Submitted:

11 February 2021

Posted:

11 February 2021

You are already at the latest version

A peer-reviewed article of this preprint also exists.

Abstract
The current research investigated the environmental risk of the polycyclic musk compounds, Galaxolide® (HHCB) and Tonalide® (AHTN), in the marine environments. These substances are lipophilic, bioaccumulated and potentially biomagnified in aquatic organisms. To understand the toxicity of HHCB and AHTN, we performed acute toxicity tests by exposing marine microalgae (Phaeodactylum tricornutum, Tretraselmis chuii and Isochrysis galbana), crustaceans (Artemia franciscana), echinoderms (Paracentrotus lividus), bivalves (Mytilus galloprovincialis), fish (Sparus aurata) and a candidate freshwater microalga (Raphidocelis subcapitata) to environmentally relevant concentrations (0.005 - 5 µg/L) following standardized protocols. The effects of both substances on microalgae growth were incipient and only I. galbana was sensitive to HHCB and AHTN, with IC10 values of 5.22 µg/L and 0.328 µg/L, respectively. Significant (p < 0.01) concentration dependent responses were measured in P. lividus and M. galloprovincialis larvae developments as well as S. aurata mortality tested with HHCB. The effect of HHCB on P. lividus larvae development was the most sensitive endpoint recorded, producing an EC50 value of 4.07 µg/L. Our results show that HHCB represents a high risk to P. lividus larvae development for early life stages in marine environments.
Keywords: 
;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Downloads

407

Views

488

Comments

1

Subscription

Notify me about updates to this article or when a peer-reviewed version is published.

Email

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated