Preprint
Article

A general framework of particle swarm optimization

Altmetrics

Downloads

316

Views

328

Comments

0

This version is not peer-reviewed

Submitted:

25 January 2021

Posted:

26 January 2021

You are already at the latest version

Alerts
Abstract
Particle swarm optimization (PSO) is an effective algorithm to solve the optimization problem in case that derivative of target function is inexistent or difficult to be determined. Because PSO has many parameters and variants, I propose a general framework of PSO called GPSO which aggregates important parameters and generalizes important variants so that researchers can customize PSO easily. Moreover, two main properties of PSO are exploration and exploitation. The exploration property aims to avoid premature converging so as to reach global optimal solution whereas the exploitation property aims to motivate PSO to converge as fast as possible. These two aspects are equally important. Therefore, GPSO also aims to balance the exploration and the exploitation. It is expected that GPSO supports users to tune parameters for not only solving premature problem but also fast convergence.
Keywords: 
Subject: Computer Science and Mathematics  -   Algebra and Number Theory
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated