Preprint
Article

A Comparative Study on Supervised Machine Learning Algorithms for Copper Recovery Quality Prediction in a Leaching Process

Altmetrics

Downloads

220

Views

306

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

12 February 2021

Posted:

16 February 2021

You are already at the latest version

Alerts
Abstract
The copper mining industry is increasingly using artificial intelligence methods to improve cop-per production processes. Recent studies reveal the use of algorithms such as Artificial Neural Network, Support Vector Machine, and Random Forest, among others, to develop models for predicting product quality. Other studies compare the predictive models developed with these machine learning algorithms in the mining industry, as a whole. However, not many copper mining studies published compare the results of machine learning techniques for copper recovery prediction. This study makes a detailed comparison between three models for predicting copper recovery by leaching, using four datasets resulting from mining operations in northern Chile. The algorithms used for developing the models were Random Forest, Support Vector Machine, and Artificial Neural Network. To validate these models, four indicators or values of merit were used: accuracy (acc), precision (p), recall (r), and Matthew’s correlation coefficient (mcc). This paper describes dataset preparation and the refinement of the threshold values used for the predictive variable most influential on the class (the copper recovery). Results show both a precision over 98.50% and also the model with the best behavior between the predicted and the real. Finally, the models obtained show the following mean values: acc=94.32, p=88.47, r=99.59, and mcc=2.31. These values are highly competitive as compared with those obtained in similar studies using other approaches in the context.
Keywords: 
Subject: Computer Science and Mathematics  -   Artificial Intelligence and Machine Learning
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated