Preprint
Article

Inhibition of Candida albicans and Mixed Salivary Bacterial Biofilms on Antimicrobial Loaded Phosphated Poly(methyl methacrylate)

Altmetrics

Downloads

258

Views

309

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

20 January 2021

Posted:

22 January 2021

You are already at the latest version

Alerts
Abstract
Biofilms play a crucial role in the development of Candida-associated denture stomatitis. Inhibition of microbial adhesion to PMMA and phosphate containing PMMA has been examined in this work. C. albicans and mixed salivary microbial biofilms were compared on naked and salivary pre-conditioned PMMA surfaces in the presence or absence of antimicrobials (cetyl pyridinium chloride [CPC], KSL-W, histatin 5 [his 5]). Polymers with varying amounts of phosphate (0-25%) were tested using four C. albicans oral isolates as well as mixed salivary bacteria and 24 h biofilms were assessed for metabolic activity and confirmed using Live/Dead staining and confocal microscopy. Biofilm metabolism was reduced as phosphate density increased (15%: P=0.004; 25%: P=0.001). Loading of CPC on 15% phosphated disks showed a substantial decrease (P=0.001) in biofilm metabolism in the presence or absence of a salivary pellicle. Salivary pellicle on uncharged PMMA enhanced the antimicrobial activity of CPC only. CPC also demonstrated remarkable antimicrobial activity on mixed salivary bacterial biofilms under different conditions displaying the potent efficacy of CPC (350 µg/ml) when combined with an artificial protein pellicle (Biotene half strength).
Keywords: 
Subject: Chemistry and Materials Science  -   Biomaterials
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated