The connection of two phenomena - non-conservative friction forces and dissipation-induced instability can lead to many interesting engineering problems. The paper studies general material-dependent damping influence on dynamical instability of disc brake systems leading to brake squeal. The effect of general damping is demonstrated on a minimal and complex model of a disc brake. A complex system including material-dependent damping is defined in the commercial finite element software. The finite element model validated by experimental data on the brake-disc test bench is used to compute the influence of a pad and a disc damping variations on system stability by complex eigenvalue analysis. Analyzes show a significant sensitivity of the experimentally verified unstable mode of the system to the ratio of the damping between the disc and the friction material components.