Preprint
Concept Paper

Energetic Materials Performance Enhancement Through Predictive Programming the Spatial Structure and Physics-Chemical Properties of the Functionalized Carbon-Based Nano-Sized Additive

Altmetrics

Downloads

340

Views

364

Comments

0

This version is not peer-reviewed

Submitted:

08 February 2021

Posted:

09 February 2021

You are already at the latest version

Alerts
Abstract
A new generation of nano-technologies is expanding solid propulsion capabilities and increasing their relevance for versatile and manoeuvrable micro-satellites with safe high-performance propulsion. We propose the innovative concept, connected with application of new synergistic effect of the energetic materials performance enhancement and reaction zones programming for the next generation small satellite multimode solid propulsion system. The main idea of suggested concept is manipulating by the self-organized wave patterns excitation phenomenon, by the properties of the energetic materials reaction zones and by localization of the energy release areas. This synergistic effect can be provided through application of the functionalized carbon-based nanostructured metamaterials as a nano-additives along with simultaneous manipulating by their properties through the electrostatic field. Mentioned effect will be controlled through predictive programming both by the spatial structure and physics-chemical properties of the functionalized carbon-based nano-additives and through the electromagnetic control of the self-organized wave pattern excitation and micro- and nano- scale oscillatory networks in the energetic material reaction zones. Suggested new concept makes it possible to increase the energetic material regression rate and increase the thrust of the solid propulsion system with minimal additional energy consumption.
Keywords: 
Subject: Chemistry and Materials Science  -   Biomaterials
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated