A peer-reviewed article of this preprint also exists.
Abstract
The assessment of caprock integrity for underground storage of CO2 and/or enhanced oil recovery (EOR) systems is a multiscale endeavor. Caprock sealing behavior depends on coupled processes that operate over a broad range of length and time scales including nanoscale heterogeneity in capillary and wettability properties to depositional heterogeneity that is basin wide. Larger-scale sedimentary architecture, fractures, and faults can govern properties of potential “seal-bypass” systems that may be difficult to assess. We present a multiscale investigation of geologic sealing integrity of the caprock system that overlies the Morrow B sandstone reservoir, Farnsworth Unit, Texas, USA. The Morrow B sandstone is the target geologic unit for an on-going combined CO2 storage–EOR project by the Southwest Regional Partnership on Carbon Sequestration (SWP). Methods and/or data encompass small-to-large scales, including: petrography using electron and optical microscopy; mercury porosimetry; core examinations of sedimentary architecture and fractures; well logs; a suite of geomechanical testing; and a noble gas profile through sealing lithologies into the reservoir, as preserved from fresh core. The combined data set allows a comprehensive examination of sealing quality by scale, by primary features that control sealing behavior, and an assessment of sealing behavior over geologic time.
Keywords:
Subject:
Environmental and Earth Sciences - Atmospheric Science and Meteorology
supplementary.docx (5.26MB )
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Alerts
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.