A peer-reviewed article of this preprint also exists.
Abstract
Clinker production is being reduced worldwide in response to the need to drastically lower greenhouse gas emissions. The trend began in the nineteen seventies with the advent of mineral additions to replace clinker. Blast furnace slag and fly ash, industrial by-products that were being stockpiled in waste heaps at the time, have not commonly been included in cements. Supply of these additions is no longer guaranteed, however, due to restrained activity in the source industries for the same reasons as in clinker production. The search is consequently on for other additions that may lower pollutant gas emissions without altering cement performance. In this research bentonite, a very common clay, was used as such an addition directly, with no need for pre-calcination, an still novel approach that has gone little explored to date for reinforced concrete with structural applications. The results of the mechanical strength and chemical resistance (to sulfates, carbonation and chlorides) tests conducted are promising. The carbonation findings proved to be of particular interest, for that is the area where cement with mineral additions tend to be least effective. In the bentonite-bearing material analysed here, however, carbonation resistance was found to be low as or lower than observed in plain Portland cement.
Keywords:
Subject:
Chemistry and Materials Science - Biomaterials
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Alerts
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.