Preprint
Article

QSAR Models for Active Substances Against Pseudomonas aeruginosa Using Disk-diffusion Test Data

Altmetrics

Downloads

342

Views

303

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

04 February 2021

Posted:

04 February 2021

You are already at the latest version

Alerts
Abstract
Pseudomonas aeruginosa is a Gram-negative bacillus included among the six "ESKAPE" microbial species with an outstanding ability to "escape" currently used antibiotics and developing new antibiotics against it is of the highest priority. Whereas minimum inhibitory concentration (MIC) values against Pseudomonas aeruginosa have been used previously for QSAR model development, disk diffusion results (inhibition zones) have not been apparently used for this purpose in the literature, and we decided to explore their use in this sense. We developed multiple QSAR methods using several machine learning algorithms (Support vector classifier, K Nearest Neighbors, Random Forest Classifier, Decision Tree Classifier, AdaBoost Classifier, Logistic Regression, and Naive Bayes Classifier). The main descriptors used in building the models belonged to the families of adjacency matrix, constitutional descriptors, first highest eigenvalue of Burden matrix, centered Moreau-Broto autocorrelation, and averaged and centered Moreau-Broto autocorrelation descriptors. A total of 32 models were built, of which 28 were selected and stacked to create a meta-model. In terms of balanced accuracy, the best performance was provided by KNN, SVM and AdaBoost algorithms, but the ensemble method had slightly superior results in nested cross-validation.
Keywords: 
Subject: Medicine and Pharmacology  -   Immunology and Allergy
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated