Preprint
Communication

Microfluidic Preparation of 89Zr-Radiolabelled Proteins by Flow Photochemistry

Altmetrics

Downloads

277

Views

299

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

18 January 2021

Posted:

20 January 2021

You are already at the latest version

Alerts
Abstract
89Zr-radiolabelled proteins functionalised with desferrioxamine B are a cornerstone of diagnostic positron emission tomography. In the clinical setting, 89Zr-labelled proteins are produced manually. Here, we explore the potential of using a microfluidic photochemical flow reactor to prepare 89Zr-radiolabelled proteins. The light-induced functionalisation and 89Zr-radiolabelling of human serum albumin ([89Zr]ZrDFO-PEG3-Et-azepin-HSA) was achieved by flow photochemistry with a decay-corrected radiochemical yield (RCY) of 31.2±1.3% (n = 3) and radiochemical purity >90%. In comparison, a manual batch photoreactor synthesis produced the same radiotracer in a decay-corrected RCY of 59.6±3.6% (n = 3) with an equivalent RCP >90%. The results indicate that photoradiolabelling in flow is a feasible platform for the automated production of protein-based 89Zr-radiotracers, but further refinement of the apparatus, and optimisation of the method is required before the flow process is competitive with manual reactions.
Keywords: 
Subject: Chemistry and Materials Science  -   Analytical Chemistry
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated