Preprint
Article

Physicochemical Interactions in Systems C.I. Direct Yellow 50 – Weakly Basic Resins: Kinetic, Equilibrium, and Auxiliaries Addition Aspects

Altmetrics

Downloads

249

Views

295

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

01 January 2021

Posted:

04 January 2021

You are already at the latest version

Alerts
Abstract
Intensive development of many industries, including textile, paper or plastic, which consume large amounts of water and generate huge amounts of wastewaters containing toxic dyes, contribute to pollution of the aquatic environment. Among many known methods of wastewater treatment, adsorption techniques are considered as the most effective. In the present study the weakly basic anion exchangers such as Amberlyst A21, Amberlyst A23 and Amberlyst A24 of the polystyrene, phenol-formaldehyde and polyacrylic matrices were used for C.I. Direct Yellow 50 removal from aqueous solutions. The equilibrium adsorption data were well fitted to the Langmuir adsorption isotherm. Kinetic studies were described by the pseudo-second order model. The pseudo-second order rate constants were in the range of 0.0609-0.0128 g/mg·min for Amberlyst A24, 0.0038-0.0015 g/mg·min for Amberlyst A21 and 1.1945-0.0032 g/mg·min for Amberlyst A23, and decreased with the increasing initial concentration of dye from 100-500 mg/L, respectively. There were observed auxiliaries (Na2CO3, Na2SO4, anionic and non-ionic surfactants) impact on the dye uptake. The polyacrylic resin Amberlyst A24 can be promising sorbent for C.I. Direct Yellow 50 removal as it is able to uptake 666.5 mg/g of the dye compared to the phenol-formaldehyde Amberlyst A23 of the 284.3 mg/g capacity.
Keywords: 
Subject: Chemistry and Materials Science  -   Analytical Chemistry
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated