Preprint
Article

Comparison of CMIP6 and CMIP5 Models in Simulating Mean and Extreme Precipitation over East Africa

Altmetrics

Downloads

1106

Views

792

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

03 February 2021

Posted:

03 February 2021

You are already at the latest version

Alerts
Abstract
This study examines the improvement in coupled intercomparison project phase six (CMIP6) models against the predecessor CMIP5 in simulating mean and extreme precipitation over the East Africa region. The study compares the climatology of the precipitation indices simulated by the CMIP models with the CHIRPS dataset using robust statistical techniques for 1981 – 2005. The results display the varying performance of the general circulation models (GCMs) in the simulation of annual and seasonal precipitation climatology over the study domain. CMIP6-MME shows improved performance in the local annual mean cycle simulation with a better representation of two peaks, especially the MAM rainfall relative to its predecessor. Moreover, simulation of extreme indices is well captured in CMIP6 models relative to its predecessor. The CMIP6-MME performed better than the CMIP5-MME with lesser biases in simulating SDII, CDD, and R20mm over East Africa. Remarkably, most CMIP6 models are unable to simulate extremely wet days (R95p). A few CMIP6 models (e.g., NorESM2-MM and CNRM-CM6-1) depicts robust performance in reproducing the observed indices across all analyses. Conversely, OND season shows the overestimation of some indices (i.e., R95p, PRCPTOT), except for SDII, CDD, and R20mm. Consistent with other studies, the mean ensemble performance for both CMIP5/6 shows better performance due to the cancellation of some systematic errors in the individual models. Generally, the CMIP6 depicts improved performance in the simulation of MAM season akin CMIP5 models. However, the new model generation is still marred with uncertainty, thereby depicting substandard performance over the East Africa domain. This calls for further investigation of attribution studies into the sources of persistent systematic biases and a prerequisite for identifying individual models with robust features that can accurately simulate observed patterns for future usage.
Keywords: 
Subject: Environmental and Earth Sciences  -   Atmospheric Science and Meteorology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated