; Cai, L.; Hoff, S.J.; Jenks, W.S.; Xin, H. Simultaneous chemical and sensory characterization of volatile organic compounds and semi-volatile compounds emitted from swine manure using solid phase microextraction and multidimensional gas chromatography-mass spectrometry-olfactometry. *J. Environ. Qual.* 2008, 37(2), 521-534.
- 22. Rice, S.; Maurer, D.L.; Fennell, A.; Dharmadhikari, M.; Koziel, J.A. Evaluation of volatile metabolites emitted in-vivo from cold-hardy grapes during ripening using SPME and GC-MS: A proof of concept. *Molecules* **2019**, 24(3), 536 doi: 10.3390/molecules24030536
- 23. Risticevic, S.; Chen, Y.; Kudlejova, L.; Vatinno, R.; Baltensperger, B.; Stuff, J.R.; Hein, D.; Pawliszyn, J. Protocol for the development of automated high-throughput SPME-GC methods for the analysis of volatile and semivolatile constituents in wine samples. *Nature Protocols* **2010**, *5*, 162-176 https://doi.org/10.1038/nprot.2009.181