Preprint
Article

The One-way FSI Method Based on RANS-FEM for the Open Water Test of a Marine Propeller at the Different Advance Coefficient

Altmetrics

Downloads

223

Views

323

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

26 January 2021

Posted:

27 January 2021

You are already at the latest version

Alerts
Abstract
This study addressed a Fluid-Structure Interaction of an open Water test for vp1304 propeller to predict pressure and stress distributions with a low cost and high precision method. The most striking aspect of such a method(one-way coupling) is to use one hydrodynamic solution for the number of different structural sets involved in other materials or different layup methods and combinations of layers. An open-access software(OpenFOAM) with an open-source code solver is used to simulate the fluid domain. Abaqus is used To evaluate and predict the deformation and strength of the blade with the Finite Element Method(FEM). The coupling approach is based on dry condition, which means the added mass effects due to propeller blades vibration is neglected. The pressures imposed on the blades are extracted from the fluid solver for each time step. Then, These pressures role as a load condition for the structure solver. This approach was verified in the last paper(wedge impact); a key factor for the present solution is the rotational rate interrelated between two solution domains, which is explained in this paper. Finally, the blades' stress and strain are calculated and compared in each advance coefficient.
Keywords: 
Subject: Computer Science and Mathematics  -   Algebra and Number Theory
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated