Preprint
Article

Forest Type and Tree Species Classification of Nemoral Forests With Sentinel-1 and 2 Time Series Data

Altmetrics

Downloads

900

Views

453

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

11 January 2021

Posted:

12 January 2021

You are already at the latest version

Alerts
Abstract
Mapping forest extent and forest cover classification are important for the assessment of forest resources in socio-economic as well as ecological terms. Novel developments in the availability of remotely sensed data, computational resources, and advances in areas of statistical learning have enabled fusion of multi-sensor data, often yielding superior classification results. Most former studies of nemoral forests fusing multi-sensor and multi-temporal data have been limited in spatial extent and typically to a simple classification of landscapes into major land cover classes. We hypothesize that multi-temporal, multi-censor data will have a specific strength in further classification of nemoral forest landscapes owing to the distinct seasonal patterns of the phenology of broadleaves. This study aimed to classify the Danish landscape into forest/non-forest and further into forest types (broadleaved/coniferous) and species groups, using a cloud-based approach based on multi-temporal Sentinel 1 and 2 data and machine learning (random forest) trained with National Forest Inventory (NFI) data. Mapping of non-forest and forest resulted in producer accuracies of 99% and 90 %, respectively. The mapping of forest types (broadleaf and conifer) within the forested area resulted in producer accuracies of 95% for conifer and 96% for broadleaf forest. Tree species groups were classified with producer accuracies ranging 34-74%. Species groups with coniferous species were the least confused whereas the broadleaf groups, especially Oak, had higher error rates. The results are applied in Danish National accounting of greenhouse gas emissions from forests, resource assessment and assessment of forest biodiversity potentials.
Keywords: 
Subject: Environmental and Earth Sciences  -   Atmospheric Science and Meteorology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated