Preprint
Article

A Low-Cost Air Flow Sensor/Transducer for Medical Applications: Design and Experimental Characterization

Altmetrics

Downloads

1177

Views

455

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

19 January 2021

Posted:

20 January 2021

You are already at the latest version

Alerts
Abstract
Mechanical ventilation systems, which are used for breathing support when a person is not able to do it by their own, requires a device for measuring the air flow to the patient in order to monitoring and a assure the magnitude establish by a medical staff. Flow sensors are the conventional devices used for the air flow measuring; however, there were not available in Peru, because of the international demand during COVID-19 pandemic. In this sense, a novel air flow sensor based on orifice plate and an intelligent transducer stage were developed as an integrated design. Advanced methodologies in simulations and experiments using specially designed equipment for this application were carried out. The obtained data was used for a mathematical characterization and dimensions validation of the integrated design. The device was tested in its real working conditions, it was implemented in a breathing circuit connected to a low-cost mechanical ventilation system based on cams. Results indicate that the designed air flow sensor/transducer is a low-cost complete medical device for mechanical ventilators able to provide satisfactorily all the ventilation parameters air flow, pressure and volume over time by measuring the air flow and calculating the others. Furthermore, this device provides directly a filtered equivalent electrical signal for a display or a computer.
Keywords: 
Subject: Engineering  -   Automotive Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated