Preprint
Article

A Diagnostic Algorithm Based on a Simple Clinical Prediction Rule for the Diagnosis of Cranial Giant Cell Arteritis

Altmetrics

Downloads

184

Views

299

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

29 January 2021

Posted:

01 February 2021

You are already at the latest version

Alerts
Abstract
Background: Risk tratification based on pre-test probability may improve the diagnostic accuracy of temporal artery high-resolution compression sonography (hrTCS) in the diagnostic workup of cranial giant cell arteriitis (cGCA). Methods: A logistic regression model with candidate items was derived from a cohort of patients with suspected cGCA (n = 87). The diagnostic accuracy of the model was tested in the derivation cohort and in an independent validation cohort (n = 114) by receiver operator characteristics (ROC)-analysis. The clinical items were composed to a clinical prediction rule, integrated into a stepwise diagnostic algorithm together with CRP-values and hrTCS-values. Results: The model consisted of 4 clinical variables (age > 70, headache, jaw claudication, anterior ischemic optic neuropathy). The diagnostic accuracy of the model for discrimination of patients with and without a final clinical diagnosis of cGCA was excellent in both cohorts (AUC 0.96 and AUC 0.92, respectively). The diagnostic algorithm improved the positive predictive value of hrCTS substantially. Within the algorithm, 32.8% of patients (derivation cohort) and 49.1% (validation cohort) would not have been tested by hrtCS. None of these patients had a final diagnosis of cGCA. Conclusion: A diagnostic algorithm based on a clinical prediction rule improves the diagnostic accuracy of hrTCS.
Keywords: 
Subject: Medicine and Pharmacology  -   Immunology and Allergy
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated