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Abstract: This study aims to explore the possibility of estimating a multitude of kinematic and dynamic
quantities using subject-specific musculoskeletal models in real-time. The framework was designed to
operate with marker-based and inertial measurement units enabling extensions far beyond dedicated motion
capture laboratories. We present the technical details for calculating the kinematics, generalized forces,
muscle forces, joint reaction loads, and predicting ground reaction wrenches during walking. Emphasis was
given to reduce computational latency while maintaining accuracy as compared to the offline counterpart.
Notably, we highlight the influence of adequate filtering and differentiation under noisy conditions and
its importance for consequent dynamic calculations. Real-time estimates of the joint moments, muscle
forces, and reaction loads closely resemble OpenSim’s offline analyses. Model-based estimation of ground
reaction wrenches demonstrates that even a small error can negatively affect other estimated quantities. An
application of the developed system is demonstrated in the context of rehabilitation and gait retraining. We
expect that such a system will find numerous applications in laboratory settings and outdoor conditions
with the advent of predicting or sensing environment interactions. Therefore, we hope that this open-source
framework will be a significant milestone for solving this grand challenge.

Keywords: real-time; musculoskeletal; kinematics; dynamics; muscle forces; joint reactions; ground
reactions; inertial measurement units

1. Introduction

Movement is essential for human well-being, and diseases that affect it can significantly
deteriorate life quality. Advances in mobile sensors (Inertial Measurement Units (IMU)), video
technologies (markerless Motion Capture (MOCAP)), and traditional marker-based systems are
used for real-world assessment of movement [1,2]. The application of these methods in the
analysis of healthy and pathological conditions can be crucial for clinical decision making [3,4].
Complimenting direct measurements using validated computational models can also provide new
sources of information for training and rehabilitation purposes [5,6]. It is a common practice
that such assessments are carried out offline (post-processing after a session) and in dedicated
MOCAP laboratories. To this end, we aim to examine the possibility of estimating a multitude of
kinematic and dynamic quantities using computational musculoskeletal models in real-time for
both in- and out-of-the-lab conditions.

Different research groups have approached the problem of estimating the kinematics and
dynamics of movement using musculoskeletal models. Notably, in [7] the authors laid the
foundation and presented a system capable of assessing human movement and muscle function
in real-time. Their predictions were compared against the gait2392 model [8] within the open-
source modeling framework OpenSim [9,10]. Statistically significant differences were found in
the output variables, which may not influence the conclusions in clinical settings as concluded
by the original authors [11]. However, a proprietary solution may limit this system’s use and
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extent towards a quick adoption of new technologies (e.g., markerless tracking). To this end, we
will present an open-source framework for carrying real-time calculations based on the OpenSim
tool-chain that is well-adopted by the biomechanics community.

An open-source solution (rtosim), that relies on OpenSim, capable of performing Inverse
Kinematics (IK) and Inverse Dynamics (ID) calculations was presented in [12]. Multi-thread
implementation was proposed to increase the throughput of the system. The authors presented a
real-time filter for rejecting noise and calculating the kinematics’ first and second derivatives. The
influence of the filter’s cutoff frequency was further studied, and a methodology for determining
its value was presented. In this study, we examine the role of real-time filtering more closely and
how it can negatively affect dynamic calculations at later stages. We propose a filter capable of
accurately estimating the kinematics’ first and second derivatives under noisy conditions. This
results in real-time calculations of kinematics and dynamics that closely resemble the alternative
offline analyses.

The same group also extended their work [13,14] in order to calculate muscle action and
joint reaction loads in real-time using Electromyography (EMG)-driven methods [15,16]. These
methods take into account surface EMG measurements to calibrate the musculoskeletal model by
adjusting muscle-related parameters while satisfying joint moments about one or more Degrees
of Freedom (DoF). This approach’s limitation is that surface EMG measurements can induce
noise due to soft-tissue movement artifacts that can cause problems during calibration and use of
the method. Besides, a superficial measurement is not an ideal representative of whole muscle
function. This approach might also be limited by the number and choice of calibrated DoF. In our
implementation, we decided to resolve the muscle redundancy through an optimization similar
to [7] so that the system can find applications where EMG measurements might not be possible.
However, it should be pointed out that optimization-based methods might fail to predict muscle
activity in pathological conditions such as cerebral palsy or Parkinson’s disease [17].

In this work, we envision that the real-time system can be used not only in laboratory settings
but also in out-of-the-lab conditions, where the kinematics might be measured through IMU or
other markerless devices. With some minor modifications to the IK method, one can easily track
both body orientations and marker positions. An important pre-requirement is that one can either
measure or predict the user’s interactions with the environment (e.g., ground reactions or contacts
with objects) to carry out further dynamic analyses. In particular, we focused on estimating the
Ground Reaction Forces and Moments (GRF&M) during walking using only kinematics. There
have been numerous studies [18-24] that focused on the solution to this challenge. Model-based
estimation of these wrenches (a 9D vector containing the point, force, and moment) proved to be
an ambitious goal under the context of any movement. This is because any small error in these
estimates can lead to large variations in the joint moments, among other quantities. Our findings
suggest that joint moments are sensitive to estimates of the GRF&M, but some moments can be
determined accurately if one or two of the unknowns (ground reaction forces, Center of Pressure
(CoP), or moments) is measured.

In the following sections, we will closely examine the challenges mentioned above. In
subsection 2.1, will extend the IK method to facilitate marker- and IMU-based tracking. We will
continue with the real-time filtering and differentiation method (subsection 3.1) that works very
well under noisy measurements. In subsection 2.3, we will examine the problem of predicting
the GRF&M using only kinematic information. We will then present the formalization for
real-time muscle redundancy optimization (subsection 3.4). We will provide context related
to the methods’ performance and outline techniques that can help reducing latencies in the
calculations (e.g., parallelization of modules and estimation of muscle forces). In the results
section, we will thoroughly examine the accuracy of the real-time calculations, comparing our
findings with the offline methods to ensure that the former maintains the right balance between
real-time applications’ constraints and accuracy. A use case scenario of the proposed framework
is presented (subsection 2.5) in the context of rehabilitation and gait retraining to reduce knee
loads [6,25] (subsection 3.5). Determining kinematics, joint moments, muscle forces, and joint
reaction loads in real-time can find many applications in sports biomechanics, ergonomics, and
rehabilitation. We expect that real-time calculations will be a viable solution in the near future,
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not only in laboratory settings but also in outdoor conditions with the advent of predicting or
sensing environment interactions.

2. Methods

Figure | presents an overview of the real-time musculoskeletal kinematics and dynamics
analysis pipeline. The time-wise execution is divided into the acquisition and processing threads
that work independently while sharing results through a thread-safe data buffer. The acquisition
part is connected with the MOCAP system that can work with marker- and IMU-based systems.
Other types of sensor sources such as force plates, EMG, and pressure insoles can also be
considered inputs. In the case of marker-based systems, we implement a marker completion step
to solve the issue of missing markers due to occlusion [26]. The IK module is solved on the
acquisition thread for each frame of data received, and its output (generalized coordinates) and
other raw inputs are placed in the data buffer. Depending on the application, the processing thread
can arrange the operations required to extract meaningful information from the musculoskeletal
model in real-time. In this example, we present a workflow for calculating the kinematics,
generalized forces, muscle forces, and joint reaction loads. An important aspect of this workflow
is the real-time filtering and differentiation of the generalized coordinates obtained from IK,
which is the input to ID and consequent blocks. ID and joint reaction calculations are low-
latency operations. However, determining the muscle forces that are necessary for estimating
the joint reactions is a challenging task. The model calibration module refers to adjusting
the musculoskeletal model to account for the subject’s anthropometric parameters using static
trials and functional tasks. The internal implementation of the different building blocks will be
explained in the following subsections.
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Figure 1. Overview of the real-time analysis pipeline. The acquisition thread collects raw data from sensor
inputs and performs IK to obtain the kinematics from marker- and IMU-based sources. Data are shared using
thread-safe data structures. Depending on the application, the processing thread can arrange the operations
required to extract meaningful information from the musculoskeletal model in real-time. Model calibration
refers to the process of adjusting the musculoskeletal model to account for the subject’s anthropometric
parameters using static trials and functional tasks.

2.1. Marker- and IMU-based inverse kinematics

The current implementation of 1K can handle marker position and IMU orientation tracking.
The implementation of IK solves an optimization problem that minimizes the holonomic (position)
constraints, the weight marker, and orientation error

| - | Mo
e LT 2 2
minimize ZqW(q)qm(q) + T E,- wir (q) + TSw; gj wija;(q) (1)
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where, gq.,- denotes the holonomic constraint error, r; the difference between experimental
and virtual marker position, «; the angular difference between experimental and virtual IMU
orientation, and w are the weights (default is 1) associated with the different error terms. The
superscript T over a vector or matrix denotes the transpose operation. Please note that this
implementation can handle models that contain holonomic constraints due to the first term in the
optimization that penalizes these errors.

Concerning IMU integration, a calibration procedure is defined to match the sensor orienta-
tions with the corresponding body segment orientations. The subject is asked to stand in a pose
that matches the default pose of the virtual model for a few seconds. The sensor orientations
Gimu RS are expressed in the Earth’s coordinate system. In order to express them in the global
coordinate system of OpenSim, a transformation Go RGmU g first required. Next, a transformation
Rheading s applied which is computed from the angular difference between the orientation of the
base sensor’s anterior axis (typically the IMU placed on the pelvis or torso) measured during the
static trial, and the orientation of the anterior axis of the virtual model. This is necessary to com-
pensate for the heading direction of the subject. The estimated transformation Ryeqging * Go ROmu
is considered constant throughout the session and can be applied as an offset transformation
during IK. That is, after the static trial, the initial orientations in the IK analysis module are
set to the transformation Rpeading - GoRGimu . Gimu RSi (tinit), while during the dynamic trial, the
transformations passed to the IK module are Rjeading - GoROm . Gimu RSi (1),

In our experiments, we made use of a custom-build IMU MOCAP system (based on
NGIMU from x-io Technologies Limited) to record the upper- or lower-limb movement and
test the real-time system. Unfortunately, this introduced many technical challenges related to
obtaining accurate orientation from multiple sensors that are out of the current study’s scope. We
experienced problems with the accumulation of errors due to bias and drifting in the orientations,
which are sensitive to magnetic interference. Synchronization of sensor data (e.g., IMU, pressure
insoles) was accommodated through a data structure that stores the arriving frames, which are
then resampled (constant sampling frequency) using each sensor’s synchronized timestamp.
Timestamp synchronization was performed at the beginning of each session. Despite the technical
challenges, we were able to test whether one could successfully use IMU information as an input
to our system and verify the IK method.

2.2. Real-time filtering

Real-time filtering is a critically important step in our pipeline, influencing the quality
of the obtained results from dynamic analysis. Indeed, since we are interested in performing
ID analysis, one has to determine the first and second derivatives of the kinematic data (IK).
Calculating derivatives is a challenging task in the presence of noise. If the noise is permitted
in the ID calculations, we will obtain unrealistic estimates of the joint moments because the
acceleration term is multiplied with the inertia mass matrix. To cope with this issue, we usually
apply a low pass filter (e.g., zero lag fourth-order Butterworth filter [23]) and then use splines
(e.g., generalized cross-validation splines [27]) to approximate the derivatives. To achieve good
results, we typically record the full trial and then perform the filtering offline, considering past
and future (non-causal filter) samples to calculate the current value. However, in a real-time
setting, one receives the data frame sequentially. If we want to consider future samples, then we
are technically introducing artificial delay (lag). We will show a trade-off between accuracy and
computational latency and optimally determine the filter parameters as per task.

The proposed filter (Figure 2) assumes that the data frame arrives one by one at a constant
sampling frequency (f) and is placed into a multi-dimensional circular buffer. Each time a new
frame arrives, it is appended at the end of the circular buffer, discarding the oldest frame. In our
implementation, the size of the circular buffer M is termed as the memory of the filter. A low-pass
(fe cutoff frequency) Finite Impulse Response (FIR) filter of order M (same as memory size) is
applied to reject the high-frequency noise. The filter’s kernel and window functions are sinc and
Hamming, respectively. The filtered signal is used to construct a generalized cross-validation
spline of order Ny. Consequently, they are used to calculate the first and second derivatives
of the signal. We evaluate the spines at t; = t— D/ f; (D is the lag of the real-time filter)
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instead of ¢ to improve the filtering result. Therefore, the proposed filter is characterized by four
hyper-parameters (M, f., N5, and D). Depending on the application and type of task, one can
fine-tune these parameters to achieve the right trade-off between delay and accuracy.
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Figure 2. An overview of the filtering and differentiation module. The generalized coordinates from IK are
placed into a circular buffer of memory M. The M samples of each signal are filtered using a low pass FIR
filter. A generalized cross-validation spline of order Nj is then constructed to evaluate the coordinate and
derivatives’ value at time instance ?4.

2.3. Estimation of ground reaction wrenches

To perform dynamic analysis, one must estimate the external GRF&M and include them
in the calculations. These are typically measured using dedicated equipment (e.g., force plate).
However, this can significantly limit the scope and extent of any dynamic analysis only when such
measurements are available. There have been numerous studies [18—24] that try to determine the
GRF&M using only kinematic information. In the context of real-time applications, a compromise
must be made between complexity and accuracy.

In this work, we implement a GRF&M prediction method, where the total forces and
moments are computed using the Newton-Euler equations of motion:

N
ftotal = Zmi(ai _g)

N

Trotal = Z

i

2

Lw; + w; X (I,'w,')

N K
= > > (riix £i)
T

where fi,:q denotes the total external force, N the total number of body segments, m; the mass of
each segment, a; the linear acceleration of the center of mass, and g the gravitational force. In
the second equation, Ty, is the total external moment, I; the inertia tensor with respect to the
segment’s center of mass, and w;, w; the angular velocities and angular accelerations, respectively.
fij describes the forces applied to the K; end-points of each body segment with position vectors
between the center of mass and the end-points denoted by r;;.

Assuming the GRF&M are the only external forces and moments are applied to the subject
during gait, the fy and Ty are equal to the sum of the forces and moments applied to each
foot:

fr +fl - ftotal

Tr + T = Trotal-

3)

During the single support phase, the GRF&M applied to the limb in contact with the
ground is equal to the total GRF&M computed. Whereas, during the double stance phase, the
indeterminacy problem is resolved following the smooth transition assumption [18]. In this
assumption, the transition functions f; are expressed in a walking direction coordinate system.
The estimated forces and moments, which are expressed in the global reference frame, are
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transformed after computing the walking direction from the average orientation of the pelvis
segment’s anterior axis. This results in two new vectors f" and T)" .

An import prerequisite for using the transition functions is determining time events during
the gait cycle. In particular, the heel-strike #,; and toe-off events 7, as well as the time periods
Tg4s and Ty of the double and single support phase, respectively. In this work, we implemented a
family of methods that share a common architecture presented in the state diagram (Figure 3).
State changes occur when selected values such as the magnitude of generated contact forces
in proximity with virtual ground surfaces, estimated acceleration values of lower limb body
segments based on kinematics, or equivalent measurements from external sensors (pressure
insoles or accelerometers). This information is used to determine the gait state (stance or swing)
based on a predefined threshold value vy;,. The gait events and periods are determined online by
monitoring changes in the last k consecutive states. The leading leg is assigned to the lower limb
corresponding to the last heel-strike event until the next heel-strike event of the contralateral leg.
After computing the gait-event-related parameters, the GRF&M applied on each lower limb are
calculated following the rules defined in Table 1.

v(t) > v
v(t) < v, v(t) > v

v(t) < v

Figure 3. State diagram denoting the conditions required to determine the current gait state. Transitions
between swing and stance phases occur by comparing the selected measure u(#) with a threshold value uyy,.

Reaction Component Double Support Single Support

tvrvailing (t) tv(‘))tal( leadmg)f’( ) 0

tratlmg (t) Ttv(‘:tal ( leadmg)f ! ( ) 0

leadmg (t) total( ) trullmg (t) tv(\))ml (t)
mleadmg (t total( ) tratlmg (t) Ttv;tal (t)

Table 1: According to the gait phase, classification of calculations for determining the forces and
moments applied on the leading and trailing legs. During the single support phase, the GRF&M
of the limb in contact with the ground are equal to the total external force f i And moment T? .
Whereas, during the double support phase, the results are distributed between the two legs using

the transition functions f;(¢) described by [18].

The CoP is approximated as described in [28]. We scale the distance d, from the heel to the
metatarsal-phalangeal joint during the single stance phase with the stance frequency w = 27/ Ty
using the following scaling factor:

2 in2wt 3
(sinw - Smg wr_ Zwt) e [0,1]. 4)

The computed vector o - d is projected on the virtual plane representing the ground. After
determining the external wrenches, we perform an ID calculations using the recursive Newton-
Euler method, which is very efficient.

2.4. Real-time estimation of muscle forces

Estimation of muscle forces imposes several challenges because there is not a unique
solution due to the muscle redundancy problem [29] (more unknowns than known equations).
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Unfortunately, we can neither measure muscle forces nor measure the activity of all muscles (e.g.,
deep muscles). Therefore, optimization is one of the few viable methods that one could use to
determine these unknowns, which are essential for consequent calculations (e.g., joint loads) and
different applications. It has been shown that the central nervous system is controlling the muscles
in a manner that minimizes the effort during cyclic movements in healthy subjects [30]. Objective
criteria such as muscle stress squared or activation squared seem to explain well experimental
recording of muscle activity [31].
In our implementation, we formulate the optimization problem as follows:

18 (i Y
e m,i
minimize —
fu P Z [ e

. O6x1 O6xm ®)
subject to =
o TN-6xI [R(q)N—éxM fo

fm=0

where f,, € ®M denotes the muscle forces, f7* € RM the muscle maximum isometric force, p

is the power exponent (setto 2 or 3), R € RN=0)xM the moment arm matrix that depends on the
generalized coordinates (g € ®V), and T € RV =6 the generalized forces. The residual forces of
the pelvis are not included in the above optimization, because they are a byproduct of modeling
inconsistencies [9]. The above formalization requires that we have already solved the IK and
ID problems to compute g and T, respectively. Please note that the inequality constraint f,,, > 0
ensures that the muscles can only pull, but it does not restrict the upper bound.

Solving Equation 5 in real-time is challenging because it takes time to evaluate the moment
arm matrix and solve the nonlinear optimization in fewer steps. To this end, the moment
arm matrix is approximated symbolically. To derive a symbolic representation, multivariate
polynomial fitting [7,32] was performed on samples of the muscle moment arm at different
configurations. To reduce the complexity and improve the fit’s robustness, we determined the
coordinates affecting each element in the moment arm matrix by identifying the DoF spanned
by each muscle. To speed up the optimization, we can control the convergence tolerance and
“warm-start” from the previously obtained solution. We used the interior point algorithm [33] to
solve the nonlinear, constrained optimization problem.

2.5. Developing a gait retraining system

In the previous subsections, we presented a pipeline for estimating the kinematics, dynamics,
and internal forces (muscle and joint) of the musculoskeletal system in real-time. The pipeline
serves as the backbone (back-end) for implementing rehabilitation solutions that could provide
real-time feedback to the user and clinicians (instructor). In this subsection, we present a gait
retraining system (front-end) for reducing the knee joint’s loading and reduce the pain. The gait
retraining system aims to engage the users in a series of exercises that can teach them how to
adapt their gait optimally.

The gait retraining system was implemented using the Unity3D game engine. Unity3D was
selected because it can permit the implementation of solutions that can target typical projection
screens and utilize augmented or virtual reality output devices. Our system could support
interactive scenarios that could engage the user and make the training process more fun and
effective. Exchange of data with the simulation back-end was established through shared memory
to improve efficiency, reduce latency, and decouple implementation specifics (e.g., simulation
back-end written in C++ and front-end in C#).

Figure 4 presents the front-end main window. It contains the musculoskeletal visualizer,
real-time plotting, and footprint visualization. Within the application, the operator can monitor the
logged users’ progress, replay sessions, analyze events, and create new objectives and scenarios.
The expert can define a session’s objectives based on values obtained from the back-end, namely
foot progression angle, vertical knee joint reaction forces, knee adduction moment, and trunk
angle. Once the range and desired values are defined, we can use intuitive visualization primitives
such as bar, gauge, or text indicators to provide real-time feedback.
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Figure 4. Visualization front-end composed of a musculoskeletal visualizer, real-time plotting, and footprint
visualization.

In Figure 5 we present the gamification approach used to engage the user during a train ses-
sion. The users gather points according to their performance, following the clinician’s objectives
during a session. A combo mechanism is used to motivate and encourage users to follow the
instructions and maintain the changes throughout the session’s whole duration. Each session, the
user is awarded the gathered and golden points calculated based on how well the patient followed
the suggestions. Users can monitor their performance on the dashboard, examine key statistics
and significant milestones that reflect their progress.

Session results

Combo meter

increased with consecutive
SUCCESSes
Total
Points
. Points
Session awarded for following a
suggestion once

Golden
Real-time analysis @- Points

& feedback

Figure 5. Gamification approach based on session awarded points. Users can monitor their performance on
the dashboard, examine key statistics and major milestones that reflect their progress.

The extension of this system is not only limited to the particular case presented here. One can
imagine that similar rehabilitation scenarios could be implemented in line with the applications’
needs. The significance of the back-end is that it permits calculating any kinematic and dynamic
quantity (joint angles, moments, muscle forces, reactions) from the musculoskeletal model in
real-time. Depending on the application, different combinations of these quantities will be needed.
The front-end can then transform the raw information and visualize it appropriately. The user’s
interaction may not be only limited to primitive projection screens but can also utilize haptic,
augmented, and virtual reality devices. Therefore, rehabilitation scenarios could be designed so
that they are more engaging and effective. All this would not be possible without an accurate and
reactive back-end.

3. Results

In this section, we present the comparison of the real-time filtering method’s performance
and justify how to determine the different hyper-parameters. Next, the comparison of the offline
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and real-time generalized forces computed through ID is presented by highlighting the importance
of determining the kinematics’ first and second derivatives. We will further present the estimated
GRF&M and quantify their impact on the ID results. A comparison between the offline and
real-time calculations of muscle forces is examined. Computation delays for the various modules
are presented in the text. Finally, we outline a use case scenario of the proposed system in the
context of rehabilitation and gait retraining to reduce the knee’s joint reaction loads.

Our framework utilizes the OpenSim’s API [9,10,34] and all comparisons are made against
its offline methods for kinematic and dynamic calculations. The musculoskeletal model used in
this study is based on gait2392 [8] with some minor modifications. The DoF have been reduced
to 19 and the model is actuated by 92 Hill-type muscles [35]. The generic model is scaled using a
static trial to account for the subject’s anthropometry. Experiments were carried out on Intel(R)
Core(TM) 15-3320M CPU @ 2.60GHz. Better CPU specs can further reduce the computational
delays.

3.1. Performance of real-time filtering and differentiation

In this subsection, we demonstrate the real-time filter’s performance and outline the proce-
dure for determining the optimal values of its parameters. The filter operates on the generalized
coordinates obtained from IK since the optimization may not result in a smooth solution. The
mean computational delay of the IK module is less than 0.1 ms. Four parameters, namely the
cutoff frequency f,, spline order Ny, memory size M, and delay D, characterize the filter. The
type of movement determines the cutoff frequency. For slow movements like gait, we chose
fo = 6 Hz as is the case in most studies [14,36]. We also fixed the spline order to Ny = 3, a
reasonable value to avoid over-fitting. Determining parameters M and D is discussed below.

The purpose of the filter is to reject the noise and calculate the first and second derivatives
of the kinematics necessary for consecutive dynamic analysis. To determine the optimal values of
the two hyper-parameters (M and D), we examined the total Root Mean Squared Error (RMSE) (
Figure 6) of the filtered kinematics comparing the real-time filter and OpenSim’s offline kinematics
analysis. The OpenSim’s kinematics analysis utilizes the same low-pass filter and spline method,
having at its disposal the whole duration of the movement. We observed that for each type of
error (coordinates, speeds, accelerations), there exists an optimal value for M. We determined
that M = 35 is the optimal choice for this movement because acceleration errors can significantly
impact the consequent analysis. Besides, a small value of M reduces the computational latency
of the filter. Similarly, D = 14 seems to be the optimal solution, which can lead to an artificial
lag of 0.14 s for a typical marker sampling frequency of 100 Hz. Notably, one can follow this
procedure to determine the optimal parameters for any movement.
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Figure 6. RMSE between OpenSim’s offline kinematics analysis and proposed filter as a function of the
decision variables (M and D). We selected the smallest values that resulted in the lowest error in the
acceleration.
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To highlight the influence of filtering on the joint angles and derivatives, we compared (
Figure 7) OpenSim’s offline kinematics analysis (ground truth) against the proposed filter and
the “spatial” filter as implemented in rtosim [14]. The only parameter of the spatial filter is the
cutoff frequency, which we set to 6 Hz. We can observe that the proposed filter has a lower RMSE
and closely resembles OpenSim’s offline time-series. While the spatial filter can approximate the
original signal well, it underestimates its first and second derivatives for fast-moving coordinates
(comparison of all coordinates presented in the supplementary materials). The spatial filter has
low computational latency (mean latency less 0.1 ms) than the proposed filter (mean latency
of 3 ms) and is very easy to implement. However, acceleration errors can lead to significant
differences during dynamic analysis (presented in the next subsection).
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Figure 7. Comparison between OpenSim’s offline kinematics analysis, the proposed, and spatial filters. Left
RMSE compares OpenSim’s and proposed filter’s kinematics. Right RMSE compares OpenSim’s and spatial
filter’s kinematics. For comparison reasons, we shifted the curves to compensate for the time lag introduced
by the filters.

3.2. Influence of online filtering on inverse dynamics calculations

We will briefly discuss the performance of the real-time ID module with respect to OpenSim’s
offline counterpart. The ID module implements a recursive Newton-Euler formulation, which
is very efficient, achieving a mean computational latency of less than 0.1 ms. Please note that
the OpenSim’s ID offline analysis has at its disposal the full trial in advance and thus can apply
non-casual operations to reject the noise and calculate derivatives. In contrast, the real-time
system operates on the arriving frames and must process a limited number of instances (filter’s
memory buffer) to reduce latency while maintaining accuracy.

Moreover, we present the effect of online filtering on the calculated generalized forces from
ID and why proper filtering is important. In Figure 8 the comparison of the offline ID from
OpenSim and real-time ID utilizing the two real-time filters presented previously (proposed and
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spatial) is illustrated. A comparison of all coordinates is also presented in supplementary materials.
The time lag introduced by the filters was compensated (shifted) in these plots for comparison
reasons. We observed that the real-time results closely match the offline ones. Residual vertical
forces at the pelvis are low and within the accepted norm [37]. The initial part of the proposed
filter’s curve is missing because we need at least M samples to begin the processing. The real-time
curves are smoother and present fewer oscillations due to the non-causal implementation related
to the D parameter. We also observed that the proposed filter outperforms the spatial filter in
terms of RMSE. The spatial filter can underestimate the moments due to the kinematic mismatch
at the coordinate velocity and acceleration, as presented in the previous subsection. Therefore,
this can have a significant impact on the joint moments.
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Figure 8. Comparison among offline ID from OpenSim and real-time ID using the two real-time filters. Left
RMSE compares OpenSim’s ID and real-time’s ID that uses the proposed filter. Right RMSE compares
OpenSim’s ID and real-time’s ID that uses the spatial filter. For comparison reasons, the curves were shifted
to compensate for the time lag introduced by the filters.

3.3. Prediction of ground reaction wrenches and influence on joint moments

Predicting ground reaction wrenches in real-time can enable applications that calculate
dynamic quantities (e.g., moments and muscle forces) during movement. In Figure 9, we present
the comparison of the estimated and measured GRF&M during walking. The forces in the forward
(x) and vertical (y) directions closely resemble the measured ones. Lateral (z) forces follow the
overall shape. The x component of the CoP was accurately predicted, but the lateral z direction is
hard to determine. Less confluence is observed in the moments. The mean computation delay
of this module is 2 ms. The double support phase during walking leads to infinite possible
solutions (close kinematic chain). Modeling assumptions, such as the distribution of mass and
joint parameterization, can affect results due to the method’s nature.
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Figure 9. Real-time estimated ground reaction forces, moments, and CoP during gait. Good agreement
of the predicted forces, especially on the forward (x) and vertical (y) directions. In contrast, only the x

component of the CoP was accurately predicted. Less confluence is observed in the moments.

Next, we quantified the influence of the predicted GRF&M on joint moments calculated
from ID. In Figure 10, the comparison of the moments of the hip (flexion, rotation), knee, and
ankle joints are depicted. Even though the predicted GRF&M closely resemble the measured
ones, small discrepancies can significantly affect these moments. This becomes evident as we
move from distal to proximal segments (e.g., errors at the ankle are smaller than at the hip). In
the same figure, we also demonstrate which component of the estimated GRF&M influences the
particular joint moments. In this context, we assumed that we perfectly know only either the
CoP, CoP and moments, or CoP and forces. Notably, if we can correctly determine the CoP,
then the joint moments’ mismatch at the ankle and knee is smaller. To improve the estimation
of hip flexion moment, one must accurately determine both the CoP and forces. The ground
reaction moments influence the hip internal rotation. These findings suggest that joint moments
are sensitive to estimates of the GRF&M, but some joint moments can be determined accurately
if one or two of the unknown variables are measured.
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Figure 10. The influence of estimated GRF&M on the generalized forces computed through ID. Predicted
GRF&M greatly affect the calculate joint moments. A good estimate of CoP improves the predictions of
ankle and knee moments. Hip flexion requires accurate estimation of both CoP and forces, while hip rotation
CoP and moments.

3.4. Comparison of muscle forces determined in real-time

In this section, the performance of the real-time muscle optimization module is presented.
The determination of muscle forces can find many applications in sports biomechanics, er-
gonomics, and rehabilitation. For example, estimation of muscle forces is necessary to determine
the joint reaction loads affected by muscles spanning the joints. Resolving the muscle redun-
dancy is the bottleneck of the whole pipeline requiring an average of 10 ms to execute with
a musculoskeletal model with 92 muscles. Things that have improved the performance of the
muscle optimization were (i) the formulation of the problem to reduce the constraints and deci-
sion variables, (ii) the analytical representation of the moment arm matrix (precalculated), (iii)
optimization initialized using the previous solution, and (iv) the efficiency and parallelism of the
interior point optimization method.

Figure 11 presents the comparison between OpenSim’s Static Optimization (SO) and pro-
posed real-time muscle optimization method. Results show forces for major muscles (gluteus
maximus, semimembranosus, psoas major, rectus femoris, vastus medialis, biceps femoris short
head, medial gastrocnemius, soleus, and tibialis anterior) of the lower-limb. A comparison of
all 92 muscles is presented in the supplementary materials. Good agreement between timing
and shape matching is observed even though the two methods use different formalization and
implementation specifics.
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Figure 11. Comparison between OpenSim’s SO and proposed real-time muscle optimization method. The
force of major right leg muscles: gluteus maximus, semimembranosus, psoas major, rectus femoris, vastus
medialis, biceps femoris short head, medial gastrocnemius, soleus, and tibialis anterior was presented.

3.5. A gait retraining system for reducing knee loads

In this subsection, we would like to highlight the usefulness of the proposed system in the
context of gait retraining and rehabilitation. We will outline a possible use case scenario that
might appeal to researchers and clinicians in the field of rehabilitation.

Dr. Good has experience with the gait retraining system, and his clinic just received
a patient that has been diagnosed with mild knee osteoarthritis in her right leg. He
already knows that the patient needs to adopt a gait pattern that alleviates the knee
joint’s medial loading to reduce the pain. The primary indicator to assess the loading
of the joint is the medial reaction force at the knee. One strategy is to adjust the foot
progression angle, defined as the angle between the line of walking progression and the
foot’s longitudinal axis. Therefore, he defines the vertical reaction force as an objective
to be minimized. The decision variable is the foot progression angle. However, he
also decides to experiment with the step length and step width, providing simple and
intuitive visual feedback to the patient. The system can adjust the decision variables’
target value (Figure 12) using online gradient descent based on the joint reaction forces’
estimates.

First, he tried to familiarize the patient with the motion analysis lab by explaining the
different visualization elements and by presenting the current session’s goal. Since this
is her first session, the patient is ordered to walk normally to gather information on
her walking habits and calibrate the model. The clinician checks if the system works
properly by comparing the reaction loads’ real-time and offline calculations at the knee
(Figure 13). Based on the calibration trial, he then sets the initial target values for the
decision variables. The patient is instructed to walk by alternating her foot progression
angle, step length, and step width based on the system’s indication. After exploring
different gait modifications using real-time feedback, an optimal walking strategy is
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reached, resulting in reduced reaction loads on the knee’s medial compartment and is
also comfortable for the patient. Both Dr. Good and the patient feel satisfied by the
experience of using the gait retraining system, and the next appointment is scheduled.

Combo :x1 Score 4

Progression angles

Figure 12. The gait retraining session aims to reduce knee reaction loads by adjusting the foot progression
angle, step length, and step width (decision variables). The green regions of the decision variables are
adjusted online according to the reaction forces’ estimation on the diseased knee. The user is awarded points
if the instructions are followed.

knee_r_on_tibia_r_in_ground_fx knee_r_on_tibia_r_in_ground_fy knee_r_on_tibia_r_in_ground_fz
0
RMS| 94.32 RMSE = 169.79 SE = 19.15
750 /\/\ 25 5:4 /

% 500 % -500 '\f / \ % 0 / M/v\
I I I
5 201 ,_/ 8 -1000 g -2
< 0 — < <
g g g -soy |
S S _ o
§ -250 5 1500 g s
2._ S S
£ -500 £ -2000 £ -100 \ v
= —— OpenSim = —— OpenSim = — \ogensim

-7%0 Real-time ~2500 Real-time -125 al-time

0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
gait cycle (%) gait cycle (%) gait cycle (%)
knee_r_on_tibia_r_in_ground_mx knee_r_on_tibia_r_in_ground_my knee_r_on_tibia_r_in_ground_mz
_ RMSE = 3.58 _ RMSE/X 1.94 _ RMSE = 0.78
€ 41 £15 €10
z 10 |\ z z
§ 510 58
E o “‘\/\ £ £
S s s
£ £ E 6
s \ s 5 / s \
g0 g / \ g4
® ® [ © /
g e / \ < /\ /
= = 0 s 24 9\ : o\
£ _20{ — Opensim £ 7L Opensi € ~— opensim
S S S
- Real-time = Real-time - o Real-time
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
gait cycle (%) gait cycle (%) gait cycle (%)

Figure 13. Comparison between OpenSim’s (offline) and real-time’s joint reaction loads (forces and
moments) on the knee using the muscle forces obtained by the proposed optimization. For comparison
reasons, the curves were shifted to compensate for the time lag introduced by the filter.

4. Discussion

In this work, we presented the implementation and validation of a system capable of
calculating various kinematic and dynamic quantities from a musculoskeletal model in real-time.
We rigorously proved that the real-time calculations closely resemble their offline counterpart.
This permitted us to examine the use of such a system for gait retraining to provide real-time
biofeedback to the user. The added value of a gait retraining system needs to be further examined
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in the long-run, especially for reducing joint reaction loads in patients with osteoarthritis [25,38].
Nevertheless, we are one step closer to utilizing new biofeedback types such as predicted muscle
forces or joint reaction loads in real-time and design clinically relevant scenarios through this
work.

Being able to accurately determine the kinematics using either a marker- or IMU-based
analysis systems is an important step that, if not done correctly, can affect calculations at the
next stages. On the one hand, marker-based solutions are well-established and can accurately
determine the movement of the reflective markers. However, in real-time scenarios, there might be
instances of missing markers due to occlusion [26], which must be handled before processed by
IK. On the other hand, IMU-based solutions can be utilized in out-of-the-lab settings permitting a
new dimension of movement analysis and possible applications. Nevertheless, the limitation of
IMU technologies lies in their accuracy, aggregation of errors (bias or drift), magnetic interference,
and difficulties in calibrating their placement on the body. The synchronization of multi-unit
sensors that communicate through the network is fundamental for the proper function of the
system [39]. We addressed this by synchronizing the timestamp of each device at the beginning
of the acquisition session. Arriving data frames were placed into a data structure that efficiently
resamples the heterogeneous entries based on the synchronized timestamp information. In this
manner, we could extend and support a multitude of input devices (e.g., pressure insoles or surface
EMG) within the proposed framework. We were able to test whether one could successfully use
IMU information as an input to our system and verify the pipeline. However, we could have
benefited from utilizing a well-established IMU MOCAP suit such as XSENS instead of our
custom-build solution and compare the performance of the system against marker-based solutions.

In order to perform dynamics calculations, we must determine the first and second derivatives
of the kinematics. This proved to be a challenging task for real-time applications because of
the inherent noise in the measurements that can easily pollute the meaningful signal. This is
not an issue in an offline setting because we can calculate the value of a signal at ¢ using prior
or subsequent information. Using subsequent information dramatically improves the filtering
process without distorting the original signal. This is essentially what our proposed filter does.
It introduces a small lag (e.g., 14 samples) in the data to predict the signal more accurately.
Moreover, we use splines instead of finite differences to calculate the derivatives. If the motion
capture operates at higher frequencies (e.g., 100 Hz), then a small delay will be negligible to the
user. The drawback is that this filter can slightly increase the computation time and thus reduce
the pipeline’s throughput. However, the benefits are that the kinematics are accurately determined,
and therefore real-time filtering does not distort calculations at the following stages. It is also
worth noting that one could determine the optimal filter parameters for a given type of task, such
that they minimize the inconsistencies between the offline and online analysis, as shown in this
study.

Estimating the GRF&M in real-time under any movement context is an essential step
towards moving in out-of-the-lab settings. This holds for any interaction of the user with the
environment. In this study, we used a model-based approach to estimate the GRF&M based on
first principles. While these wrenches approximate the measurements well, we observed that
even a small mismatch could easily manifest in the calculated joint moments. Interestingly, some
components of the ground reaction wrench influence these moments differently. A model-based
approach might be challenging to implement and probably hard to generalize to different types of
movements. Furthermore, more accurate models might result in further computation latencies.
Given that rich data sets of movements can be recorded, we think that a machine learning method
might appeal better in the context of real-time applications.

Predicting muscle forces are an esential aspect of utilizing musculoskeletal models because
direct measurements are challenging and sometimes impossible. Invasive techniques raise many
issues, whereas the mapping of muscle activity to muscle force is not trivial. Non-invasive
assessment of muscle-tendon loads through vibration tracking [40] is a promising technology
currently at a development stage. Well-validated and calibrated musculoskeletal models can
provide us with reasonable estimates of the internal forces for cyclic movements (e.g., walking
and running) even though one needs to resolve the muscle redundancy problem [31]. Determining
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the muscle forces in real-time is the most computationally expensive operation presented in this
pipeline. To alleviate this, we sought to formulate the optimization in a manner that is easy to solve
while also precomputing specific computationally expensive quantities (analytical representation
of the moment arm matrix). Formulating the optimization in terms of muscle forces allowed
us to remove the upper-bound on the decision variables and avoid including reserve actuators
(additional unknowns) to compensate for the model’s inconsistencies. The latter is the typical case
when one optimizes for muscle activations (0 < a,, < 1) because the muscles may not be able to
produce the right amount of force to satisfy the movement. The number of constraints (six equality
constraints) was further reduced by avoiding optimizing for non-physiological forces applied on
the pelvis. Importantly, we showed that the predicted muscle forces closely resemble the ones
obtained from a typical SO formulation in OpenSim. The limitation of the current implementation
lies in the optimization routine’s ability to solve the problem efficiently. Nevertheless, we are
exploring how to improve on this and possibly include additional constraints that could originate
from direct measurements such as surface EMG to personalize the obtained solutions optionally.

Calculation of muscle forces permits the estimation of joint reaction loads. The plethora of
gait retraining systems rely on estimating the knee adduction moment using the ID method to
meet applications’ real-time constraints [41—43]. The knee adduction moment is a measure which
if reduced, can ease knee pain for subjects that are affected by osteoarthritis in the medial cartilage
compartment [43]. However, this measure cannot predict the effect of muscle co-contraction
and its role in stabilizing the joints and regulating their load [14]. Obtaining joint reaction loads
are computationally expensive due to muscle optimization. However, it provides us with richer
information that could help design new rehabilitation solutions.

5. Conclusions

In this work, we presented a framework for calculating a multitude of kinematic and
dynamic quantities using musculoskeletal models in real-time. Such a system can find application
in rehabilitation by providing biofeedback to the users during the training sessions. Notably, the
system is designed to work with marker- and IMU-based MOCAP solutions. The second allows
exploring scenarios where users’ habits can be monitored and analyzed outside a dedicated and
well-equipped laboratory (outdoor activities). The out-of-the-lab setting is still an ambitious goal
that is only possible for kinematic analysis. Performing dynamic analysis without additional
sensing devices is challenging due to the complexity of modeling any user’s interactions with
the environment (e.g., ground reactions, contacts with objects). Within this vision, we think that
the future lies in this direction, where interactions can be accurately predicted, and kinematic
and dynamic analysis can then be performed in real-time. This technological leap will unveil
new research directions that could target not only applications related to healthcare and human
well-being but also translate to other fields as well. We hope that the methods outlined here and
the publicly available source code can help meet this grand challenge.
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