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Abstract

We study various properties of the polygonal numbers; such as their recurrence
relations; fundamental identities; weighted binomial and ordinary sums; partial sums
and generating functions of their powers; and a continued fraction representation for
them. A feature of our results is that they are presented naturally in terms of the
polygonal numbers themselves and not in terms of arbitrary integers; unlike what
obtains in most literature.

1 Introduction

For a fixed integer r > 2, the polygonal sequence (P, ) is defined through the recurrence

relation,
Pn,r:2Pn—1,r_Pn—2,r+r_2 (nZ 2)7

with Poﬂn = O, Pl,r =1.

Thus, the polygonal sequence is a second order, linear non-homogeneous sequence with
constant coefficients. In § 1.2 we shall see that the polygonal numbers can also be defined
by a third order homogeneous recurrence relation.

The fixed number 7 is called the order or rank of the polygonal sequence. The nth polygonal
number of order r, P, ,, derives its name from representing a polygon by dots in a plane:
r is the number of sides and n is the number of dots on each side. Thus, for a triangular
number, r = 3, for a square number, r = 4 (four sides), and so on.

The book by Deza and Deza [4] is an excellent source book on polygonal numbers and fig-
urate numbers in general. Cook and Bacon [3] derived some summation formulas involving
the polygonal numbers. Hoggatt and Bicknell [8] studied the triangular numbers. The ar-
ticle by Garge and Shirali [6] showcases some interesting basic properties of the triangular
numbers. We refer the reader to Dickson [5, Chapter I| for an historical perspective on
polygonal numbers.

© 2021 by the author(s). Distributed under a Creative Commons CC BY license.


mailto:adegoke00@gmail.com
https://doi.org/10.20944/preprints202102.0385.v3
http://creativecommons.org/licenses/by/4.0/

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 February 2021 d0i:10.20944/preprints202102.0385.v3

In the sequel, the equations look nicer and simpler if we characterize polygonal numbers
by a quantity «, defined by o, = r — 2. The recurrence relation for polygonal numbers is
then,

Pn,r = 2Pn71,7" - Pn72,r + oy (TL > 2) ) (11)

with PO,r = O, Plﬂ“ =1.

We have ay = 0 for natural numbers (P, 2 = n), ag = 1 for triangular numbers, ay = 2 for
square numbers and so on.

The difference equation (1.1) is readily solved, yielding an exact formula for the nth r—gonal

number, namely,

T r 2
P,,= %nz — %n. (1.2)

The nth triangular number, P, 5, will, henceforth, be denoted by 7,:

n(n+ 1) .

Tn:Pn,?): 9

By re-arranging the rhs of (1.2), we see that every polygonal number can be expressed in
terms of a triangular number:
Po,=n+aT,. (1.3)

Since n = T,, — T,_1, we also have

Py =Ty + (ap — )Ty . (1.4)

1.1 Extension to negative subscripts

As is the case with other integer sequences, it is possible to extend the polygonal sequence
to include negative indices. Write the recurrence relation as

Pn,r = 2Pn+1,r - Pn+2,7" +ap, (15)
and replace n with —n, obtaining,
P—n,r = 2P—(n—l),r - P—(n—2),r + o,

forn=1,2,...
This gives P_;, = o, — 1, P_3, = 3o, — 2, P_3, = 6, — 3, and so on.

The solution of the difference equation
Pm,r = 2Pm—i—l,r - Pm+2,7" + o, s

with initial conditions P_;, = o, — 1, P_3, = 3, — 2, is

Writing —n for m we have

P, =—n?4+—"—"n. (1.6)
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Thus, the sequence (P, ) is defined for all integers; with the exact values given by (1.2)
and (1.6).

Note, in particular, that,

T_n:P_n3_%2+_7”=(”_21>”=Tn_1 (1.7)
Addition of (1.2) and (1.6) gives
P..,=amn*—P,,, (1.8)
while their difference gives
P.,=(a,—=2)n+P,,. (1.9)

Writing —n for n in (1.3) and making use of (1.7), we also have

P,,=-n+a71T,. (1.10)

1.2 A third order linear recurrence relation

Write the polygonal recurrence relation (1.1) in two ways,

-Pj,r - 2Pj—1,r = O — Pj—2,r7 (111)

2P)j,r - Pj—l,r = Pj-‘,—l,r - Oy, (112)

and add to obtain
3P, —3P;_1, = Pji1, — Pja,,

which can be written

Pj,r = 3F)j71,r - 3Pj72,r + -ij3,r . (113)

Relation (1.13) is a special case of a more general recurrence relation, given in Corollary 6.
Note that (1.13) with the seeds Py, =0, P;, = 1 and P, = o, + 2 makes (P, ,) a third
order recurrence sequence.

1.3 Sum of the first £ polygonal numbers

Theorem 1. If k is an integer, then,

zk:Pj,rz (%(k—l)Jrl) T, (1.14)

7=0
i | LT, — =2k if k is even;
(-1yP, = (1.15)
=0 —2T+2=2(k+1), ifkis odd.
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Proof. Using (1.2), we have

Jj=0 J=0 J=0

from which identities (1.14) and (1.15) follow upon using the following well-known results:

Z]—Tk, ZJ _ k+1)<2k+1):<2k;1)n,

k/2, if k is even, Ty, if kis even,

S

—(k+1)/2, if kis odd, =0 —Ty, if kis odd.

2 (-

O
We remark that, since,
k 1 — e(k+D)z k 1+ (_1)k;e(kz+1)w
> = Ve = — o —,
o —e o +e
the sums of powers of consecutive integers are readily found from
k ; k ;
1— (k+1)x o dt 1 —1)* (k+1)x
Si- ()| Tevi- ()| am
— dx 1—e =0 dx l+e 2=0
For the triangular numbers, identities (1.14) and (1.15) reduce to
k 2 k kE+1)(k+2
ZT + (k + 2;( i ), (1.17)

%Tk + g, if k£ is even;

i (~1)'T; = (118)

1T, — B ifkis odd.

1.4 Some fundamental identities

What Garge and Shirali [6] noted about triangular numbers is true about polygonal numbers
in general: it is generally relatively easy to prove relations and identities involving polygonal
numbers, often by simple algebra; the real challenge is in discovering them.

By using the exact formula (1.2), it is straightforward to verify the following identities
involving the polygonal numbers:

Po,—Pi,=Mn—-1)a+1, (1.19)

do0i:10.20944/preprints202102.0385.v3
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Por+ P 1,=0n—-1)>%a+2n-1,
Piy = Pjy Py — o (ar — 2)T0, 1T,
Poinr = Pongy = (Poiir — Pra1y)

Poimr + Pomr = 2P, + a,m?,
PoinrPronyr = Py — Poy) (P — Ponir)
Poimy=(m+1)P,, —mP,_1, +a, T,
Prtjmy = Poy 4 j Py + aem?Ti_y + apmnj |

Py jmr=Pny—JPn,+ arszj —a,mnj .
Setting m = j in (1.21), we have
Ppz, = P}, — ap(ay = 2)T}
which generalizes the well known triangular number identity,
T = sz + Tf_l ,
For the triangular numbers (a3 = 1), identities (1.19) — (1.27) reduce to:
T, T, = n,

T, + Ty =n?,

T =TT + T 111,
Tovsn — Tonen = 1(Tpg1 — Tont)
T + T = 2T, +m?,
TrpmTn-m = (Tn = T ) (T — Ta—1)
Toim = (m+ 1T, —mT, 1+ T,
Trjin = Tn + T + m*Tj_y +mnj

Tymj = Tn — jTm +m*Tj — mnj .
Note that the well known identity:
Tm+n :Tn+Tm+mn>

is a special case of (1.37).

rints202102.0385.v3
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1.5 Basic summation tools

In the sequel, we will often make use of the index shift identity,

k k a—1 k+a
Y firadd =Ty fid —amt Yy fpd wamt Y fiad (1.40)
=0 =0 =0 j=k+1

where (f;) is any real sequence and a and k are any integers.

Note that if a < 1, then,

1
ngx] =-> fi, (1.41)
j=a

and
k+a k
dopr=— ) fidd. (1.42)
j=k+1 j=k4a+1

We also require the following telescoping summation identities:

M;r

(fi41 = 1f5) = ferr — fo, (1.43)
7=0
k
Z T(fin+ £) = (D far + fo, (1.44)
7=0
or, equivalently,
k
Z (fi+1 = f3) = forr1 — f1, (1.45)
7j=1
k .
(17 (fi + fi) = (D) i + fro (1.46)
j=1

Identity (1.45) is a special case of a more general telescoping summation formula, namely,
k n

S (Fim =) =D i —F7) (1.47)
j=1 j=1

As an immediate application of (1.43), we can extract a summation identity from the
recurrence relation (1.12).

Theorem 2. If k is an integer, then,
> 2P, =2 (P, 4 on) +2(1 - 20y) .

Proof. Write identity (1.12) as

'Pj:T - aT = 2.Pj_1’7~ - 'Pj_2>T
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and multiply through by 2/=! to obtain
27 P, — 2T =P, 2P,

Thus,
k

k k
22— ) P =) @P, — 2 Pay). (1.43)
j=0 J=0

§=0
To evaluate the sum on the right hand side, identify f; = 2971 P;_5, and use identity (1.43)
to obtain

J
Identity (1.48) now reads

k
. . 1
(2P 1, — 27 P 5,) =2Py, — 5B, —2).
=0

k k
‘ . 1
> 2P, —a, Y 27 =25, - 530, —2)
7=0

=0
or
k k
Z 2ij7T - Qr Z 2j = 2k+1pkfl,r - 3ar +2 ;
j=0 =0
from which the result follows when we insert the geometric sum Z?:o 20 =21 _1.

2 A master identity

Theorem 3. Let a, b, ¢, d and e be integers. Then,
(Ta—cTc—bTb—a + Tb—cTc—aTa—b)Pd—i-e,r
- (Tb—cTc—aTe—b - Tb—cTc—bTe—a + Tc—bTb—aTe—c>Pd+a,r
+ (Tachcbeefa - TachcfaTefb + chaTabeefc)Pder,r
+ (Tb—cTa—bTe—a - Ta—bTb—aTe—c + Ta—ch—aTe—b)Pd—i-c,r .

Proof. We seek to express a polygonal number as a linear combination of three triangular
numbers. Let

Pd—i—e,r = flTe—a + fQTe—b + f3Te—c 5 (21)

where a, b, ¢, d and e are arbitrary integers and the coefficients f;, fo and f3 are to be
determined. Setting e = a, e = band e = ¢, in turn, we obtain three simultaneous equations:

Pd+a,r = fZTa—b + fBTa—c > Pd—i—b,r = flTb—a + f3Tb—c 5 Pd—l—c,r = fch—a + f2Tc—b .

The identity of Theorem 3 is established by solving these equations for fi, fo and f3 and
substituting the solutions into identity (2.1). O

Note that the identity of Theorem 3 can also be written

(a—b)(a—c)(b—¢)Pirer = (b—c)(e —c)(e — ) Payar
—(a—c)(e—a)(e—c)Piipyr (2.2)
+ (a—b)(e —a)(e —b)Pyicy .

Theorem 3 yields a myriad of recurrence relations, of which we can mention a couple.

7
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Corollary 4. Let m and j be integers. Then
Piimyr =Tm-1Pjior + (T — 3Tm-1)Pis1, + TinaPj .
Proof. Set c=0,b=1,a=2,d=j, e=m in Theorem 3. O
In particular, we have the addition formula for the triangular numbers:
Tiym = T Tjra + (Tn — 300 1)Tj1 + T 2T . (2.3)
Corollary 5. Let j, a and e be integers. Then,

(J+a)a—=0)(+¢)Pjrer = (j+c)(e=)(j +€)Pjrar
- (] + a)(e - a)(] + B)Pj—&-cw :

Proof. Set d = —b followed by b = —7j in identity 2.2. m
Setting n = 0 in Corollary 5 gives

(T, — aT)P,, = (cT. — €T) Py, + (€T, — aT.) P, . (2.4)
Corollary 6. Let m and j be integers. Then,

TnPiv1r =Ty Py — Tt Py + T Py -

Proof. Set a=0,e=1,b=—m,c=—m—1and d=jin (2.2). O
By writing —m for m, the above identity can also be written

TPy = TPy — TyoPjimy + L1 Pjym—1 - (2.5)
In particular, we have

Tmirj—s—l - Tm—l—lf-rj - Tm—i—lirj—m + Tmij—m—l . (26)

3 Linear properties: partial sums and generating func-
tions

In this section, we will derive expressions for the partial sum of the polygonal numbers,
namely, Z?:o P; 27 and hence obtain the generating function, Z;io P;,x7. Two equivalent
expressions will be derived, one based on identity (1.12), the non homogeneous second order
recurrence relation and the other based on identity (1.13), the homogeneous third order
recurrence relation for polygonal numbers. We will also derive an expression for the partial
sum of the polygonal numbers with indices in arithmetic progression, Z?:o Prjinrd.
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3.1 Partial sum of polygonal numbers

Theorem 7. If k is an integer, then,

k
ZP e
§=0

Proof. Multiply the recurrence relation (1.12) by 2’ and sum over j to obtain

k k k k
E Pj+17rl’J + E Pj_Lrl’J -2 E Pj7r£L'] = O E z’ s
J=0 J=0 Jj=0 J=0

(‘xk(xpk,r - Pk-i—l,r) +1-

k 1 k
P I =2*P P, 2’
1l =T L1+ - 5T
j=0 7=0

k1 j
— " P+ E P2,

k
E Pj—l,rzj = O — 1
J=0

Use of (3.2), (3.3) and (3.4) in (3.1) gives the stated identity.

For the triangular numbers, we have

i T
Tjz? =
Z v (1—

Jj=0

Corollary 8. If k is an integer, then,

5 (2T — Thyr) +

Pir =Te1 Py — T Pry1r + = —(a, = 1)T; +

(Pry + Pey1r — 1)/4, if k is even

{ozr — (1 + Pk,r + Pk+177~)}/4, Zf/{} 18 odd.

In particular,

k(k+1)(k+2) 1
_ bk Dk+2) L,

k(k+2)/4, If kis even;

—(k+1)2/4, Ifkis odd.

do0i:10.20944/preprints202102.0385.v3
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Corollary 9. We have

In particular,

, x
Y Tl = —— . (3.10)
— )3
= (1—2)
Lemma 1 (|2, Lemma 2.3|Partial sum of a n+ 1-term sequence). Let (X;) be any arbitrary
sequence, where X;, j € Z, satisfies a n+1 term recurrence relation X; = f1X;_., +
[oXjey+ H [uXjme, = Do | fmXj—ens where f1, fo, ..., fo are arbitrary non-vanishing
complex functions, not dependent on j, and ¢y, co, ..., ¢, are fived integers. Then, the

following summation identity holds for arbitrary x and non-negative integer k :

S 00— 2 {aon fn (S 279X 5 = S 1 7X5) }
it = n Cm ’

Theorem 10. If k is an integer, then,

-1 +x {(1-2)3+23} kb1
Z P! = 1 EpS R (1—2)3 Pryrra
(1—3z) pro  Prygeatts
— Pyttt -
(T—a)p "ot (1—a)

Proof. Arrange recurrence relation (1.13) as

Pj,r = ]Dj—i-?),r - 3Pj+2,r + 3Pj+1,r .
In Lemma 1 choose (fl; fg, fg) = (]_, —3, 3), (Cl, Co, 63) = (—3, —2, —1) and (XJ) = (Pj’,,,). O
Theorem 11. Let m and k be integers. Then

k
. m(l —zx)+ 2z
ZPJ'—i-m,rxj = - (m(l . l‘) _ 2)(1 . CL’)Q (xk(xpk,r - Pk+1,r> +1- ar)

~op(m(l — =) +27)
(m(1 —z) =2)(1 — )

m
Ppvy = 2 (Peyrr + 2 Pigmy)) -

i m(l—x)—2 (
Proof. Arrange identity (2.5) as

( _ k+1)

T P+mT_T P+m 1,r — m—2Pj,r_T P+1r7 (311)

multiply through by 27 and sum over j, obtaining,

k
§ E j k+1
x (Tm—Z m 1 j+m, rx - me 2 m—l) Pj,rx] - Tm—lx Pk-l—l,r

k+2
+ meflpmfl,r - Tmflkarm,r .

10
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Corollary 12. Let k and m be integers. Then,

kT m
2

Z +mr:_ _1)Tk+—+

3 (Pk+m,r + P/c—l—l,r - Pm—l,’r) ) (312)

(Pk,r+Pk+1 ril)

k 1 + 2(nT—1) (Prtm,r — By + Pm_lv”)’ if ks 15 even;
Z Fimr = {ar—(1+Py o +P }
=0 Qr ( k;ir‘ k+1,7‘) _ 2(m 1 (Pk+mr — Pk+1 r— m—l,T)7 ka 28 Odd
(3.13)

3.2 Partial sum of polygonal numbers with indices in arithmetic
progression

Theorem 13. Let m, n and k be integers. Then,

3r—1 : 1-— ZL'k(Tk+1 + Z’Tk,l)
ZPn+]mr9€ =a,m {393_3322Tj$1+ 3o

1— 2k fekt1 1 — gk+1
+ (P + aomn) {x( ) _ o } +P,, (_x) _

(1—-2z)2 1-z 1—x

Proof. Differentiating both sides of the geometric sum (3.4) with respect to = gives

i kaFtt o a(l—ab)
Z]x 1—x)+ 1o (3.14)

Multiply through identity (1.26) by 7 and sum over j, making use of identities (3.4), (3.14)
and Theorem 11 with a3 = 1 (triangular number) and m = —1. ]
2

Note that identity (3.14) could also be obtained directly from Theorem 7 with r =
(a, = 0), since Pjo = j.

Taking limit of the identity of Theorem 13 as x approaches unity gives the sum of the
polygonal numbers with indices in arithmetic progression.

Corollary 14. Let n, m and k be integers. Then,

2

oM
> Prjins = ( (b= 1)+ Py + armn) Ty + (k+ 1) Py, .
=0

In particular, for the triangular numbers we have

2

k
ZTmHn = (m?(k -1)+T,+ mn) T+ (k+1)T,. (3.15)

Using z = —1 in Theorem 13 gives the alternating sum of the polygonal numbers with
indices in arithmetic progression.

11
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Corollary 15. Let n, m and k be integers. Then,

k P,,+ ng,r + “Tka (n + mTk) . if k 1s even;

E m]+nr =

i= L op 4 am(m(k—1)+2n)},  if kis odd.

Dropping terms proportional to ¥ in Theorem 13 gives the generating function of polygonal
numbers with indices in arithmetic progression.

Corollary 16. Let m and n be integers. Then,

= ] PnT' PmT' T ( 272
me#nrx]_ , +( r+aomn)r  omix ey

“1-2 I—22 (—ap
In particular, we have
> . T, (T, + mn)x m2az?
Toiina = : 3.16
D Tupint’ = 770+ =22 U—2p (3.16)
ip P (3.17)
— T (12 (1) ’
iT-xj __® T (3.18)
2T = ey A=y

4 Quadratic properties: squares and products of polyg-
onal numbers

Here various identities and relations 1nvolv1ng products of polygonal numbers will be devel-
oped. These will include partial sums Z N Z] o PPy Z] o PirarPjpa’ and
the corresponding generating functions.

Lemma 2. If j is an integer, then,

4Pjver717T = P.727T + 4Pj2—1,r - Pj2—2,7' + ZCKTP].*Q’T - Oéz

T

(4.1)

AP, Py, = AP, + P |, — P’ | +20,P1, — . (4.2)

Proof. Square both sides of identity (1.11) and re-arrange to obtain identity (4.1). Square
both sides of identity (1.12) and re-arrange to obtain identity (4.2). O

Lemma 3. If j is an integer, then,

PJQ—H r 2Pj2,r + Pf—l,r = 60, P + (o — 1)2 +1.

12
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Proof. Square both sides of the recurrence relation

Pji1y+ Py = 2P, +a, (4.3)
and re-arrange to obtain
2P Py = 4P]%r - ‘Pj2+1,r - Pg'2—1,r +4a, Py, + oy (4.4)
The exact formula (1.2) gives
Piy1p— P, =2+ 0(2j —1). (4.5)

Squaring both sides of each of (4.3) and (4.5) and subtracting, we find

PP, =Pl — o P +a, — 1. (4.6)
Eliminating Pj1,P;_1, between (4.4) and (4.6) yields the identity stated in Lemma 3. [

Lemma 4. If j is an integer, then,
2Pj,7’]Dj+1,7‘ - j—l,rf)j—l-l,r + -Pj,rf)j—l—Q,r - (ar - 1) .
Proof. We have

2P Piji1y — Py Piay + 0 — 1
- Pj,r(QPjJrl,r - -Pj+2,'r) +a,—1
= Pj+(Pjy — ) + o, — 1, by (L5),
=P, — P, +a, —1
=P_1,Pj41,, by (4.6).

O
Lemma 5. Let a, b and j be integers. Then,
1 1 1
-Pj—i-a,rf)j-i-b,r - _Pj2+a,r + _Pj2+b,r - _Pa27b,r
2 2 2 A7
. (4.7)
- é(a —0)*(j +0)* — ap(a — b)Povr (7 +0),
1 1 1 1
Pj+a+17T‘Pj+b+17T - j+a,er+b,r = §Pj2+a+1,r + §Pj2+b+1,r - §Pj2+a,r - §Pj2+b,r (4 8)
2 .
— SHa—b)*(2j+2b+1) = ap(a—b)Pus,
1 /fa—0+1
PivarioLjeviir = DivarLjsbr = 5 <m> (Pirar = Plivsrs)
1 fa—0—-1 9 9
+3 (m) (Prior = Plragis) s la—0#1.
(4.9)

13
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Proof. Set j =1 in (1.26) and write j for n:
-Pj+m,r - Pj,r = Pm,T + armj :

squaring both sides and re-arranging gives

2
r

2F)j+m,rf)j,r = P2

b T Pfr = wa, — 20,mj Py, — a2m?52.
Set j — j + b, m — a — b to obtain identity (4.7).
Shift the index in (4.7) and subtract identity (4.7) from the result. This gives identity (4.8).

Arrange identity (2.5) as
T—oPjymy + L1 Pjp1p = Lo Py + T 1 Pipm—1
and set 7 — j+aand m =b—a+ 1 to obtain
Ty—a-1Pjivi1p + To—aljyarir = Toa—1Pjrar + To—aljrpyr -

Squaring both sides of the above relation and rearranging the terms we get

1 Tafb
2 Tafbfl
1 Ta—b—l

+ 9 T, s (Pj2+b,r - Pj2+a+1,r) ;

_ 2 2
Pjtat15Pivvi1r — PirarPjvor = (Pfrar = Pivirs)

from which identity (4.9) follows. O

Theorem 17. If j and m are integers, then,
Tm*3(Pj2+m+1,r o P]2,r) - (m - 3) (m + 1)(Pj2+m,r - Pj2+1,r) + Tm<Pj2+m—1,r - Pj2+2,r) =0.
Proof. Write identity (2.5) as
TPy = Py) = Tt (Pt — Proa) (4.10)
Square both sides of the above relation and re-arrange the terms, obtaining,

2 2
2Tm—2PjJ’Pj+mm - 2Tm—1Pj+LTPj+m—LT

(4.11)
= Tn2172<Pj2+m,r + Pj%r) - Tvzzfl(szerfl,r + Pj2+1,r) :
Write j + 1 for j in relation (4.11) to get
2T7721—2Pj+1,rpj+m+1,r - 2T7727,—1Pj+2,rpj+m,r
2 2 2 2 2 2 (412)
= TmfZ(Pjerqu,r + Pj+1,r> - Tmfl<‘Pj+m,r + ‘Pj+2,r> :
Subtract (4.11) from (4.12) to get
2Tn21—2(Pj+1,7"Pj+m+1,7" - PjWPj-i-m,r)
- 2T3¢—1<Pj+2mpj+m,r - Pj—l-lﬂ"Pj-&-m—lﬂ”) (4 13)
= Tr%z,fQ(Pj2+m+1,r + Pj2+l,r - Pj2+m,r - P]%r)

2 2 2 2 2
- Tm—l(Pj—i—m,'r + Pj+2,7‘ - })j—i—m—l,'r - f)j—l—l,'r') .

14
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Using Lemma 5, identity (4.13) is

Tm—l Tm
TnQ@fQ < (1332,1" o Pj2+m+1,r> + T—_I(Pj2+m,r - Pj2+1,r>>

Ty
Tm— 3

Tm—2
- Ti,1 (m(PjZerl,r - Pj2+2,r) + m(Pj%rl,r - Pj2+m,r))

= TT?’L—Q(‘P]?—‘,-WL—‘,-I,T‘ + ‘Pj2+1,r - ‘Pj2+m,r - ‘Pj%r>
2 2 2 2 2
- Tm—l(]Dj—i-m,r + ]Dj+2,r - Pj+m—1,r - Pj+1,r) .
The identity given in the theorem follows upon clearing fractions and simplification. O]
Corollary 18. If j is an integer, then,
Pj%r - 4‘Pj2+1,r + 5‘Pj2+2,r - 5Pj2+4,7‘ + 4Pj2+5,7‘ - Pjg—i-ﬁ,r =0, (414)
2 2 2 2 2 2
pj,r - 5Pj+1,r + 10Pj+2,r B 10Pj+3,7‘ + 5Pj+47r - ]Dj+5,r =0, (415)
2P}, — TP}y, + TP, — TP, + TP, — 2P 7, = 0. (4.16)

Proof. To prove (4.14) set m = —3 or m = 5 in Theorem 17. Setting m =4 or m = —2 in
Theorem 17 proves (4.15) while (4.16) follows from m = —4 in the theorem. O

Theorem 19. For any integers j and m,
Tm—Q(P]'2+m+1,r - 2Pj2+m,r + P)j2+m—1,'r - P)j2+1,7' + 2%2,7“ - Pj2—1,r)
- m*1<P‘2 - 2Pj2+m71,r + Pj2+m72,r - Pj2+2,r + 2Pj2+1,7" - Pj%r) =0.

J+m77"

Proof. Multiply through identity (4.10) by 6. to obtain
Tmf2<6arpj+m,r - 6arpj,r) - Tmfl(6ar-Pj+mfl,r - 6Oérpj+1,r) =0.
Now use the identity given in Lemma 3 as
6o, Py = Pj2+1,r - 2Pﬁr + Pj{l,r — (=1 = 1.
O
For a general identity relating the pure powers of the polygonal numbers see Theorem 42.
Theorem 20. Let m and j be integers. Then,

m(m - 2)F)j2+m+1,r - 2<m2 - 4)P2

= m(m +2)P2,,, — 2(m* — 4)P?,

+ m(m - 2)<1Dj2,17r + 2arf)j+m+1,r - 2047'»Pj—1,r) .

+m(m + 2)Pj2+mfl,r

Proof. Arrange identity (2.5) as

Tm—ZPj—l-m,r - Tm—l-Pj—l—m—l,r = Tm—Q-Pj,r - Tm—l-Pj+1,r .

15
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Square both sides of the above identity and use identities (4.1) and (4.2) to eliminate the
products Pjp,Pjim—1, and P;, Pji;,. The result is
Tm—le—Q‘F)]'2+m+1,r + (2T1’?‘L—2 - 4Tm—1Tm—2)Pj2+m,r + (2T'37,—1 - Tm—le—Z)‘P]'2+m—1,r
= (272 _y = Ty To2) PPy + T2y — AT 1 Try2) Piy 4 Ty Tro PPy, (4.17)
+ 2arTm—1Tm—2(Pj+m+l,r - Pj—l,r) )

from which the identity of the theorem follows upon substituting for the triangular numbers.

O

We have the following examples:
Pj2+3,r - 3Pj2+2,r + 3Pj2+1,r - 13]2,7“ = 2047“(Pj+3,r - ]Djﬂ“> ) (418)
8PF o, — 3P, + P}, — Ply, = 600(Piii, — Piiay) - (4.19)

Identities (4.18) and (4.19) come from evaluating the identity stated in Theorem 20 at
m =1 and m = —1, respectively.

4.1 Partial sums and generating functions
Theorem 21. If k is an integer, then,

Py Pitor, if kis even;

2 <_1)ijﬂ“Pj+1,r =

-

Il
=)

j o =1 =Py Pryoy, if k isodd.

Proof. Multiply through the identity stated in Lemma 4 by (—1)7 and sum over j:

k k
2 Z <_1)j13]'77“Pj+1,r = Z <_1)] (ijl,rljjJrl,T + Pj,r]3j+2,r)

(=Y (-1

Use summation formula (1.44) with f; = P;_;,Pj+1, to evaluate the first sum on the right
hand side. O

Theorem 22. If k is an integer, then,

k

sz 2 6o, x ( r op®(1—a2%) "N (Ppyy, — kan“))
7T

=0

SO\ e T (1w (1—a)?
+ ((r —1)* + Da(1 — 2™ _ xk—i_l(PkQ-i—lm — xpl?,r) _ (o —1)%x
(1—x)? (1—x)? (1—z)?
Proof. Multiply through the identity of Lemma 3 and sum over j to obtain
k k k
Z Pj2+1,rx] —2 Z PJ‘%T“’J T Z Pfflﬂ‘x]
=0 j=0 =0
k k
=60, Y Ppad + (o —1)°+1)) a/;
j=0 Jj=0

16
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which, by shifting the index in each sum appropriately and re-arranging can be written

k
(1—x)? ZPJQTCCJ = 604er P2 + ((a, — 1)* + 1)xej

Jj=0 J=0 J=0
k+1 p2 k+2 p2 2
— X Pk‘-‘rl,’/‘ + Xz Pk‘ﬂ’ - (O[T - 1) X

from which the result follows when we use Theorem 7. O
Corollary 23. If k is an integer, then,
b 1
ZPJZ,T = ( k+3) 5 +Pk7" _Pk-i—lr}aer 1+ kPk 1,r = §(2k_3)PI€2,r) Tyt
(4.20)
1
g(k + 1)Tk 1Pk+1 ro
k T (o = {3(Prey1r — Pry) — 1}) + 5 (P,f+1 ., P1c271,r + 4Pk2’r) . if k is even;
> (-1, =
7T
=0 & (=200 + {3(Peg1r — Pop) +1}) — 5 (P21, — PLy, +4P2,), ifk is odd.
(4.21)

Proof. Repeated application of L’Hospital’s rule to the identity of Theorem 22 at x = 1
yields identity (4.20); while (4.21) comes from evaluating the identity at = = —1. O

Corollary 24. We have

6a,x
2 o r
>re =

For the triangular numbers, a3 = 1 and we have the generating function of the squares of
triangular numbers to be given by

22  (1-ap [ ap (1—2)p

& x aﬁ2}+{m7JV+Hx_mr%yw

x? x

ZT%J == x) I (4.22)

Theorem 25. If k is an integer, then,

Zk:]ﬂ o (ap — 1)22% — {1 4+ 20, (1 — 20,) } 2 + {a, (o, +4) — 1} 2% + 2
Jre T (1—x)°

=0
(1 —2)°+ xS) k+1 (= $)5 +2° — 5x4) 2 k+2
- (1 B .T>5 Pk—}—l,rx - (1 — .T>5 Pk+2r
_ (1—5z+ 10$2)P 2R3 (1 — 5z) P2 pk+d Pk2+5r "
(1 — I)5 k+3,r (1 _ I)5 k+4,r (1 . 1})5

Proof. Write recurrence relation (4.15) as
2 2 2 2 2 2
i =5P},, —10P,, +10P 3, = 5P 4, + P}, .

In Lemma 1 choose (f1, fa, f3, fa, f5) = (5, —10,10, =5, 1), (c1, 2, €3, ¢4, ¢5) = (=1, =2, =3, —4, —5)
and (X,) = (P2, 0

17
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Corollary 26. We have

iPQ i (o =12t — {14 20,(1 = 20,)} 2° + {a (e +4) — 1} 2 + 2
.TQ'/’ = .
2 1—a)p

Theorem 27. Let m and k be integers. Then,

Z 2 ._m(m—Z);ﬁ_2(m?—4)m+m(m+2)ip'2 .
mar m(m + 2)x? — 2(m? — 4)x + m(m — = »r
2a,m(m — 2) < Z] =0 P]TI Z] —o PjtmaT )
m(m + 2)x? — 2(m? — 4)x + m(m — 2)
20,m(m — 2) (2" Py, + 2" Poyi1, — Py — Pry)
* m(m + 2)x? — 2(m? — 4):5 +m(m — 2)
m(m + 2)(x k+2p]§+mr+P13+1r — P 1)
m(m + 2)a? — 2(m? — 4)x +m(m — 2)
mm — (PR, + B, — 2P, — PR
a m(m + 2)x? — 2(m? — 4)z —|— m(m — 2)

Proof. Multiply through the identity of Theorem 20 by 27 and sum over j, shifting the
index in each sum as appropriate. O

Corollary 28. Let m and k be integers. Then,

m—2
Z j4+m,r = —) {(Pm,r - 057")2 — (Pk+m+1,r — 057‘)2 - (Pk,r — ar)2 + 1}

8
a,m?(m — 2 m(m + 2
% {Pker,r + Pk+1,r - mflﬂ“} + % (Pk2+mr Pk2+1 r P??’L 1 r)
1 1
({(k +3) L4 P = Py Ty + ShPL, = 52k = 3)P,§T) T
1
+3(k+ DT Py,
(4.23)
Proof. Set z =1 in Theorem 27 making use of (3.6), (3.12) and (4.20). O

Theorem 29. Let m and k be integers. Then,

k

Plema me,g— (m—3)(m—|— x2—|—T 333

mek+lplg2+2 r + (Tm - (m - 3)(m + 1) ) kPk?"'l r
Ty~ (m = 3)(m & Di T Tt?
T2 P2, — Tt P2
T3 — (m —3)(m + 1)z + T2
Ty + 2T P2y, — Trs P2,

C Ts— (m—3)(m+1)a2 + T

18
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Proof. Multiply through the identity of Theorem 17 by 27 and sum over j, shifting the
index in each sum as appropriate. O

Theorem 30. Let a, b and k be integers such that |a —b > 1. Let x € C, x # 1. Then,

k
i (Tb ITb 1) ; Tb 1 $Tb i
2 P P J a a— a— a J
Z IHa ]erx Tb aTb a— 1 ]- - $ Z ]Jra Tb aTb a— 1 1 — .T Z bx

=0
Ty (PF— k+1p]€2+a+1) Tyar (B} — $k+lplc2+b+1)
beafl (1 — 33') bea (1 — ZIZ')
.Tk+1 Pan
— 22— Pio1 P 2 .
-2 kta+1L ko1 + -2

Proof. Multiply through identity (4.9) by 2/ and sum over j, shifting the index in each sum
as appropriate. 0

Corollary 31. Let a, b and k be integers. Then,

a—2
QZP]—l—ar j+br — ( ) {(Pzz,'r — Oé,,~)2 — (Pk+a+1,r - (17«)2 - (Pk,'r — ar)2 + ]-}

8
b(b —2) 2 2 2
+ ] {(Pb,r - Oér) - (Pk+b+1,r - 057") - (Pk,r - CYT) + 1}
a(a+2) b(b+2)
+ T (Plg—i-a,r + P162+1 r P¢12 1 r) + T (PkQ—i-b,r + Pk2+1,r - PI)2—1,7")
aya’(a —2 a,b*(b—2
% {PkJra,r + PkJrl,r - afl,r} + % {Pker,r + PkJrl,r - pbfl,r}
1 1
+ 2Tk+]_ <{<k + 3) 5 + Pk‘?" - Pk+]_ r}aer 1 + BkPk 1,',, 3(2k - 3)P’377’)
2
+ (k’ —+ 1) {ng 1PI~32+17" — Pafb,r {Pafb,r —+ Oér(& — b)(k} —+ 2b)}}
2 —? 2
A Ul VS A
Proof. Sum each term in identity (4.7) from 0 to k, making use of Corollary 28. O

5 Sums and identities involving reciprocals

Identity (2.5) at j = 0 invokes a summation identity.

Theorem 32. For any integer k,

k

T} T T},

Pi.Piis  Pooir T + (o — DT

j=1
Proof. Setting 7 = 0 in (2.5), writing j + 1 for m, we have

TiPjy —Tj-1 P, =1T1j. (5'1)

19
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Dividing through by P, Pji1.r,

- - ’
Pivip P PigPiy

from which the result follows by telescoping summation. O

In particular, we have

k
k
. 5.2
gm Tk+1 T k2 (5:2)

Corollary 33. For a,. # 0 (that is r # 2),
i -
j=1 +1 T ar ‘

Proof. We have

i o T, o 1 1
= = lim = .
= +1 r k—o0 Tk—i—l + (ar — 1)T k—o0 Tk+1/Tk + ( 1) (o7

Theorem 34 and Theorem 38 are both consequences of identity (1.24).

Theorem 34. If k and n are non-negative integers, then,

. k
. 1
i3 g = (BeiTual + (0 = 10F) Y
= Zn: <‘Pj+k_n7r B -Pj_n?r) .
j:l f)j—l-kﬂ‘ ‘Pjvr

Proof. Identity (1.24) written out and re-arranged is

]3]‘2,7’ - Pj—l—n,er—n,r = (Pn,r + P—n,r)]Dj,r - Pn,rP—n,r .
Dividing through by Pj, ,P;, gives

]Dj,r pjfn,r o Pn,r + an,r Pn rP n,r

Pj-‘,—n,r Pj,r B ]Dj—i-n,r P P-‘,—nr
an® (T T, a? + (o, — 1)n?)
B Pj-‘,—n,r P P+nr ’

where we have used (1.3), (1.8) and (1. 10). The result follows from summing over j and
making use of (1.47), with f; = Pj_,,./P; O

Corollary 35. If k is a non-negative integer, then,

U N Pr,

P P+1 r Pk—l—l,r '

J=1

20
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Corollary 36. We have

o0

1 1
a - 1
jzl -Pj+1,7‘ ]Zl ‘Pj:"‘%"'l"r
Theorem 37. If k is a non-negative integer, then,
k _
Z +1 ’I“P_]+2T'+a1" 1 _ 1 + (_1)k !
= P v Piy17PjrorPiysy  3(or +1)  Prg1,Prgs,

Proof. The identity given in Lemma 4, with a shift of the index, allows us to write

1 + 1 2P+1r]3]+27“+ar_1
P P+2r Pj—l—l,T‘Pj—i—S,r P P+1 TPJ+2,7‘P]+3,7" ’

from which the result follows by telescoping summation using (1.46) with f; = 1/(P;, Pj1a,).

For the triangular numbers, (a3 = 1), we have

2y S -t (5.9
‘= TiTiss Thi1Ths .
Theorem 38. Let m, n and k be integers. Then,

k
ij-i—n,rpmj—n,ij = a,m { 3r —1 ZT 2 + J:k(Tk-l—l + $Tk—1) }

Prjr—P_pn, 3r — 22 3—=x
P (1 — ) ]{Zl‘k+1 P 1— xk—i—l
"l (=22 1-z "\ 1-z )

ij—l—n,rpmj—n,r o P P
P P — LImgr — Lngr-
mg,r — 4L —n,r

Multiply both sides by 27 and sum over j, making use of Theorem 13 with n = 0. O]

J=0

Proof. Identity (1.24) is

Corollary 39. If k and m are integers, then,

ij+1,rpmjfl,r _ (k - 1)
Prjy — op + 1 3

k

m2a, + var> T, —k—1.
j=0

Proof. Set x =1, n = 1 in the identity given in Theorem 38 and make use of identity (1.17).

0
In particular, we have
k
T Toni— k—1
P gn’f—l—Tm T, —k (5.4)
, Toj 3
7=1
with the special value involving three consecutive triangular numbers,
k
T; 1T k42
s Lol 42 (5.5)
= b s
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6 Powers of polygonal numbers

We have seen that, identity (1.13),
Pj,r - 3Pj+1,7’ + 3Pj+2,r - Pj+3,7” =0 )
and that, identity (4.15),
Pj2,r - 5Pj2+1,r + 10Pj2+2,r - 10Pj2+3,r + 5Pj2+4,r - Pj2+5,7' =0.

do0i:10.20944/preprints202102.0385.v3

More generally, on account of Euler’s finite difference theorem, Gould |7, identity (10.1)],

0, if0<m<t;

Xt: (—1)+ C) o —

s=0 (=D, ifm=t,
we have the results stated in Theorem 40 and Theorem 41.
Theorem 40. Let n be a non-negative integer and j any integer. Then,

2n+1
s(2n+1Y\ _,
> v (e, 0.

s=0
Here are some explicit examples:
3 3 3 3 3
Pj,r - 7Pj+1,r + 21Pj+2,r - 35Pj+3,r + 53Pj+4,r
3 3 3 _
=215, + TP, — Pr =0,

P, = 9P}, +36P), — 84P) 5, + 126P), , — 126P] 5,
* 84P]4+6” B 36PJ4+7»7" T 9PJ4+8,7~ - P]4+9,7' =0,

PS5, —11P%,, . +55P%,,, — 165P%,, +330P%,,  — 462P%,,

5 5 5 5 5 5
+462P) 5, — 330F}, 7, +165F) g, — 55} . + 11P} 1o, — P11, = 0.

Theorem 41. For n a non-negative integer, let

a(n) = Z () Pt - L, bl = 31y () r

s
If j 1s any integer, then,

3 (1) (%) Pt = ) Py 4 ).

S
s=0

Here are a few more explicit examples:

PJ%T - 2Pj2+1,r + Pj2+2,r = 60,y + (o — 1>2 +1,

3 3 3 3 3
Pj,r - 4Pj+1,r + 6Pj+2,r - 4]3j+3,1“ + Pj+4,r

= 90a2Pj o, + 24a? — 36, (o, — 1),

4 4 4 4 4 4 4
P = 6P, +15P; y, = 20P) 3, + 15P) , — 6P} 5, + P},
= 252002 Pj 13, — 1080a2(a, — 1) 4+ 900a .

22
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Theorem 42. Let n be a non-negative integer and m and j any integers. Then,
2n m
Tm—2 Z (_1)8 < s > (‘Pjril—trlt—n-l—s T Pntzl-‘rs r)

2n
<[ 2n n .
—Tno1 Y (1) (S)<Pj+t,t ey = PIEL =0,

Proof. Multiply through identity (3.11) by the a(n) defined in Theorem 41 to obtain

Tm—2(a(n)Pj+m,r> - Tm—Q(a(n)Pjﬂ")
— Trn—1(a(n) Pism—1,) + Trn—1(a(n) Pjt1,) = 0.

Now use identity (6.5) in the form

am)Py =3 (1) ()Pt = .

s=0 s
O
Here is an example evaluation at m = —1, n = 5.
6 6 6 6 6 6
P, —13P) 5, +78P} ,, —286F) 3, + T15P;,, —1287P/
+ 1716 P}, — 1T16P)_, , + 1287P) ,  — T15PY 5+ 286P)_,, (6.9)

- 78p]6—5,r + 13]3;3—6,7‘ - P]6—7,7" =0.

6.1 Partial sums and generating functions

Theorem 43. Let n be a non-negative integer and k any integer. Then,

1 2n+1 o+ 1 k+s .
> Pt = it S { (M) 8 )

s=0 j=k+1
2n+1 s—1
1 s 2n+1 2n—s+1 n .
- | () R e
5= j=

Proof. Multiply through the identity of Theorem 40 by 27 and sum,

Qil{( (2n+1)2 " }

s=0

Using (1.40), this is

2n+1 om+1 . s—1 ‘ k+s
e ‘SZP??M—I‘SZ%JH > Pl ) b0,
=0

s=0 j=k+1

2n+1

Clearing brackets and multiplying through by "™ we have

k 2n+1 2n+1 s—1

n ..j s 2n + 1 n—s s 2n + 1 n—s n ..j

E Pj,rxj E (_1) ( ) >x2 +1 § : (_1> ( ) >£L’2 +1 § Pj,?“xj
Jj=0

7=0 s=0 s=0
2n+1 k+s
2n +1 .
+ Z (1) < ) 2n—s+1 Z P},lrxj =0.
s=0 j=k+1
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The result now follows upon making Z?:o P;}ij subject in the above equation. Note that

2n+1
2 1
Z (_1)s< n+ )xQnerl — _(1 _ x)2n+1 )

S
s=0

Observe that Theorem 10 and Theorem 25 are special cases of Theorem 43.

Taking limit as k approaches infinity in Theorem 43, we obtain the generating function of
the powers of polygonal numbers as stated in the next result.

Corollary 44. Let n be a non-negative integer. Then,

[e%¢} 1 2n+1 2n + 1 s—1

n ) s—1 2n—s+1 n 1
Z Pl = (1 — z)2n il Z {(_1) ( S >$ Z ijxj} .
Jj=0 s=1 j=0

7 Weighted sums

In this section we present some weighted ordinary and binomial summation identities in-
volving the polygonal numbers.

The general summation identities which we require for this purpose are given in Lemmata 6
and 7 and can be proved by induction (see Adegoke [1]).

7.1 Ordinary summation identities

Lemma 6. Let (X,,) be any arbitrary sequence. Let X,, n € Z, satisfy a recurrence
relation X,, = f1Xn_c+ foXn_a+ A, where fi and fy are non-vanishing complex functions,
not dependent on n, and ¢ and d are integers. Then,

L )\(1 . k+1)
f2 Z fanfdfjc = Xn - feran—(k—i-l)c - 1_—}1 ) (71)
§=0
~ (L= f)
S Z f3 Xn—c—ja = Xn — 2k+1Xn—(k+1)d - 1_—j12 ) (7.2)
7=0
k . .
(=1 A7 3 X et e-a)
j=0 (7.3)
A+ (DR
= X+ (DM X gy + SR,
Theorem 45. Let m, n and k be any integers. Then,
k
Z 2an—2m—mj,r - 2k+1Pn—(k+1)m,7" — Iy + m2ar(2k+1 - 1) ; (74)
j=0
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1 1 1,2 ; ; .
§Pn,r + §Pn72m(k+1),r — ;M Ay, Zf k is even |

k
Z (_1)an—m—2mj,r - (75)
Jj=0 1Pnr - Pn 2m(k+1),r> ka is 0dd7

k
> 2 Primemis = 2 P = Py + mPp (257 — 1), (7.6)
=0
Proof. In the relation (identity (1.23) with the index n shifted),
Pn,r = 2Pnfm,7“ - Pn72m,r + armZ )

identify fi =2, fo = =1, c =m, d = 2m and A\ = a,m? and use these in Lemma 6 with
(X)) = (Par). ]

7.2 Binomial summation identities

Lemma 7. Let (X,) be any arbitrary sequence. Let X,,, n € Z, satisfy a recurrence
relation X,, = f1Xn_c+ foXn_qa+ A\, where fi and fy are non-vanishing complex functions,
not dependent on n, and ¢ and d are integers. Then,

b B A(fL+ f)F—1
]Zo ( >f1f2 n—kdt(d—c)j = Xn — ((1{1 1;2)_ 1 ) , (7.7)
k , sk sk
S1EST (-1 @ B X = 12, + ML) g

=0

<.

and

k Nk sk
kZ ( )fl_ n+kd c+cg f ((1 _;?_ f2f2)a (79)

fork a non—negatwe integer.

Theorem 46. Let m and n be any integers and k a non-negative integer. Then,

k
k Z < )2 Pn 2mk+mgj,r — Pn,r - m2kar ) (710)
Jj=
k
k
> ( ) o mbt2mir = 2 P + 28 m%ka, (7.11)
—\J
J
k
> (- ( >2k— Primbsmjr = Py — m?ka, . (7.12)
7=0

Proof. Identify fi =2, fo = —1, ¢ =m, d = 2m and X\ = a,m? (see proof of Theorem 45)
and use these in Lemma 7 with (X,,) = (P,,). O
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Theorem 47. Let m and n be any integers and k a non-negative integer. Then,

k
DRy (- ( ) m 4+ 1m* I Py msnysir = Par — ko, Ty (7.13)
7=0
k
k
Z ( > Py mayie = (M4 1) Py + k(m 4+ 1), Ty, (7.14)
J=0 J
k
> (- < ) m+ DI P pimie = mF Py — km* o, T, . (7.15)
7=0

Proof. Write identity (1.25) as
Pn,r = (m + 1)Pn—m,r - mPn—m—l,r + o, T, .

Identify fi = m+1, fo = —m,c=m,d=n—m—1and A = a,T},, and use these in
Lemma 7 with (X,,) = (Py,,). O

8 Continued fraction representation

Theorem 48. If j is an integer, 7 = 0, then

Pj—er+17" ar+1

P] 1 'rP]+1,r7a'r+1

o + P 1, Pl —ortl
. DL Piir—or

Pj,r =, +

ar+ T
Proof. Divide through identity (4.6) by P;, and re-arrange to obtain

]DjJrl,erfl,r —Q + 1

P, =a,
Js Pjﬂn
The result follows. O
For the triangular numbers, we have
T 1Tj44 .
Tj:l_'_l_’_Tj—lTJH’ ]7&0. (81)

1+ .

9 Some triangular-numbers-specific properties

We will conclude this study by presenting some results which are specific to triangular
numbers.

Theorem 49. Let n be an integer. Then,

=T+ 11, —1.
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Proof. Since T,, — T,_; = n and T, + T,,_; = n?, we have
T+ Ty =T2+T2 | —2T,T, .

Thus,
20,1 = (Tg - Tn) + (T2_1 - Tnfl) )

n

and the result follows. O

The implication of Theorem 49 is that the product of any two consecutive triangular num-
bers is the sum of two certain triangular numbers.

On account of the summation identity (1.44), the identity given in Theorem 49 invokes the
next result.

Corollary 50. If k is an integer, then,

Ty

k
(=TT = (=) Ty, -

7=0

Next we give a recursive identity involving any three consecutive triangular numbers.

Theorem 51. Ifn is an integer, n # 0, n # —1, then,

Tn+1Tn—1 2 2 2 2 2 Tn+1Tn—1
et (e () )

Here we have written T(j) = 1j.

Proof. Setting m = 1 in identity (1.35) gives

ToiiThy =T —T,=2Tr, . (9.1)
But,
11T
Tpir Ty =T2—T, = 2L 1, (9.2)
Using (9.2) in (9.1), we have
Tn+1Tn—1 = 2TTn+lTn—1 .
Thus,
Thia T, 2
% — T—nTTn+’}:n,1 y
from which we get again
Tn+1Tn—1 - 2
Tn B T_TL T?TTTn+%Tn71 ’ (93)
TnJrlTnfl 2
—_— = ) 9.4
1, Ty %T%TTnﬂan ( )
TntaTn=1
In short,
Tn+1Tn—1 o 2
O
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Theorem 52. If k and m are integers, m # —1, then,

m—+1

f}—W”(T;iYﬁEmZFD“Tﬂk

j=1

Proof. Identity (1.32) is

T; T
7, =Tt B

Multiply through by (7,_1/T;,) ™ to obtain

Tmfl - T}m Tmfl - Tmfl I
= T T 4.
( T, ) T, ( T, ) T\ T, i

In identity (1.45), choose
T\
(5 .

Theorem 53. If k is a non-negative integer, then

1 T 2k
SaeTetia 2
T, T

j=1
Proof. Set n = j — 1 in identity (9.1) and rearrange
Ty =15y — Tj2T;.
Divide through by 7;7};_; to obtain
1 Tia T
T

T, T, T

Now sum over j, making use of the telescoping summation formula (1.45) with f; =
Tjs/Tj1 = (1 —2)/J. 0

Corollary 54. We have

| =

Sl

Jj=1

~

<
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