Preprint
Article

Alkalinity Generation in the Coastal Area, the Case of the Wadden Sea

Altmetrics

Downloads

348

Views

349

Comments

0

This version is not peer-reviewed

Submitted:

29 January 2021

Posted:

01 February 2021

You are already at the latest version

Alerts
Abstract
High alkalinity values on the seaside can influence the exchange of carbon dioxide between seawater and the atmosphere. Still, there are many uncertainties about biogeochemical processes responsible for alkalinity generation in the coastal area. One example of coastal areas with high alkalinity is the German Bight. The German Bight is the south-east part of the North Sea. The literature suggests that high summer alkalinity values in the German Bight result from the exchange of the German Bight with the Wadden Sea (an intertidal zone along Dutch, German, and Danish coasts). We show that the origin of high alkalinity values in the German Bight can be sulfate reduction in sediments of the Wadden Sea and that it can increase alkalinity from March to August up to approximately 220 micromoles per liter. Also, we show that sulfate reduction does not cause any significant year alkalinity flux from the Wadden Sea to the German Bight; instead, nitrogen compounds ( and ) are responsible for it and cause an alkalinity flux about 13 GM a year from the Wadden Sea to the German Bight.
Keywords: 
Subject: Environmental and Earth Sciences  -   Atmospheric Science and Meteorology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated