Preprint
Article

A Polynomial Algorithm for Sequencing Jobs with Release and Delivery Times on Uniform Machines

Altmetrics

Downloads

336

Views

470

Comments

0

This version is not peer-reviewed

Submitted:

06 January 2021

Posted:

08 January 2021

Read the latest preprint version here

Alerts
Abstract
The problem of sequencing $n$ equal-length non-simultaneously released jobs with delivery times on $m$ uniform machines to minimize the maximum job completion time is considered. To the best of our knowledge, the complexity status of this classical scheduling problem remained open up to the date. We establish its complexity status positively by showing that it can be solved in polynomial time. We adopt for the uniform machine environment the general algorithmic framework of the analysis of behavior alternatives developed earlier for the identical machine environment. The proposed algorithm has the time complexity $O(\gamma m^2 n\log n)$, where $\gamma$ can be any of the magnitudes $n$ or $q_{\max}$, the maximum job delivery time. In fact, $n$ can be replaced by a smaller magnitude $\kappa<n$, which is the number of special types of jobs (it becomes known only upon the termination of the algorithm).
Keywords: 
Subject: Computer Science and Mathematics  -   Data Structures, Algorithms and Complexity
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated