A peer-reviewed article of this preprint also exists.
Abstract
Endothelial autocrine signaling is essential to maintain vascular hemostasis. There is limited in-formation about the role of endothelial autocrine signaling in regulating severe pulmonary vas-cular remodeling during the onset of pulmonary arterial hypertension (PAH). In this study, we employed the first severe PAH mouse model, Egln1Tie2Cre (Tie2Cre-mediated disruption of Egln1) mice, to identify the novel autocrine signaling mediating the pulmonary vascular endothelial cells (PVECs) hyperproliferation and the pathogenesis of PAH. PVECs isolated from Egln1Tie2Cre lung expressed upregulation of many growth factors or angiocrine factors such as CXCL12, and exhib-ited hyperproliferative phenotype in coincident with upregulation of proliferation specific tran-scriptional factor FoxM1. Treatment of CXCL12 on PVECs increased FoxM1 expression, which was blocked by CXCL12 receptor CXCR4 antagonist AMD3100 in culture human PVECs. Endo-thelial specific deletion of Cxcl12 (Egln1/Cxcl12Tie2 Cre) or AMD3100 treatment in Egln1Tie2Cre mice downregulated FoxM1 expression in vivo. We then generated and characterized a novel mouse model with endothelial specific FoxM1 deletion in Egln1Tie2Cre mice (Egln1/Foxm1Tie2Cre), and found that endothelial FoxM1 deletion reduced pulmonary vascular remodeling and right ventricular systolic pressure. Together, our study identified a novel mechanism of endothelial autocrine sig-naling in regulating PVECs hyperproliferation and pulmonary vascular remodeling in PAH.
Keywords:
Subject:
Medicine and Pharmacology - Immunology and Allergy
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Alerts
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.