Preprint
Review

Object Detection, Distributed Cloud Computing and Parallelization Techniques for Autonomous Driving Systems

Altmetrics

Downloads

327

Views

310

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

30 January 2021

Posted:

01 February 2021

You are already at the latest version

Alerts
Abstract
Autonomous driving systems are increasingly becoming a necessary trend towards building smart cities of the future. Numerous proposals have been presented in recent years to tackle particular aspects of the working pipeline towards creating a functional end-to-end system, such as object detection, tracking, path planning, sentiment or intent detection. Nevertheless, few efforts have been made to systematically compile all of these systems into a single proposal that effectively considers the real challenges these systems will have on the road, such as real-time computation, hardware capabilities, etc. This paper has reviewed various techniques towards proposing our own end-to-end autonomous vehicle system, considering the latest state on the art on computer vision, DSs, path planning, and parallelization.
Keywords: 
Subject: Computer Science and Mathematics  -   Algebra and Number Theory
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated