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Abstract: This study aims to explore the possibility of estimating a multitude of kinematic and dynamic1

quantities using subject-specific musculoskeletal models in real-time. The framework was designed to2

operate with marker-based and inertial measurement units enabling extensions far beyond dedicated motion3

capture laboratories. We present the technical details for calculating the kinematics, generalized forces,4

muscle forces, joint reaction loads, and predicting ground reaction wrenches during walking. Emphasis was5

given to reduce computational latency while maintaining accuracy as compared to the offline counterpart.6

Notably, we highlight the influence of adequate filtering and differentiation under noisy conditions and7

its importance for consequent dynamic calculations. Real-time estimates of the joint moments, muscle8

forces, and reaction loads closely resemble OpenSim’s offline analyses. Model-based estimation of ground9

reaction wrenches demonstrates that even a small error can negatively affect other estimated quantities. An10

application of the developed system is demonstrated in the context of rehabilitation and gait retraining. We11

expect that such a system will find numerous applications in laboratory settings and outdoor conditions12

with the advent of predicting or sensing environment interactions. Therefore, we hope that this open-source13

framework will be a significant milestone for solving this grand challenge.14

Keywords: real-time; musculoskeletal; kinematics; dynamics; muscle forces; joint reactions; ground15

reactions; inertial measurement units16

1. Introduction17

Movement is essential for human well-being, and diseases that affect it can significantly18

deteriorate life quality. Advances in mobile sensors (Inertial Measurement Units (IMU)), video19

technologies (markerless Motion Capture (MOCAP)), and traditional marker-based systems are20

used for real-world assessment of movement [1,2]. The application of these methods in the21

analysis of healthy and pathological conditions can be crucial for clinical decision making [3,4].22

Complimenting direct measurements using validated computational models can also provide new23

sources of information for training and rehabilitation purposes [5,6]. It is a common practice24

that such assessments are carried out offline (post-processing after a session) and in dedicated25

MOCAP laboratories. To this end, we aim to examine the possibility of estimating a multitude of26

kinematic and dynamic quantities using computational musculoskeletal models in real-time for27

both in- and out-of-the-lab conditions.28

Different research groups have approached the problem of estimating the kinematics and29

dynamics of movement using musculoskeletal models. Notably, in [7] the authors laid the30

foundation and presented a system capable of assessing human movement and muscle function31

in real-time. Their predictions were compared against the gait2392 model [8] within the open-32

source modeling framework OpenSim [9,10]. Statistically significant differences were found in33

the output variables, which may not influence the conclusions in clinical settings as concluded34

by the original authors [11]. However, a proprietary solution may limit this system’s use and35
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extent towards a quick adoption of new technologies (e.g., markerless tracking). To this end, we36

will present an open-source framework for carrying real-time calculations based on the OpenSim37

tool-chain that is well-adopted by the biomechanics community.38

An open-source solution (rtosim), that relies on OpenSim, capable of performing Inverse39

Kinematics (IK) and Inverse Dynamics (ID) calculations was presented in [12]. Multi-thread40

implementation was proposed to increase the throughput of the system. The authors presented a41

real-time filter for rejecting noise and calculating the kinematics’ first and second derivatives. The42

influence of the filter’s cutoff frequency was further studied, and a methodology for determining43

its value was presented. In this study, we examine the role of real-time filtering more closely and44

how it can negatively affect dynamic calculations at later stages. We propose a filter capable of45

accurately estimating the kinematics’ first and second derivatives under noisy conditions. This46

results in real-time calculations of kinematics and dynamics that closely resemble the alternative47

offline analyses.48

The same group also extended their work [13,14] in order to calculate muscle action and49

joint reaction loads in real-time using Electromyography (EMG)-driven methods [15,16]. These50

methods take into account surface EMG measurements to calibrate the musculoskeletal model by51

adjusting muscle-related parameters while satisfying joint moments about one or more Degrees52

of Freedom (DoF). This approach’s limitation is that surface EMG measurements can induce53

noise due to soft-tissue movement artifacts that can cause problems during calibration and use of54

the method. Besides, a superficial measurement is not an ideal representative of whole muscle55

function. This approach might also be limited by the number and choice of calibrated DoF. In our56

implementation, we decided to resolve the muscle redundancy through an optimization similar57

to [7] so that the system can find applications where EMG measurements might not be possible.58

However, it should be pointed out that optimization-based methods might fail to predict muscle59

activity in pathological conditions such as cerebral palsy or Parkinson’s disease [17].60

In this work, we envision that the real-time system can be used not only in laboratory settings61

but also in out-of-the-lab conditions, where the kinematics might be measured through IMU or62

other markerless devices. With some minor modifications to the IK method, one can easily track63

both body orientations and marker positions. An important pre-requirement is that one can either64

measure or predict the user’s interactions with the environment (e.g., ground reactions or contacts65

with objects) to carry out further dynamic analyses. In particular, we focused on estimating the66

Ground Reaction Forces and Moments (GRF&M) during walking using only kinematics. There67

have been numerous studies [18–24] that focused on the solution to this challenge. Model-based68

estimation of these wrenches (a 9D vector containing the point, force, and moment) proved to be69

an ambitious goal under the context of any movement. This is because any small error in these70

estimates can lead to large variations in the joint moments, among other quantities. Our findings71

suggest that joint moments are sensitive to estimates of the GRF&M, but some moments can be72

determined accurately if one or two of the unknowns (ground reaction forces, Center of Pressure73

(CoP), or moments) is measured.74

In the following sections, we will closely examine the challenges mentioned above. In75

subsection 2.1, will extend the IK method to facilitate marker- and IMU-based tracking. We will76

continue with the real-time filtering and differentiation method (subsection 3.1) that works very77

well under noisy measurements. In subsection 2.3, we will examine the problem of predicting78

the GRF&M using only kinematic information. We will then present the formalization for79

real-time muscle redundancy optimization (subsection 3.4). We will provide context related80

to the methods’ performance and outline techniques that can help reducing latencies in the81

calculations (e.g., parallelization of modules and estimation of muscle forces). In the results82

section, we will thoroughly examine the accuracy of the real-time calculations, comparing our83

findings with the offline methods to ensure that the former maintains the right balance between84

real-time applications’ constraints and accuracy. A use case scenario of the proposed framework85

is presented (subsection 2.5) in the context of rehabilitation and gait retraining to reduce knee86

loads [6,25] (subsection 3.5). Determining kinematics, joint moments, muscle forces, and joint87

reaction loads in real-time can find many applications in sports biomechanics, ergonomics, and88

rehabilitation. We expect that real-time calculations will be a viable solution in the near future,89
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not only in laboratory settings but also in outdoor conditions with the advent of predicting or90

sensing environment interactions.91

2. Methods92

Figure 1 presents an overview of the real-time musculoskeletal kinematics and dynamics93

analysis pipeline. The time-wise execution is divided into the acquisition and processing threads94

that work independently while sharing results through a thread-safe data buffer. The acquisition95

part is connected with the MOCAP system that can work with marker- and IMU-based systems.96

Other types of sensor sources such as force plates, EMG, and pressure insoles can also be97

considered inputs. In the case of marker-based systems, we implement a marker completion step98

to solve the issue of missing markers due to occlusion [26]. The IK module is solved on the99

acquisition thread for each frame of data received, and its output (generalized coordinates) and100

other raw inputs are placed in the data buffer. Depending on the application, the processing thread101

can arrange the operations required to extract meaningful information from the musculoskeletal102

model in real-time. In this example, we present a workflow for calculating the kinematics,103

generalized forces, muscle forces, and joint reaction loads. An important aspect of this workflow104

is the real-time filtering and differentiation of the generalized coordinates obtained from IK,105

which is the input to ID and consequent blocks. ID and joint reaction calculations are low-106

latency operations. However, determining the muscle forces that are necessary for estimating107

the joint reactions is a challenging task. The model calibration module refers to adjusting108

the musculoskeletal model to account for the subject’s anthropometric parameters using static109

trials and functional tasks. The internal implementation of the different building blocks will be110

explained in the following subsections.111

Figure 1. Overview of the real-time analysis pipeline. The acquisition thread collects raw data from sensor
inputs and performs IK to obtain the kinematics from marker- and IMU-based sources. Data are shared using
thread-safe data structures. Depending on the application, the processing thread can arrange the operations
required to extract meaningful information from the musculoskeletal model in real-time. Model calibration
refers to the process of adjusting the musculoskeletal model to account for the subject’s anthropometric
parameters using static trials and functional tasks.

2.1. Marker- and IMU-based inverse kinematics112

The current implementation of IK can handle marker position and IMU orientation tracking.113

The implementation of IK solves an optimization problem that minimizes the holonomic (position)114

constraints, the weight marker, and orientation error115

minimize
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where, qerr denotes the holonomic constraint error, ri the difference between experimental116

and virtual marker position, α j the angular difference between experimental and virtual IMU117

orientation, and w are the weights (default is 1) associated with the different error terms. The118

superscript T over a vector or matrix denotes the transpose operation. Please note that this119

implementation can handle models that contain holonomic constraints due to the first term in the120

optimization that penalizes these errors.121

Concerning IMU integration, a calibration procedure is defined to match the sensor orienta-122

tions with the corresponding body segment orientations. The subject is asked to stand in a pose123

that matches the default pose of the virtual model for a few seconds. The sensor orientations124

GIMU RS are expressed in the Earth’s coordinate system. In order to express them in the global125

coordinate system of OpenSim, a transformation Go RGIMU is first required. Next, a transformation126

Rheading is applied which is computed from the angular difference between the orientation of the127

base sensor’s anterior axis (typically the IMU placed on the pelvis or torso) measured during the128

static trial, and the orientation of the anterior axis of the virtual model. This is necessary to com-129

pensate for the heading direction of the subject. The estimated transformation Rheading ·
Go RGIMU130

is considered constant throughout the session and can be applied as an offset transformation131

during IK. That is, after the static trial, the initial orientations in the IK analysis module are132

set to the transformation Rheading ·
Go RGIMU · GIMU RS i(tinit), while during the dynamic trial, the133

transformations passed to the IK module are Rheading ·
Go RGIMU · GIMU RS i(t).134

In our experiments, we made use of a custom-build IMU MOCAP system (based on135

NGIMU from x-io Technologies Limited) to record the upper- or lower-limb movement and136

test the real-time system. Unfortunately, this introduced many technical challenges related to137

obtaining accurate orientation from multiple sensors that are out of the current study’s scope. We138

experienced problems with the accumulation of errors due to bias and drifting in the orientations,139

which are sensitive to magnetic interference. Synchronization of sensor data (e.g., IMU, pressure140

insoles) was accommodated through a data structure that stores the arriving frames, which are141

then resampled (constant sampling frequency) using each sensor’s synchronized timestamp.142

Timestamp synchronization was performed at the beginning of each session. Despite the technical143

challenges, we were able to test whether one could successfully use IMU information as an input144

to our system and verify the IK method.145

2.2. Real-time filtering146

Real-time filtering is a critically important step in our pipeline, influencing the quality147

of the obtained results from dynamic analysis. Indeed, since we are interested in performing148

ID analysis, one has to determine the first and second derivatives of the kinematic data (IK).149

Calculating derivatives is a challenging task in the presence of noise. If the noise is permitted150

in the ID calculations, we will obtain unrealistic estimates of the joint moments because the151

acceleration term is multiplied with the inertia mass matrix. To cope with this issue, we usually152

apply a low pass filter (e.g., zero lag fourth-order Butterworth filter [23]) and then use splines153

(e.g., generalized cross-validation splines [27]) to approximate the derivatives. To achieve good154

results, we typically record the full trial and then perform the filtering offline, considering past155

and future (non-causal filter) samples to calculate the current value. However, in a real-time156

setting, one receives the data frame sequentially. If we want to consider future samples, then we157

are technically introducing artificial delay (lag). We will show a trade-off between accuracy and158

computational latency and optimally determine the filter parameters as per task.159

The proposed filter (Figure 2) assumes that the data frame arrives one by one at a constant160

sampling frequency ( fs) and is placed into a multi-dimensional circular buffer. Each time a new161

frame arrives, it is appended at the end of the circular buffer, discarding the oldest frame. In our162

implementation, the size of the circular buffer M is termed as the memory of the filter. A low-pass163

( fc cutoff frequency) Finite Impulse Response (FIR) filter of order M (same as memory size) is164

applied to reject the high-frequency noise. The filter’s kernel and window functions are sinc and165

Hamming, respectively. The filtered signal is used to construct a generalized cross-validation166

spline of order Ns. Consequently, they are used to calculate the first and second derivatives167

of the signal. We evaluate the spines at td = t − D/ fs (D is the lag of the real-time filter)168
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instead of t to improve the filtering result. Therefore, the proposed filter is characterized by four169

hyper-parameters (M, fc, Ns, and D). Depending on the application and type of task, one can170

fine-tune these parameters to achieve the right trade-off between delay and accuracy.171

0 5 10 15 20

−1

0

1

2

x

y

Figure 2. An overview of the filtering and differentiation module. The generalized coordinates from IK are
placed into a circular buffer of memory M. The M samples of each signal are filtered using a low pass FIR
filter. A generalized cross-validation spline of order Ns is then constructed to evaluate the coordinate and
derivatives’ value at time instance td .

2.3. Estimation of ground reaction wrenches172

To perform dynamic analysis, one must estimate the external GRF&M and include them173

in the calculations. These are typically measured using dedicated equipment (e.g., force plate).174

However, this can significantly limit the scope and extent of any dynamic analysis only when such175

measurements are available. There have been numerous studies [18–24] that try to determine the176

GRF&M using only kinematic information. In the context of real-time applications, a compromise177

must be made between complexity and accuracy.178

In this work, we implement a GRF&M prediction method, where the total forces and179

moments are computed using the Newton-Euler equations of motion:180

ftotal =
N∑
i

mi(ai − g)

τtotal =
N∑
i

[
Iiω̇i + ωi × (Iiωi)

]
−

N∑
i

Ki∑
j

(ri j × fi j)

(2)

where ftotal denotes the total external force, N the total number of body segments, mi the mass of181

each segment, ai the linear acceleration of the center of mass, and g the gravitational force. In182

the second equation, τtotal is the total external moment, Ii the inertia tensor with respect to the183

segment’s center of mass, and ωi, ω̇i the angular velocities and angular accelerations, respectively.184

fi j describes the forces applied to the Ki end-points of each body segment with position vectors185

between the center of mass and the end-points denoted by ri j.186

Assuming the GRF&M are the only external forces and moments are applied to the subject187

during gait, the ftotal and τtotal are equal to the sum of the forces and moments applied to each188

foot:189

fr + fl = ftotal

τr + τl = τtotal.
(3)

During the single support phase, the GRF&M applied to the limb in contact with the190

ground is equal to the total GRF&M computed. Whereas, during the double stance phase, the191

indeterminacy problem is resolved following the smooth transition assumption [18]. In this192

assumption, the transition functions ft are expressed in a walking direction coordinate system.193

The estimated forces and moments, which are expressed in the global reference frame, are194
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transformed after computing the walking direction from the average orientation of the pelvis195

segment’s anterior axis. This results in two new vectors f w
total and τw

total.196

An import prerequisite for using the transition functions is determining time events during197

the gait cycle. In particular, the heel-strike ths and toe-off events tto as well as the time periods198

Tds and Tss of the double and single support phase, respectively. In this work, we implemented a199

family of methods that share a common architecture presented in the state diagram (Figure 3).200

State changes occur when selected values such as the magnitude of generated contact forces201

in proximity with virtual ground surfaces, estimated acceleration values of lower limb body202

segments based on kinematics, or equivalent measurements from external sensors (pressure203

insoles or accelerometers). This information is used to determine the gait state (stance or swing)204

based on a predefined threshold value vth. The gait events and periods are determined online by205

monitoring changes in the last k consecutive states. The leading leg is assigned to the lower limb206

corresponding to the last heel-strike event until the next heel-strike event of the contralateral leg.207

After computing the gait-event-related parameters, the GRF&M applied on each lower limb are208

calculated following the rules defined in Table 1.209

Swing Stancev(t) ≤ vth

v(t) > vth

v(t) > vth

v(t) ≤ vth

1Figure 3. State diagram denoting the conditions required to determine the current gait state. Transitions
between swing and stance phases occur by comparing the selected measure u(t) with a threshold value uth.

Reaction Component Double Support Single Support

f w
trailing(t) f w

total(t
leading
hs ) ft(t) 0

mw
trailing(t) τw

total(t
leading
hs ) ft(t) 0

f w
leading(t) f w

total(t) − f w
trailing(t) f w

total(t)
mw

leading(t) τw
total(t) −mw

trailing(t) τw
total(t)

Table 1: According to the gait phase, classification of calculations for determining the forces and
moments applied on the leading and trailing legs. During the single support phase, the GRF&M
of the limb in contact with the ground are equal to the total external force f w

total and moment τw
total.

Whereas, during the double support phase, the results are distributed between the two legs using
the transition functions ft(t) described by [18].

The CoP is approximated as described in [28]. We scale the distance d, from the heel to the210

metatarsal-phalangeal joint during the single stance phase with the stance frequency ω = 2π/Tss211

using the following scaling factor:212

σ = −
2

3π

(
sinωt −

sin 2ωt
8

−
3
4
ωt

)
∈ [0, 1]. (4)

The computed vector σ · d is projected on the virtual plane representing the ground. After213

determining the external wrenches, we perform an ID calculations using the recursive Newton-214

Euler method, which is very efficient.215

2.4. Real-time estimation of muscle forces216

Estimation of muscle forces imposes several challenges because there is not a unique217

solution due to the muscle redundancy problem [29] (more unknowns than known equations).218
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Unfortunately, we can neither measure muscle forces nor measure the activity of all muscles (e.g.,219

deep muscles). Therefore, optimization is one of the few viable methods that one could use to220

determine these unknowns, which are essential for consequent calculations (e.g., joint loads) and221

different applications. It has been shown that the central nervous system is controlling the muscles222

in a manner that minimizes the effort during cyclic movements in healthy subjects [30]. Objective223

criteria such as muscle stress squared or activation squared seem to explain well experimental224

recording of muscle activity [31].225

In our implementation, we formulate the optimization problem as follows:226

minimize
fm

1
p

M∑
i

 fm,i

f max
m,i


p

subject to
[

06×1
τN−6×1

]
=

[
06×M

R(q)N−6×M

]
fm

fm � 0

(5)

where fm ∈ R
M denotes the muscle forces, f max

m ∈ RM the muscle maximum isometric force, p227

is the power exponent (set to 2 or 3), R ∈ R(N−6)xM the moment arm matrix that depends on the228

generalized coordinates (q ∈ RN), and τ ∈ RN−6 the generalized forces. The residual forces of229

the pelvis are not included in the above optimization, because they are a byproduct of modeling230

inconsistencies [9]. The above formalization requires that we have already solved the IK and231

ID problems to compute q and τ, respectively. Please note that the inequality constraint fm � 0232

ensures that the muscles can only pull, but it does not restrict the upper bound.233

Solving Equation 5 in real-time is challenging because it takes time to evaluate the moment234

arm matrix and solve the nonlinear optimization in fewer steps. To this end, the moment235

arm matrix is approximated symbolically. To derive a symbolic representation, multivariate236

polynomial fitting [7,32] was performed on samples of the muscle moment arm at different237

configurations. To reduce the complexity and improve the fit’s robustness, we determined the238

coordinates affecting each element in the moment arm matrix by identifying the DoF spanned239

by each muscle. To speed up the optimization, we can control the convergence tolerance and240

“warm-start” from the previously obtained solution. We used the interior point algorithm [33] to241

solve the nonlinear, constrained optimization problem.242

2.5. Developing a gait retraining system243

In the previous subsections, we presented a pipeline for estimating the kinematics, dynamics,244

and internal forces (muscle and joint) of the musculoskeletal system in real-time. The pipeline245

serves as the backbone (back-end) for implementing rehabilitation solutions that could provide246

real-time feedback to the user and clinicians (instructor). In this subsection, we present a gait247

retraining system (front-end) for reducing the knee joint’s loading and reduce the pain. The gait248

retraining system aims to engage the users in a series of exercises that can teach them how to249

adapt their gait optimally.250

The gait retraining system was implemented using the Unity3D game engine. Unity3D was251

selected because it can permit the implementation of solutions that can target typical projection252

screens and utilize augmented or virtual reality output devices. Our system could support253

interactive scenarios that could engage the user and make the training process more fun and254

effective. Exchange of data with the simulation back-end was established through shared memory255

to improve efficiency, reduce latency, and decouple implementation specifics (e.g., simulation256

back-end written in C++ and front-end in C#).257

Figure 4 presents the front-end main window. It contains the musculoskeletal visualizer,258

real-time plotting, and footprint visualization. Within the application, the operator can monitor the259

logged users’ progress, replay sessions, analyze events, and create new objectives and scenarios.260

The expert can define a session’s objectives based on values obtained from the back-end, namely261

foot progression angle, vertical knee joint reaction forces, knee adduction moment, and trunk262

angle. Once the range and desired values are defined, we can use intuitive visualization primitives263

such as bar, gauge, or text indicators to provide real-time feedback.264
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Figure 4. Visualization front-end composed of a musculoskeletal visualizer, real-time plotting, and footprint
visualization.

In Figure 5 we present the gamification approach used to engage the user during a train ses-265

sion. The users gather points according to their performance, following the clinician’s objectives266

during a session. A combo mechanism is used to motivate and encourage users to follow the267

instructions and maintain the changes throughout the session’s whole duration. Each session, the268

user is awarded the gathered and golden points calculated based on how well the patient followed269

the suggestions. Users can monitor their performance on the dashboard, examine key statistics270

and significant milestones that reflect their progress.271

Figure 5. Gamification approach based on session awarded points. Users can monitor their performance on
the dashboard, examine key statistics and major milestones that reflect their progress.

The extension of this system is not only limited to the particular case presented here. One can272

imagine that similar rehabilitation scenarios could be implemented in line with the applications’273

needs. The significance of the back-end is that it permits calculating any kinematic and dynamic274

quantity (joint angles, moments, muscle forces, reactions) from the musculoskeletal model in275

real-time. Depending on the application, different combinations of these quantities will be needed.276

The front-end can then transform the raw information and visualize it appropriately. The user’s277

interaction may not be only limited to primitive projection screens but can also utilize haptic,278

augmented, and virtual reality devices. Therefore, rehabilitation scenarios could be designed so279

that they are more engaging and effective. All this would not be possible without an accurate and280

reactive back-end.281

3. Results282

In this section, we present the comparison of the real-time filtering method’s performance283

and justify how to determine the different hyper-parameters. Next, the comparison of the offline284
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and real-time generalized forces computed through ID is presented by highlighting the importance285

of determining the kinematics’ first and second derivatives. We will further present the estimated286

GRF&M and quantify their impact on the ID results. A comparison between the offline and287

real-time calculations of muscle forces is examined. Computation delays for the various modules288

are presented in the text. Finally, we outline a use case scenario of the proposed system in the289

context of rehabilitation and gait retraining to reduce the knee’s joint reaction loads.290

Our framework utilizes the OpenSim’s API [9,10,34] and all comparisons are made against291

its offline methods for kinematic and dynamic calculations. The musculoskeletal model used in292

this study is based on gait2392 [8] with some minor modifications. The DoF have been reduced293

to 19 and the model is actuated by 92 Hill-type muscles [35]. The generic model is scaled using a294

static trial to account for the subject’s anthropometry. Experiments were carried out on Intel(R)295

Core(TM) i5-3320M CPU @ 2.60GHz. Better CPU specs can further reduce the computational296

delays.297

3.1. Performance of real-time filtering and differentiation298

In this subsection, we demonstrate the real-time filter’s performance and outline the proce-299

dure for determining the optimal values of its parameters. The filter operates on the generalized300

coordinates obtained from IK since the optimization may not result in a smooth solution. The301

mean computational delay of the IK module is less than 0.1 ms. Four parameters, namely the302

cutoff frequency fc, spline order Ns, memory size M, and delay D, characterize the filter. The303

type of movement determines the cutoff frequency. For slow movements like gait, we chose304

fc = 6 Hz as is the case in most studies [14,36]. We also fixed the spline order to Ns = 3, a305

reasonable value to avoid over-fitting. Determining parameters M and D is discussed below.306

The purpose of the filter is to reject the noise and calculate the first and second derivatives307

of the kinematics necessary for consecutive dynamic analysis. To determine the optimal values of308

the two hyper-parameters (M and D), we examined the total Root Mean Squared Error (RMSE) (309

Figure 6) of the filtered kinematics comparing the real-time filter and OpenSim’s offline kinematics310

analysis. The OpenSim’s kinematics analysis utilizes the same low-pass filter and spline method,311

having at its disposal the whole duration of the movement. We observed that for each type of312

error (coordinates, speeds, accelerations), there exists an optimal value for M. We determined313

that M = 35 is the optimal choice for this movement because acceleration errors can significantly314

impact the consequent analysis. Besides, a small value of M reduces the computational latency315

of the filter. Similarly, D = 14 seems to be the optimal solution, which can lead to an artificial316

lag of 0.14 s for a typical marker sampling frequency of 100 Hz. Notably, one can follow this317

procedure to determine the optimal parameters for any movement.318
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Figure 6. RMSE between OpenSim’s offline kinematics analysis and proposed filter as a function of the
decision variables (M and D). We selected the smallest values that resulted in the lowest error in the
acceleration.
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To highlight the influence of filtering on the joint angles and derivatives, we compared (319

Figure 7) OpenSim’s offline kinematics analysis (ground truth) against the proposed filter and320

the “spatial” filter as implemented in rtosim [14]. The only parameter of the spatial filter is the321

cutoff frequency, which we set to 6 Hz. We can observe that the proposed filter has a lower RMSE322

and closely resembles OpenSim’s offline time-series. While the spatial filter can approximate the323

original signal well, it underestimates its first and second derivatives for fast-moving coordinates324

(comparison of all coordinates presented in the supplementary materials). The spatial filter has325

low computational latency (mean latency less 0.1 ms) than the proposed filter (mean latency326

of 3 ms) and is very easy to implement. However, acceleration errors can lead to significant327

differences during dynamic analysis (presented in the next subsection).328
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Figure 7. Comparison between OpenSim’s offline kinematics analysis, the proposed, and spatial filters. Left
RMSE compares OpenSim’s and proposed filter’s kinematics. Right RMSE compares OpenSim’s and spatial
filter’s kinematics. For comparison reasons, we shifted the curves to compensate for the time lag introduced
by the filters.

3.2. Influence of online filtering on inverse dynamics calculations329

We will briefly discuss the performance of the real-time ID module with respect to OpenSim’s330

offline counterpart. The ID module implements a recursive Newton-Euler formulation, which331

is very efficient, achieving a mean computational latency of less than 0.1 ms. Please note that332

the OpenSim’s ID offline analysis has at its disposal the full trial in advance and thus can apply333

non-casual operations to reject the noise and calculate derivatives. In contrast, the real-time334

system operates on the arriving frames and must process a limited number of instances (filter’s335

memory buffer) to reduce latency while maintaining accuracy.336

Moreover, we present the effect of online filtering on the calculated generalized forces from337

ID and why proper filtering is important. In Figure 8 the comparison of the offline ID from338

OpenSim and real-time ID utilizing the two real-time filters presented previously (proposed and339

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 26 February 2021                   doi:10.20944/preprints202102.0202.v2

https://doi.org/10.20944/preprints202102.0202.v2


Version February 23, 2021 submitted to Journal Not Specified 11 of 19

spatial) is illustrated. A comparison of all coordinates is also presented in supplementary materials.340

The time lag introduced by the filters was compensated (shifted) in these plots for comparison341

reasons. We observed that the real-time results closely match the offline ones. Residual vertical342

forces at the pelvis are low and within the accepted norm [37]. The initial part of the proposed343

filter’s curve is missing because we need at least M samples to begin the processing. The real-time344

curves are smoother and present fewer oscillations due to the non-causal implementation related345

to the D parameter. We also observed that the proposed filter outperforms the spatial filter in346

terms of RMSE. The spatial filter can underestimate the moments due to the kinematic mismatch347

at the coordinate velocity and acceleration, as presented in the previous subsection. Therefore,348

this can have a significant impact on the joint moments.349
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Figure 8. Comparison among offline ID from OpenSim and real-time ID using the two real-time filters. Left
RMSE compares OpenSim’s ID and real-time’s ID that uses the proposed filter. Right RMSE compares
OpenSim’s ID and real-time’s ID that uses the spatial filter. For comparison reasons, the curves were shifted
to compensate for the time lag introduced by the filters.

3.3. Prediction of ground reaction wrenches and influence on joint moments350

Predicting ground reaction wrenches in real-time can enable applications that calculate351

dynamic quantities (e.g., moments and muscle forces) during movement. In Figure 9, we present352

the comparison of the estimated and measured GRF&M during walking. The forces in the forward353

(x) and vertical (y) directions closely resemble the measured ones. Lateral (z) forces follow the354

overall shape. The x component of the CoP was accurately predicted, but the lateral z direction is355

hard to determine. Less confluence is observed in the moments. The mean computation delay356

of this module is 2 ms. The double support phase during walking leads to infinite possible357

solutions (close kinematic chain). Modeling assumptions, such as the distribution of mass and358

joint parameterization, can affect results due to the method’s nature.359
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Figure 9. Real-time estimated ground reaction forces, moments, and CoP during gait. Good agreement
of the predicted forces, especially on the forward (x) and vertical (y) directions. In contrast, only the x
component of the CoP was accurately predicted. Less confluence is observed in the moments.

Next, we quantified the influence of the predicted GRF&M on joint moments calculated360

from ID. In Figure 10, the comparison of the moments of the hip (flexion, rotation), knee, and361

ankle joints are depicted. Even though the predicted GRF&M closely resemble the measured362

ones, small discrepancies can significantly affect these moments. This becomes evident as we363

move from distal to proximal segments (e.g., errors at the ankle are smaller than at the hip). In364

the same figure, we also demonstrate which component of the estimated GRF&M influences the365

particular joint moments. In this context, we assumed that we perfectly know only either the366

CoP, CoP and moments, or CoP and forces. Notably, if we can correctly determine the CoP,367

then the joint moments’ mismatch at the ankle and knee is smaller. To improve the estimation368

of hip flexion moment, one must accurately determine both the CoP and forces. The ground369

reaction moments influence the hip internal rotation. These findings suggest that joint moments370

are sensitive to estimates of the GRF&M, but some joint moments can be determined accurately371

if one or two of the unknown variables are measured.372
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Figure 10. The influence of estimated GRF&M on the generalized forces computed through ID. Predicted
GRF&M greatly affect the calculate joint moments. A good estimate of CoP improves the predictions of
ankle and knee moments. Hip flexion requires accurate estimation of both CoP and forces, while hip rotation
CoP and moments.

3.4. Comparison of muscle forces determined in real-time373

In this section, the performance of the real-time muscle optimization module is presented.374

The determination of muscle forces can find many applications in sports biomechanics, er-375

gonomics, and rehabilitation. For example, estimation of muscle forces is necessary to determine376

the joint reaction loads affected by muscles spanning the joints. Resolving the muscle redun-377

dancy is the bottleneck of the whole pipeline requiring an average of 10 ms to execute with378

a musculoskeletal model with 92 muscles. Things that have improved the performance of the379

muscle optimization were (i) the formulation of the problem to reduce the constraints and deci-380

sion variables, (ii) the analytical representation of the moment arm matrix (precalculated), (iii)381

optimization initialized using the previous solution, and (iv) the efficiency and parallelism of the382

interior point optimization method.383

Figure 11 presents the comparison between OpenSim’s Static Optimization (SO) and pro-384

posed real-time muscle optimization method. Results show forces for major muscles (gluteus385

maximus, semimembranosus, psoas major, rectus femoris, vastus medialis, biceps femoris short386

head, medial gastrocnemius, soleus, and tibialis anterior) of the lower-limb. A comparison of387

all 92 muscles is presented in the supplementary materials. Good agreement between timing388

and shape matching is observed even though the two methods use different formalization and389

implementation specifics.390
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Figure 11. Comparison between OpenSim’s SO and proposed real-time muscle optimization method. The
force of major right leg muscles: gluteus maximus, semimembranosus, psoas major, rectus femoris, vastus
medialis, biceps femoris short head, medial gastrocnemius, soleus, and tibialis anterior was presented.

3.5. A gait retraining system for reducing knee loads391

In this subsection, we would like to highlight the usefulness of the proposed system in the392

context of gait retraining and rehabilitation. We will outline a possible use case scenario that393

might appeal to researchers and clinicians in the field of rehabilitation.394

Dr. Good has experience with the gait retraining system, and his clinic just received395

a patient that has been diagnosed with mild knee osteoarthritis in her right leg. He396

already knows that the patient needs to adopt a gait pattern that alleviates the knee397

joint’s medial loading to reduce the pain. The primary indicator to assess the loading398

of the joint is the medial reaction force at the knee. One strategy is to adjust the foot399

progression angle, defined as the angle between the line of walking progression and the400

foot’s longitudinal axis. Therefore, he defines the vertical reaction force as an objective401

to be minimized. The decision variable is the foot progression angle. However, he402

also decides to experiment with the step length and step width, providing simple and403

intuitive visual feedback to the patient. The system can adjust the decision variables’404

target value (Figure 12) using online gradient descent based on the joint reaction forces’405

estimates.406

First, he tried to familiarize the patient with the motion analysis lab by explaining the407

different visualization elements and by presenting the current session’s goal. Since this408

is her first session, the patient is ordered to walk normally to gather information on409

her walking habits and calibrate the model. The clinician checks if the system works410

properly by comparing the reaction loads’ real-time and offline calculations at the knee411

(Figure 13). Based on the calibration trial, he then sets the initial target values for the412

decision variables. The patient is instructed to walk by alternating her foot progression413

angle, step length, and step width based on the system’s indication. After exploring414

different gait modifications using real-time feedback, an optimal walking strategy is415

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 26 February 2021                   doi:10.20944/preprints202102.0202.v2

https://doi.org/10.20944/preprints202102.0202.v2


Version February 23, 2021 submitted to Journal Not Specified 15 of 19

reached, resulting in reduced reaction loads on the knee’s medial compartment and is416

also comfortable for the patient. Both Dr. Good and the patient feel satisfied by the417

experience of using the gait retraining system, and the next appointment is scheduled.418

Figure 12. The gait retraining session aims to reduce knee reaction loads by adjusting the foot progression
angle, step length, and step width (decision variables). The green regions of the decision variables are
adjusted online according to the reaction forces’ estimation on the diseased knee. The user is awarded points
if the instructions are followed.
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Figure 13. Comparison between OpenSim’s (offline) and real-time’s joint reaction loads (forces and
moments) on the knee using the muscle forces obtained by the proposed optimization. For comparison
reasons, the curves were shifted to compensate for the time lag introduced by the filter.

4. Discussion419

In this work, we presented the implementation and validation of a system capable of420

calculating various kinematic and dynamic quantities from a musculoskeletal model in real-time.421

We rigorously proved that the real-time calculations closely resemble their offline counterpart.422

This permitted us to examine the use of such a system for gait retraining to provide real-time423

biofeedback to the user. The added value of a gait retraining system needs to be further examined424
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in the long-run, especially for reducing joint reaction loads in patients with osteoarthritis [25,38].425

Nevertheless, we are one step closer to utilizing new biofeedback types such as predicted muscle426

forces or joint reaction loads in real-time and design clinically relevant scenarios through this427

work.428

Being able to accurately determine the kinematics using either a marker- or IMU-based429

analysis systems is an important step that, if not done correctly, can affect calculations at the430

next stages. On the one hand, marker-based solutions are well-established and can accurately431

determine the movement of the reflective markers. However, in real-time scenarios, there might be432

instances of missing markers due to occlusion [26], which must be handled before processed by433

IK. On the other hand, IMU-based solutions can be utilized in out-of-the-lab settings permitting a434

new dimension of movement analysis and possible applications. Nevertheless, the limitation of435

IMU technologies lies in their accuracy, aggregation of errors (bias or drift), magnetic interference,436

and difficulties in calibrating their placement on the body. The synchronization of multi-unit437

sensors that communicate through the network is fundamental for the proper function of the438

system [39]. We addressed this by synchronizing the timestamp of each device at the beginning439

of the acquisition session. Arriving data frames were placed into a data structure that efficiently440

resamples the heterogeneous entries based on the synchronized timestamp information. In this441

manner, we could extend and support a multitude of input devices (e.g., pressure insoles or surface442

EMG) within the proposed framework. We were able to test whether one could successfully use443

IMU information as an input to our system and verify the pipeline. However, we could have444

benefited from utilizing a well-established IMU MOCAP suit such as XSENS instead of our445

custom-build solution and compare the performance of the system against marker-based solutions.446

In order to perform dynamics calculations, we must determine the first and second derivatives447

of the kinematics. This proved to be a challenging task for real-time applications because of448

the inherent noise in the measurements that can easily pollute the meaningful signal. This is449

not an issue in an offline setting because we can calculate the value of a signal at t using prior450

or subsequent information. Using subsequent information dramatically improves the filtering451

process without distorting the original signal. This is essentially what our proposed filter does.452

It introduces a small lag (e.g., 14 samples) in the data to predict the signal more accurately.453

Moreover, we use splines instead of finite differences to calculate the derivatives. If the motion454

capture operates at higher frequencies (e.g., 100 Hz), then a small delay will be negligible to the455

user. The drawback is that this filter can slightly increase the computation time and thus reduce456

the pipeline’s throughput. However, the benefits are that the kinematics are accurately determined,457

and therefore real-time filtering does not distort calculations at the following stages. It is also458

worth noting that one could determine the optimal filter parameters for a given type of task, such459

that they minimize the inconsistencies between the offline and online analysis, as shown in this460

study.461

Estimating the GRF&M in real-time under any movement context is an essential step462

towards moving in out-of-the-lab settings. This holds for any interaction of the user with the463

environment. In this study, we used a model-based approach to estimate the GRF&M based on464

first principles. While these wrenches approximate the measurements well, we observed that465

even a small mismatch could easily manifest in the calculated joint moments. Interestingly, some466

components of the ground reaction wrench influence these moments differently. A model-based467

approach might be challenging to implement and probably hard to generalize to different types of468

movements. Furthermore, more accurate models might result in further computation latencies.469

Given that rich data sets of movements can be recorded, we think that a machine learning method470

might appeal better in the context of real-time applications.471

Predicting muscle forces are an esential aspect of utilizing musculoskeletal models because472

direct measurements are challenging and sometimes impossible. Invasive techniques raise many473

issues, whereas the mapping of muscle activity to muscle force is not trivial. Non-invasive474

assessment of muscle-tendon loads through vibration tracking [40] is a promising technology475

currently at a development stage. Well-validated and calibrated musculoskeletal models can476

provide us with reasonable estimates of the internal forces for cyclic movements (e.g., walking477

and running) even though one needs to resolve the muscle redundancy problem [31]. Determining478
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the muscle forces in real-time is the most computationally expensive operation presented in this479

pipeline. To alleviate this, we sought to formulate the optimization in a manner that is easy to solve480

while also precomputing specific computationally expensive quantities (analytical representation481

of the moment arm matrix). Formulating the optimization in terms of muscle forces allowed482

us to remove the upper-bound on the decision variables and avoid including reserve actuators483

(additional unknowns) to compensate for the model’s inconsistencies. The latter is the typical case484

when one optimizes for muscle activations (0 � am � 1) because the muscles may not be able to485

produce the right amount of force to satisfy the movement. The number of constraints (six equality486

constraints) was further reduced by avoiding optimizing for non-physiological forces applied on487

the pelvis. Importantly, we showed that the predicted muscle forces closely resemble the ones488

obtained from a typical SO formulation in OpenSim. The limitation of the current implementation489

lies in the optimization routine’s ability to solve the problem efficiently. Nevertheless, we are490

exploring how to improve on this and possibly include additional constraints that could originate491

from direct measurements such as surface EMG to personalize the obtained solutions optionally.492

Calculation of muscle forces permits the estimation of joint reaction loads. The plethora of493

gait retraining systems rely on estimating the knee adduction moment using the ID method to494

meet applications’ real-time constraints [41–43]. The knee adduction moment is a measure which495

if reduced, can ease knee pain for subjects that are affected by osteoarthritis in the medial cartilage496

compartment [43]. However, this measure cannot predict the effect of muscle co-contraction497

and its role in stabilizing the joints and regulating their load [14]. Obtaining joint reaction loads498

are computationally expensive due to muscle optimization. However, it provides us with richer499

information that could help design new rehabilitation solutions.500

5. Conclusions501

In this work, we presented a framework for calculating a multitude of kinematic and502

dynamic quantities using musculoskeletal models in real-time. Such a system can find application503

in rehabilitation by providing biofeedback to the users during the training sessions. Notably, the504

system is designed to work with marker- and IMU-based MOCAP solutions. The second allows505

exploring scenarios where users’ habits can be monitored and analyzed outside a dedicated and506

well-equipped laboratory (outdoor activities). The out-of-the-lab setting is still an ambitious goal507

that is only possible for kinematic analysis. Performing dynamic analysis without additional508

sensing devices is challenging due to the complexity of modeling any user’s interactions with509

the environment (e.g., ground reactions, contacts with objects). Within this vision, we think that510

the future lies in this direction, where interactions can be accurately predicted, and kinematic511

and dynamic analysis can then be performed in real-time. This technological leap will unveil512

new research directions that could target not only applications related to healthcare and human513

well-being but also translate to other fields as well. We hope that the methods outlined here and514

the publicly available source code can help meet this grand challenge.515
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