Preprint
Article

A Model for Characteristic X-Ray Emission in Electron Probe Microanalysis based on the Spherical Harmonic (PN) Method for Electron Transport

Altmetrics

Downloads

372

Views

393

Comments

0

Submitted:

18 January 2021

Posted:

19 January 2021

You are already at the latest version

Alerts
Abstract
Classical k-ratio models, e.g. ZAF and phi(rho z), used in electron probe microanalysis (EPMA) assume a homogeneous or multi-layered material structure, which essentially limits the spatial resolution of EPMA to the size of the interaction volume where characteristic x-rays are produced. We present a new model for characteristic x-ray emission that avoids assumptions on the material structure to not restrict the resolution of EPMA a-priori. Our model bases on the spherical harmonic (PN) approximation of the Boltzmann equation for electron transport in continuous slowing down approximation. PN models have a simple structure, are hierarchical in accuracy and well-suited for efficient adjoint-based gradient computation, which makes our model a promising alternative to classical models in terms of improving the resolution of EPMA in the future. We present results of various test cases including a comparison of the PN model to a minimum entropy moment model as well as Monte-Carlo (MC) trajectory sampling, a comparison of PN-based k-ratios to k-ratios obtained with MC, a comparison with experimental data of electron backscattering yields as well as a comparison of PN and Monte-Carlo based on characteristic X-ray generation in a three-dimensional material probe with fine structures.
Keywords: 
Subject: Chemistry and Materials Science  -   Biomaterials
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated