Preprint
Article

Estimating Neural Network’s Performance with Bootstrap: a Tutorial

Altmetrics

Downloads

414

Views

1122

Comments

1

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

13 March 2021

Posted:

22 March 2021

You are already at the latest version

Alerts
Abstract
Neural networks present the characteristics that the results are strongly dependent on the training data, the weight initialisation, and the hyper-parameters chosen. The determination of the distribution of a statistical estimator, as the Mean Squared Error (MSE) or the accuracy, is fundamental to evaluate the performance of a neural network model (NNM). For many machine learning models, as linear regression, it is possible to analytically obtain information as variance or confidence intervals on the results. Neural networks present the difficulty of being not analytically tractable due to their complexity. Therefore, it is impossible to easily estimate distributions of statistical estimators. When estimating the global performance of an NNM by estimating the MSE in a regression problem, for example, it is important to know the variance of the MSE. Bootstrap is one of the most important resampling techniques to estimate averages and variances, between other properties, of statistical estimators. In this tutorial, the application of two resampling (including bootstrap) techniques to the evaluation of neural networks’ performance is explained from both a theoretical and practical point of view. Pseudo-code of the algorithms is provided to facilitate their implementation. Computational aspects, as the training time, are discussed since resampling techniques always require to run simulations many thousands of times and, therefore, are computationally intensive. A specific version of the bootstrap algorithm is presented that allows the estimation of the distribution of a statistical estimator when dealing with an NNM in a computationally effective way. Finally, algorithms are compared on synthetically generated data to demonstrate their performance.
Keywords: 
Subject: Computer Science and Mathematics  -   Algebra and Number Theory
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated