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Competing Conventions with Costly Acquisition of
Information

Abstract

We consider an evolutionary model of social coordination in a 2x2 game where
two groups of agents prefer to coordinate on different actions. Agents can pay
a cost to learn their opponent’s type: conditional on this decision, they can
play different actions with different types. We assess the stability of outcomes
in the long-run using stochastic stability analysis. We find that three elements
matter for the equilibrium selection: group size, the strength of preferences,
and the information’s cost. If the cost is too high, agents never learn the type
of their opponents in the long-run. If one group is stronger in preferences for its
favorite action than the other, or its size is large enough compared to the other
group, every agent plays that action. If both groups are strong enough in pref-
erences, or if none of the group’s size is large enough, agents play their favorite
actions, and they miscoordinate in inter-group interactions. When the cost is
sufficiently low, agents always learn the type of their opponent in the long-run.
Therefore, they always coordinate. In inside-group interactions, agents always
coordinate on their favorite action. In inter-group interactions, agents coordi-
nate on the favorite action of the group that is stronger in preferences or large
enough.

1 Introduction

Social scientists usually describe conventions as situations where every person acts
in the same way with everybody. How an agent behaves mostly depends on what
s/he expects other people to do and marginally on her /his preferencesEl This is why
game theorists usually represent social conventions as the outcome of coordination
games. Specifically, since the seminal contribution of Kandori, Mailath, and Rob
1993) evolutionary game theorists have used stochastic stability analysis and 2x2
coordination games to study the formation of social conventions. Some of these
works focus on coordination games such as the battle of sexes: a class that describes
situations in which two groups of people attach value zero to miscoordination but
prefer to coordinate on different actions. In these situations, it is not clear which
convention establishes in the long-run.

Let us think about a person who wants to hang out with a friend: s/he has to choose
between proposing her/him going to see a football match or going to the cinema, and
s/he does not know what her /his friend prefers. Imagine being in a world without
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social networks: that person has to pay a high cognitive cost to learn what her/his
friend fancies. If s/he knows that everybody goes to the cinema, s/he asks her/his
friend to go to the cinema, even if s/he favors football matches. However, why does
everybody go to the cinema?

Neary considers a similar situation to the one described above. He considers a
population divided into two groups/types. The two types differ in preferences, and
each agent decides one single action valid for both types. Hence, it is as if learning
the type of an opponent is too costly, and no agent ever learns it. His study finds that
if one type is enough stronger in preferences than the other for its favorite action,
then every agent coordinates on the action preferred by that type in the long-run. It
also gives conditions on payoffs and group size for the prevalence in the long-run of
a state, which causes miscoordination between the types. Such a state is a situation
where every agent plays her/his favorite action.

However, in certain circumstances, it is reasonable to assume that agents can learn
the type of their opponents at a small cost. In the context of the previous example, a
lower cost means, for instance, having social networks, where everyone can learn what
their friends prefer from their feeds. In this case, all the agents bear this cost, learn
the type of their opponents, and coordinate on their favorite actions with their similar.
For instance, those who like cinema learn what the other players prefer through their
feeds, and they go to the cinema with those who prefer cinema. Similar for those
who fancy football. However, expanding the behavior to an entire population: what
do people who prefer cinema and people who prefer football do together? That is,
which convention does prevail in inter-group interactions when the cost is that low?
More generally, how does the cost influence the formation of conventions?

We answer the above questions, formalizing the example previously made and study-
ing the evolution of conventions in a dynamic setting. We model the coordination
problem as a repeated language game (Neary 2012): we use evolutionary game the-
ory solution concepts and characterize the long-run equilibrium as the stochastically
stable state (see Foster and Young[1990, Kandori, Mailath, and Rob 1993 and Young
1993). What we do differently from Neary 2012 is the following. Agents can learn
the type of their opponent if they pat a cost. If they pay it, they can play a dif-
ferent action with respect to the type they meet. If they do not pay it, they can
only play the same action with every agent. Given this change in the strategic set,
we introduce a new possible perturbation. Agents can make a mistake in the infor-
mation choice and a mistake in the coordination choice. We model two situations:
a complete information scenario, where agents always learn their opponent’s type,
and an incomplete information one, where agents can learn their opponent’s type
conditional on paying a cost. In the latter case, we follow a field of the literature
regarding costly acquisition of information (see Simon , or Grossman and Stiglitz
. Agents decide myopically their best reply based on the current state, which
is always observable. However, in the incomplete information case, a player does not
learn her/his opponent’s type unless s/he pays for information.

We say that a type is stronger in preferences for its favorite action than the other if
it assigns higher payoffs to its favorite outcome or lower payoffs to the other outcome
compared to the other group. Cost level, strength in preferences, and group size
are crucial drivers of the long-run stability of outcomes. We find that two different
scenarios can happen, depending on the cost. Firstly, when the cost is zero or suffi-
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ciently low, agents always learn their opponents’ type, and they always coordinate.
In this case, they also coordinate on their favorite action with agents of their same
type. If one group is stronger in preferences for its favorite action or its size is large
enough compared to the other, every agent plays the action preferred by that group
in inter-group interactions. A second outcome occurs when the cost is high. In this
case, agents never learn the type of their opponents, and they play the same action
with every agent. They risk coordinating on one action that they do not like, even
with agents of their type. Indeed, we find that when one group is stronger in prefer-
ences than the other for its favorite action, or if its size is large enough compared to
the other, every agent coordinates on that group’s favorite action. Even worse, when
the cost is high, the two types may play their favorite action and miscoordinate in
inter-group interactions. We find that this occurs when both types are strong enough
in preferences for their favorite action or if the two groups are sufficiently close in
size.

It is helpful to highlight our analysis with respect to the one proposed by Neary 2012,
from which we started. When the cost is high enough, our results are the same as
the previous model. We further show what happens when agents can learn the oppo-
nent’s type at a low cost. Comparing these two cases enrich the previous analysis: in
this sense, we prove that miscoordination does not occur without incomplete infor-
mation and a high cost. Strength in preferences and group size alone does not cause
miscoordination. Indeed, when the cost is low, the two types always coordinate.

The paper is organized as follows: In Section [2] we explain the model’s basic features.
In Section [3] we determine the results for the complete information case where the
cost is 0. In Section [d] we derive the results for the case with incomplete information
and costly acquisition. We distinguish between 2 cases: c¢ high enough and ¢ low
enough. In Section B, we discuss results, and in Section [6] we conclude. We give all
proofs in Appendix [A]

2 The Model

a b a b
a HA,HA 0,0 a | T, TR 0,0
b 0,0 TA,TTA b 0,0 HB,HB
Table 1: Interactions inside group A. Table 2: Interactions inside group B.
a b

a | Iy, g 0,0
b 0,0 mu, g

Table 3: Inter-group Interactions.

We consider N agents divided into two groups A and B, N = N4 + Ng. We assume
N4 > Np +1 and Ng > 1. Each agent in group A owns type A, and each agent
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in group B owns type B. Throughout the paper, we will use types and groups as
synonyms. Agents are randomly matched in pairs to play the 2x2 coordination game
represented in Matrix [I]to[3] Matching occurs with uniform probability, regardless of
type. Matrix 1 and |2 represent inside-group interactions, while Matrix 3 represents
inter-group interactions (A type row player and B type column player). We assume
that II, > m4, and thus, we name a the favorite action of type A. Equally, we
assume Il > 7p, and hence, b is the favorite action of type B. We do not assume
any particular order between Ilg, and II4. However, without loss of generality, we
assume that 114 + 74 = llg + 5. We say that group A is stronger in preferences for
its favorite action than group B if II4 > Ilg (or if 7 > m4).

Before choosing between action a and b, agents choose whether to pay a cost to learn
their opponent’s type. If they do not pay it, they do not learn the type of their
opponent, and they play one single action valid for both types. If they pay it, they
can differentiate the action for the two types. We call information choice the first kind
of choice and coordination choice the second one. Consider player i € K = {A, B},
with K" # K,= {A, B}. 7; is the information choice of player i: if 7, = 0 player ¢
does not learn the type of her/his opponent. If 7, = 1, player i pays a cost ¢, and
learns the type. We assume ¢ > 0. xy; € {a, b} is the coordination choice when player
i chooses 7; = 0. If 7, = 1, 2 € {a, b} is the coordination choice when player i meets
type K, while iL‘li/ € {a, b} is the coordination choice when player i meets type K.
A pure strategy of an agent consists of her/his information choice, 7;, and of her/his
coordination choices conditioned on the information choice, i.e.

S; = (Ti,x()i,xﬁ,xf) €S =1{0,1} x {a,b}>.

For example, s; = {0,a,a,b} is a strategy when player i decides not to buy the
information and plays a with every type of player. The third and fourth entries do
not matter since the agent is not learning the type of her/his opponent. Each player
has sixteen strategies.

We consider a model of noisy best response learning in discrete time (see Kandori,
Mailath, and Rob 1993, Young 1993).

Each period ¢t = 0,1,2,..., independently from previous events, there is a positive
probability p € (0, 1) that an agent is given the opportunity to revise her /his strategy.
When such an event occurs, each agent chooses with positive probability a strategy
that maximizes her/his payoff at time ¢. s;(t) is the strategy played by player ¢ at
time t. U(s;, s_;) is the payoff of player ¢ from playing strategy s; against the strategy
profile s_; played by all the other agents except ¢. At time ¢ + 1, player i chooses

si(t+ 1) € argmax U'(s;, s_;(t)).

SiE€S;
If there is more than one strategy that maximizes the payoff, player ¢ assigns the
same probability to each of these strategies. We define n44(n®?) as the number
of players of type A(B) currently playing action a with type A(B), and n4B(nf4)
as the number of players of type A(B) currently playing action a with type B(A).
Under the assumption of myopic best reply, the payoff of playing strategy s; at time
t depends on n%% and on n/<'%, namely, it depends on how many players are playing
a with the type of player i. In other words, whether the other agents are buying the

information or not does not matter for a decision maker. We define states as vectors
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of four components: w = {nA4, n4% nP4 nPPl with Q being the state space, and
Wy = {an,nfB,ntBA,nfB} being the state at time ¢. We assume that each agent
knows all the components of the state vectors at each t. Given myopic best reply,
wy is all that a decision-maker has to know to make a decision. Therefore, we can
characterize the dynamics with this simplification of the states.

Moreover, given the myopic best reply and our definition of states, we can group the
16 strategies in 6 behaviors affecting the dynamics and the individual payoffs in the
same way. The logic passages are the following: if players are myopic best repliers, we
can consider simplified states. Given the states and myopia of agents, some strategies
affect the dynamics and the individual payoffs in the same way. Therefore, we can
group strategies concerning the effect they have on the dynamics and individual
payoffs.

We name behavior a(b) as the set of strategies when player ¢ chooses 7; = 0, and
zo; = a(b). We name ab the strategies when player i chooses 7; = 1, 2 = a, and
2K" = b, and so on and so forth. We call Z; the set of possible behaviors of player
i: Z; = (a,b,ab,ba,aa,bb). It is easy to show that each strategy in a behavior in Z
affects the dynamics and the individual payoffs in the same way.

Consider a player i € A playing s, = (0,a,a,b), who is given the opportunity to
revise her/his strategy at time t. If s/he chooses s = (0, a, b, b) her/his payoff does
not change: s/he is still playing a with every agent s/he meets. Moreover, also the

n

state does not change. Differently, if player ¢ chooses s = (0, b, a, b), her/his payoff
changes, and also the state. Indeed, both n;} and nj'f} decreases of one unit.
From now on, we will refer to behaviors and states following the simplifications de-

scribed above.

We illustrate here the general scheme of our presentation. We divide the analysis
into two cases: complete information and incomplete information. For each case, we
consider unperturbed dynamics (agents choose the best reply behavior with prob-
ability 1) and perturbed dynamics (agents choose a random behavior with a small
probability). First, we help the reader understand how each player evaluates her/his
best reply behavior and which states are absorbing. Second, we highlight the general
structure of the dynamics with perturbation and then determine the stochastically
stable state. We provide the proofs of all results in the appendix and their intuition
in the main text. In the next section, we analyze the case with complete information,
hence, when the cost is zero.

3 Complete Information with Free Acquisition

In this section, we assume that each player can freely learn the type of her/his oppo-
nent when randomly matched with her/him. Without loss of generality, we assume
that agents always learn the type of their opponent in this case. We refer to this
condition as free acquisition of information. Each player has four possible behaviors
as defined in the previous section. Z; = {aa, ab, ba,bb}, with a = aa, and b = bb in
this case]

2Under this specification, it is like there is no information choice. Hence, behaviors and strategies
coincide. Therefore, our grouping of the strategies does not influence the dynamics.
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Consider i € K. Define 7 = Iy iR =A andﬁf:{m‘ iR =A

g it K=B Il ifK=B"
Equation to are the payoffs for a player : € K currently playing aa or ab.

Nk —1nf% —1 Nyr nf'E
T T T e e M
N—1 Ng—1 N —1 Ng

U'laa, z_;(t)) =

Ng —1nkE —1 Ny Nyo — niK'K
R e
N—1 Ng—1 N—-1 Ny

U'(ab, z_;(t)) =

NK_lNK_ntKK,]rg{_‘_ NK/ nf(,KﬂK’
N—-1 Ng-1 N —1 Ng

U'(ba, z_i(t)) =

NK—lNK—TLKK K NK’ NK’_nt K K

Ul (bb, z_i(t)) = : 4
( 2 ()) N —1 NK—l U +N_1 NK’ T ()
The two ratios 1\11\1;1—11 and NKll express how much frequently a player meets type K

or K’. Note that when an agent calculates her/his payoffs, it does not matter what
s/he is doing with the other group, as s/he does not count her/himself in that group.

3.1 Unperturbed Dynamics

We begin the analysis for complete information by studying the dynamics of the
system when agents play their best reply behavior with probability one. In this case,
what happens at time ¢ + 1 depends on the state at time ¢ (agents myopically best
reply to the current state) and on who is given the revision opportunity. We define
formally the dynamical system as w1 = F'(wy, 0y41). 0441 is the set of players who
received the opportunity to revise their behavior at time ¢.

We can separate the dynamics of the system into 3 different dynamics. The two
regarding inside-group interactions i.e. n# and nP? and the one regarding inter-
group interaction, i.e. n;'¥ and nf*. We call this subset of states n] = (nj*?, nf4).
Both n*4 and ntBB are one-dimensional dynamics; n! instead is a two-dimensional
dynamics.

Lemma 1. Under free acquisition of information, niy = Fi(ni*, 0,41), nff =
Fy(nfP,0,11) and (nf5,nfh) = Faa(ni? nf 4, 0p41).

The intuition behind the result is as follows. If agents always learn their opponents’
type, the inter-group dynamics does not interfere with the inside-group. If player

i € K is given the revision opportunity, s/he chooses z£ based only on nX¥.

Consider a subset of 8 states: w® = {(Na, Na, Ng, Ng), (0, N4, N5, Np),
(NA>NA7 N370)7 (NA7070>NB)7 (Oa NAvNB70)7 (NA707070)7 (070707NB) and (070707())}

R

Lemma 2. Under free acquisition of information, the states in w' are the unique

absorbing states of the system.

We call (Ng, Ng, Ng, Ng) and (0,0,0,0) Monomorphic States (MS from now on).
Specifically, we refer to the first one as M'S, and to the second as M.S,. We label
the remaining six as Polymorphic States (P.S from now on). We call (N4, N4, Np,0)
PS, and (N4,0,0,0) PSy. In M S, every agent plays the same action with any other

6
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agent; in PS, at least one type is differentiating the action. In M.S,, every agent
plays aa, in M S, every agent plays bb. In PS,, A type plays aa and B type plays
ba. In PSy, A type plays ab while B type plays bb. Both in PS, and PS,, all players
coordinate on their favorite action with their similar. We can break these absorbing
states into the three dynamics in which we are interested. This simplification helps
in understanding why only these states are absorbing. For instance in inter-group
interactions there are just two possible absorbing states, namely (N4, Ng) and (0, 0).
For what concerns inside-group interactions, N4 and 0 matters for n/4, Nz and 0 for
nPB. For each dynamics, the states where every agent plays a or where every agent
plays b with one type are absorbing. In this simplification, we can see the importance
of Lemma As a matter of fact, in all the dynamics we are studying, there are
just two candidates to be stochastically stable. This result simplifies the stochastic
stability analysis.

3.2 Perturbed Dynamics

We now introduce perturbations in the model presented in the previous section.
We use tools and concepts developed by Freidlin and Wentzell and refined by
Ellison Agents can experiment while choosing their behaviors: there is a small
probability that an agent does not choose her/his best response behavior when s/he
is given the revision opportunity. We use the uniform error model for mistakes: the
probability of experimenting is equal for every agent and every state. At each step,
if an agent is given the revision opportunity, s/he experiments with probability €. In
this section, we assume that agents make mistakes only in the coordination choice:
assuming ¢ = 0, adding mistakes also in the information choice would not influence
the analysis. Note that Lemma 1 is still valid under this specification.

If we consider a sequence of transition matrices {P°}__, with associated stationary
distributions {x°} ., by continuity the accumulation point of {4}, that we call 1%,
is a stationary distribution of P := lim._,q P°. Mutations guarantee the ergodicity
of the Markov process and the uniqueness of the invariant distribution. We are
interested in states which have positive probability in p*.

Definition 1. A state @ is stochastically stable if p*(w) > 0 and it is uniquely
stochastically stable if p*(w) = 1.

We define some useful concepts from Ellison 2000. Let w be an absorbing state of the
unperturbed process. D(w) is the basin of attraction of w: the set of initial states
from which the unperturbed Markov process converges to w with probability one.
The Radius of the basin of attraction of w is the number of errors needed to leave
D(@), when the system starts in @. Define a path from state @ to state w’ as a
sequence of distinct states (wq,ws, ... ,wr), with w; = @ and wyr = w’. T(®,w’) is the
set of all paths from w to w’. Define r(wy,ws, ...,wr) as the resistance of the path
(w1, ws, ..., wr), namely the number of mistakes that occurs to pass from state w to
state w’. The Radius of @ is then

R(w) = min r(wi,ws, ..., wr).
(w1,wg,...,wT)ET(LD,Q—D(G)))

Now define the Coradius of @ as
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CR(@w) = max min r(wy,ws, ..., wr)
w¢D(®) (w1,w2,...,wr)EY (w,D(@))

Thanks to Theorem 1 in Ellison 2000, we know that if R(w) > CR(w), then w is
uniquely stochastically stable.
We are ready to calculate the stochastically stable states under complete information.

Theorem 1. Under free acquisition of information, for N large enough, if :—’j <

%, then PSy is uniquely stochastically stable. If z—‘j > Mg

N2, then PS, is uniquely
A
stochastically stable.

When the cost is null, agents always learn the type of their opponent. Therefore,
they always coordinate on their favorite action in inside-group interactions. Hence,

ni4 always converge to Ny and nPP always converge to 0. This result rules out
Monomorphic States and other 4 Polymorphic States: only PS, and P.S, are left.
Which of the two is selected depends on strength in preferences and group size. Two
effects determine the results in the long-run. Firstly, if 74 = 7g, PS, is uniquely
stochastically stable. The majority prevails in inter-group interactions if the two
groups are equally strong in preferences. Secondly, if 7rA # mp, there is a trade-off
between strength in preferences and group size. If ”i > , either type A is stronger
in preferences than type B, or group A is enough larger than group B. In both of the
two situations, the number of mistakes necessary to leave PS, is bigger than the one
to leave PSy: in a sense, more errors are needed to make b best reply for A players
than to make a best reply for B players. Therefore, every agent will play action a in

ﬂ'B
inter-group interactions. A similar reasoning applies if T8 < NA

We provide two numerical examples to explain how the model works in Figure[T|and [2]
We represent just n!, hence, a two-dimensional dynamicsEl Red states represent the
basin of attraction of (0,0), while green states the one of (N4, Ng). From grey states
there are paths of zero resistance both to (0,0) and to (N4, Ng). Any path that
involves more players playing a within red states has a positive resistance. Every path
that involves fewer people playing a within green states has a positive resistance. The
Radius of (0,0) is equal to the Coradius of (N4, Np), and it is the minimum error
path from (0,0) to grey states. The Coradius of (0,0) is equal to the Radius of
(N4, Np), and it is the minimum error path from (N4, Ng) to grey states.
Firstly, consider the example in Figure 1. Ny =10, Ng = 5, mq = 8, I, = 10,
mp =3, lIp = 15. Clearly, 72 = S <= }j In this case R(10,5) = CR(0,0) =1,
while R(O 0) = CR(10,5) = 3. Hence (0,0) is the uniquely stochastically stable
state. We give here a short intuition. Starting from (0,0), the minimum error path
to grey states is the one that reaches (0,3). The minimum error path from (10,5) to
grey states is the one that reaches (9,5). Hence, fewer mistakes are needed to exit
from the green states than to exit from the red states. This is why PS, = (10,0,0,0)
is uniquely stochastically stable.
Secondly, consider the example in Figure 2. NA =10, Ng =5, my = 3, II4 = 15,
75 =8, lIp = 10. Note that 72 = % 2> 2 = 22 In this case, R(lO 5)=CR(0,0) =
4, CR(lO 5) = R(0,0) = 1. Hence PS = (10 5) is uniquely stochastically stable.
In this case, the minimum error path to exit green states is the one that reaches (6, 5)
r (10,1). The one to exit the red states is the one that reaches (0, 1).

3For a more exhaustive treatment of lattices, see Appendix A of Neary 2012.
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Figure 1: PS, = (0,0) is uniquely stochastically stable: 72 < %—i
4 . . . . . . . . . . .
3 . . . . . . . . . . .
2 e . . . . . . . . . .
1 e . . . . . . . . . .
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Figure 2: PS, = (10,5) is uniquely stochastically stable: Z—’j > %—’j

4 Incomplete Information with Costly Acquisition

In this section, we assume that each player can not freely learn the type of her/his
opponent. Each agent can buy this information at a strictly positive cost. We refer to
this condition as costly acquisition of informationﬁ This time Z; = {a, b, ab, ba, aa, bb},
Vi € N. It is trivial to show that there are 4 optimizing behavior out of the 6 be-
haviors, indeed, U'(aa) = U'(a) — ¢ and U*(bb) = U'(b) — c¢. Hence, for all i € N,
U'(aa) < U'(a) and U'(bb) < U'(b), Ve > 0. We define optimizing behaviors as
Z? ={a,b,ab,ba}, ¥i € N, with z? being an optimizing behavior of player i.
Equation (5] to are the payoffs at time t, for a player ¢ € K currently playing a
or ab.

!/
DK 4

Ul(a, 24(t) = ~— 7 "a» ()

4Tt is trivial to notice that Lemma 1 is not valid anymore. Indeed, since agents learn the type
of their opponent conditional on paying a cost, not every player pays it, and the dynamics are no
longer separable.
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KK K'K
N —n; " —ny K

U'(b, 2-i(t)) =

KK K'K
NK—ln —1 K NK/ NK/—nt K

U'(ab, z_;(t)) = N1 Ne_ T + N1 N T, — C, (7)
NK—lNK—nf{K K NK’ 7’LtI<IK K

U'(ba, z_i(t)) =

_ e 8
N-1 Ne—1 " " N_INg @ € (8)

To help the reader visualize the differences between this section and Section 3, we
did not explicit in Equation (5) and (6] the frequencies of meetings. Note that if
c =0, then aa = a and bb = b.

We begin the analysis again with the unperturbed dynamics, where agents choose
their best reply behavior with probability one.

4.1 Unperturbed Dynamics

State Condition on group size and payoffs | Conditions on ¢
MS, none none
M S, none none
TS ;FI_JZ < Nﬁ—;l c>max{ TTTA, ]\J,VAIWB}
PS, none c< —7rA
2) i <"~ 2)C<m7TB
T4 Np N1
(O’NA7NB>NB) 1) Eﬁ <N;1 1)C<EWA
2) > w5 2) ¢ < 2211,
(N4,0,0, Np) none c<m1n{N 17TA,A]/;? 117TB}
1) I% < N]‘@;l and ﬁ—’; > Nﬁf 1) ¢ < min NA 17r NB 1HB}
T4 - Na—1 75 - Np—1 5 NB —1
0N Np0) | DT R Ziﬁﬁ}% 1, 4 Te)
4 B Os ~ \Ma, - A N B
) > R and g2 < =B 4) ¢ < min {214, 7TB}
(0,0,0, Np) none c < He=lrg

Table 4: Necessary and sufficient conditions for absorbing states.

So far, there are no more random elements with respect to Section 3. What happens
at time ¢t + 1 depends on the state at time ¢ and on the players that are given the
revision opportunity. Nine states can be absorbing under this specification.

Lemma 3. Under costly acquisition of information, there are nine possible absorbing
states: w U (Ny, Ny, 0,0).

We summarize all the relevant information in Table @ The reader can note two dif-
ferences with respect to Section 3: firstly, there is one more possible absorbing state,
that is (N4, Np,0,0), and secondly, some states are absorbing if and only if some
conditions hold. Where we write “none”, we mean that a state is always absorbing
for every value of group size, payoffs, and/or the cost. We name (N4, Ng,0,0) the

10
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Type Monomorphic State (7S from now on): in this state, each type is playing its
favorite action, causing miscoordination in inter-group interactions. Monomorphic
States are absorbing states for every value of group size, payoffs, and cost. When
every player is playing one action with any other player, agents do not need to learn
their opponent’s type (the information cost does not matter). They best reply to
these states by playing the same action.

Polymorphic States are absorbing if and only if the cost is low enough: if the cost is too
high, buying the information is too expensive, and agents best reply to Polymorphic
States by playing a or b. The Type Monomorphic State is absorbing if type B is either
large enough compared to group A or strong enough in preferences for its favorite
action and if the cost is high enough. The intuition is the following. On the one hand,
if type B is weak in preferences or small enough, every player of type B best replies
to T'S by playing a if the cost is high. On the other hand, if the cost is low enough,
every player best replies to this state by buying the information and differentiating
the action.

4.2 Perturbed Dynamics

We now introduce perturbed dynamics. In this case, we assume that agents can make
two types of errors: they can make a mistake in the information choice and in the
coordination choice. Choosing the wrong behavior, in this case, can mean both. We
say that with probability 7, an agent that is given the revision opportunity at time
t chooses to buy the information when it is not optimal. With probability e, s/he
makes a mistake in the coordination choice. Alternatively, we could have chosen to
set only the probability of experimenting with a different behavior or strategy.

The logic behind our assumption is to capture behaviorally relevant errors. We as-
sume a double punishment mechanism for players choosing by mistake the information
level and the coordination action. Specifically, our error counting is not influenced
by our definition of behaviors. We could have made the same assumption starting
from the standard definition of strategies assuming that agents can make separate
mistakes in choosing the two actions that constitute a strategy. Our assumption is
in line with works such as Jackson and Watts 2002 and Bhaskar and Vega-Redondo
which assume errors in the coordination choice and the link choice.

Since we are assuming two types of errors, the concept of resistance changes, we then
need to consider three types of resistances. We call r.(w, ... ,ws) the path from state
wy to state wg with e errors (players make a mistake in the coordination choice). We
call 7, (w, ..., ws) the path with n errors (players make a mistake in the information
choice). Finally, we call ro,(wy, ... ,ws) the path with errors both in the coordination
choice and the information choice. Since we do not make further assumptions on &
and 1 (probability of making errors uniformly distributed), we can assume 7 €.

We count each error in the path of both € and 7 errors as 1, however, r,(wy, . .., w;)
is always double since it implies a double error. Indeed, we can see this kind of error
as the sum of two components, one in 7 and the other in ¢, namely r,(wt, ..., ws) =
Tepl. (W - -y Ws) + ramn(wt, Ce, Ws).

For example, think about w; = M S, and that one player from B is given the revision
opportunity. Consider the case where s/he makes a mistake both in the information
choice and in the coordination choice. For example, s/he learns the type and s/he
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plays a with A and b with B. This error delineates a path from MS, to the state
(Na, N4, Ng — 1, Np) of resistance r.,(MS,,...,(Na, Na, Ng — 1, Np)) = 2. Next,
think about w; = T'S: the transition from T7'S to (N4, N4 — 1,0,0) happens with
one 7 error. One player from A should make a mistake in the information choice
and optimally choosing ab. In this case, r,(T'S,..., (Na, Ny —1,0,0)) = 1. With a
similar reasoning, r.(MS,,..., (N4 — 1, N4y — 1, Ng, Ng)) = 1: a player of type A
makes a mistake in the coordination choice and chooses b.

We explain why our grouping of strategies does not influence the stochastic stability
analysis before we give the results. Let us consider all the sixteen strategies as
presented in Section 2, and just one kind of mistake in the choice of the strategy. Let
us think about two different states: @ where every agent is playing strategy s’, and w’,
where m agents are playing s, and all the others are playing s’. Consider s', s” € 2/,
and s € 2. Strategy s’ is the best reply for every player in state w, and trivially,
w # w'. Consider wy = w. If m players choose s/ at time 0, w; = w. If m players
choose s at time 1, wy = w’. The cost of this transition is 2m. However, there is a
lower error path from @ to w’. This path is the one with m errors directly towards
strategy s’. Such a path happens with cost m. Therefore, we would never consider
the first path for stochastic stability analysis. This result is true for every absorbing
state: there is never a minimum resistance path involving errors towards strategies
grouped in the same behavior from one absorbing state to another. Consequently,
our grouping of strategies does not influence the results.

We divide this part of the analysis into two cases, the first one where the cost is high
and the second one when the cost is low.

4.2.1 High Cost

In this part of the analysis, we focus on a case when only M S and T'S are absorbing
states.

Define the following set of values:

[ Ny Na  Ny—1_ Ni—1_ Ny _ Np—1
—PS — N_lTrA)N_lﬂ—Ba N — 1 B> N—lﬂ—A?N—l A, N —1 .

Corollary 1. Under costly acquisition of information, if ¢ > max{=Zps} and ﬁ—’; <

Np—1 . ™ Np—1
T then only M.S and T'S are absorbing states. If 2 R then only M S are
absorbing states.

The proof is straightforward from Table 4 and therefore, we omit it. We previously
give the intuition behind this result. Let us firstly consider the case in which 7T'S is

not an absorbing state, hence, the case when £2 > %
B A

Theorem 2. Under costly acquisition of information, for N large enough, take g—]'; >
Nﬁ—;l and ¢ > maz{Zps}. If Ny > W, then M S, is uniquely stochastically

stable. If Ny < W7 then M Sy, is uniquely stochastically stable.

If group A is large enough or strong enough in preferences, the minimum number of
errors to exit from the basin of attraction of M S, is higher than the minimum number
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of errors to exit from the one of MS,. Therefore, MS, is uniquely stochastically
stable: every agent plays behavior a in the long-run.
Now we analyze the case when also T'S is a strict equilibrium.

Theorem 3. Under costly acquisition of information, for N large enough, take g—i <
Np—1

& and ¢ > max{Eps}.

o [f N(mgp—ma) > Npllg — Namp — llg + wp + 4, then MS, is uniquely
stochastically stable.

o I[f N (ma—mp) > Nally— Npmg—Ts+1lg+ma, then MSy is uniquely stochas-
tically stable.

[ ]fmin{NAHA—NB’]TA—FWA,NBHB—NA’]TB—{—WB}—HA—HB > N(7TA—|—’/TB),
then T'S is uniquely stochastically stable.

Moreover when the conditions of the following system hold

N(T('B—TI'A)SNBHB—NAWB—HB—F?TB—FHA
N(T('A—WB)SNAHA—NBWA—HA—FHB—FWA
min{NAHA—NB7TA+7TA,NBHB—NA7T3+7TB}—HA—HBSN(WA+7TB)

o If N(np—ma) > Np(llg +74) — Na(lly + 7p) + Iy — w4 + mp — Ilp, then
MS, is uniquely stochastically stable.

° [fN(?TA—TrB) > NA(HA—I—WB) —NB(HB+7TA) — Iy + 74 — 7 + g, then
MS,, is uniquely stochastically stable.

° [fN(?TA—ﬂ'B) = NA(HA+7TB)—NB(HB+7TA) — Iy + w4 — 7 + Ilp, then
both MS, and MS, are stochastically stable.

We divide the statement of the theorem into two parts for technical reasons. How-
ever, the reader can understand the results from the first three conditions. The first
condition expresses a situation where type A is stronger in preferences than type B
or group A is enough larger than group B. In this case, there is an asymmetry in the
two costs of exiting the two basins of attraction of M .S, and M S,. Exit from the first
requires more errors than exit from the second. Moreover, reaching M S, from TS
requires less errors than reaching M S, from T'S. This is why R(MS,) > CR(MS,)
and M S, is uniquely stochastically stable in this case. Similar reasoning applies to
the second condition.

The third condition expresses a case where both types are strong enough in prefer-
ences, or the two groups have sufficiently similar sizes. Many errors are required to
exit from T'S, compared to how many errors are required to reach T'S from the two
MS. TS is the state where both types are playing their favorite action. Therefore,
if the two groups are symmetric in the strength in preferences or their sizes, agents
play their favorite action in the long-run. However, they miscoordinate in inter-group
interactions. We conclude from this section that two conditions must hold for misco-
ordination to happen in the long-run. First, the cost to pay to learn the opponent’s
type should be so high that agents never learn their opponents’ type. Second, both
types should be strong enough in preferences or enough close in size.
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4.2.2 Low Cost

In this section, we discuss the case when c is as low as possible but greater than 0.

TA 7B

Corollary 2. Under costly acquisition of information, if 0 < ¢ < min{+2;, 7%},

MS and PS are absorbing states, while T'S is not an absorbing state.

The proof is straightforward from Table 4. In this case, there are 8 candidates to be
stochastically stable equilibria.

Theorem 4. Under costly acquisition of information, for N large enough, take 0 <
c < min{g4, 75} If 22 < %—’j, then PS, is uniquely stochastically stable. If

fr—i > %—f, then PS, is uniquely stochastically stable.

The conditions are the same as in Theorem[I} When the cost is low enough, whenever
a player can buy the information, s/he does it. Consequently, the basins of attrac-
tion of Polymorphic States enlarge: they reach the dimension they had under free
acquisition of information. Furthermore, the basins of attraction of both Monomor-
phic States contract. Due to these two effects, the results are the same as under free
acquisition of information.

5 Discussion

The results of our model involve three fields of the literature. Firstly, we contribute
to the literature on social conventions. Secondly, we contribute to the literature
on stochastic stability analysis, and lastly, we contribute to the literature on costly
acquisition of information.

For what concerns social conventions, we contribute to the literature on language
games or, more generally, to the one on coordination games. Many works in this field
are concerned about the existence in the long-run of heterogeneous strategy profiles.
We started from the original model of Neary 2012, which considers agents hetero-
geneous in preferences, but with a smaller strategic set. His work gives conditions
for the stochastic stability of heterogeneous strategy profiles that causes miscoordi-
nation in inter-group interactions in a random matching caseEl Neary and Newton
2017 expands the previous idea to investigate the role of different classes of graphs
on the long-run result. They find conditions on graphs such that a heterogeneous
strategy profile is stochastically stable. They also consider the choice of a social plan-
ner that wants to induce heterogeneous or homogeneous behavior in a population.
Carvalho [2017) considers a similar model, where agents choose their actions from a
set of culturally constrained possibilities. The author associates the heterogeneous
strategy profile with miscoordination. He finds that cultural constraints are a crucial
driver for miscoordination. Michaeli and Spiro 2017| studies a game between agents
with heterogeneous preferences and who feel pressure from behaving differently. They
characterize the circumstances under which a biased norm can prevail on a non-biased
norm. Tanaka, Lee, and Iwasa studies how local dialects survive in a society

5Heterogeneity has been discussed in previous works such as Smith and Price 1973, Friedman
1998, Cressman, Garay, and Hofbauer 2001, Cressman, Ansell, and Binmore 2003 or Quilter et al.

2007}
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with an official language. Naidu, Hwang, and Bowles [2017] studies the evolution of
egalitarian and inegalitarian conventions. To do so, they consider a framework with
asymmetry similar to the language game. Likewise, Belloc and Bowles examines
the evolution and the persistence of inferior cultural conventions.

We give the conditions for the stability of the Type Monomorphic State, where agents
miscoordinate in inter-group interactions. We show that in our framework, incomplete
information, high cost, strength in preferences, and group size are key drivers for
miscoordination.

Many works propose a version of the language game in a network context. Goyal,
Hernandez, et al. experiments the language game, testing whether agents segre-
gate or conform to the majority. van Gerwen and Buskens suggests a variant of
the language game similar to our version but in a model with networks to study the
influence of partner-specific behavior on coordination outcomes. Concerning auctions
theory, He 2019| studies a framework where each individual of a population divided
into two types has to choose between two skills: a “majority” and a “minority” one.
She finds that minorities are advantaged in competition context rather than in co-
ordination one. He and Wu tests the role of compromise in the battle of sexes
with an experiment. A parallel field is the one of bilingual games such as the one
proposed by Goyal and Janssen or Galesloot and Goyal [1997: these models
consider situations in which agents are homogeneous in preferences but can become
bilingual at a given cost.

Nyborg et al.[2016] has recently suggested the applicability of tipping points theories to
policy and interventions. This field could produce explanations and further research
questions for language games (see Neary and Newton 2017 again). Indeed, in our
model, there are situations in which the majority conforms to the action preferred by
the minority. This fact happens even in inside-group interactions.

Concerning the technical literature on stochastic stability, we contribute by applying
standard stochastic stability techniques to an atypical context, such as the costly
acquisition of information. Since the seminal works by Bergin and Lipman [1996, and
Blume 2003, many studies have focused on testing the role of different error models in
equilibrium selection. We used a uniform error model, and we believe that introducing
different models could be an interesting exercise for future studies. Among the many
models that can be used, there are four relevant variants: payoff-dependent mistakes
(Sandholm [2010, Dokumaci and Sandholm and Klaus and Newton [2016)), cost-
dependent mistakes (Blume and Myatt and Wallace , intentional mistakes
(Naidu, Hwang, and Bowles and Hwang, Naidu, and Bowles and condition
dependent mistakes (Bilancini and Boncinelli . Important experimental works
in this literature have been done by Lim and Neary 2016, Hwang, Lim, et al. [2018|
Méis and Nax [2016, and Bilancini, Boncinelli, and Nax [2020.

Other works contribute to the literature on stochastic stability from the theoretical
perspective (see Newton for an exhaustive review of the field). Recently, Newton
has expanded the domain of behavioral rules regarding the result of stochastic
stability. Sawa and Wu shows that with loss aversion individuals, the stochastic
stability of risk dominant equilibria is no longer guaranteed. Sawa and Wu
introduces reference-dependent preferences and analyzes the stochastic stability of
best response dynamics. Staudigl2012 examines stochastic stability in an asymmetric
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binary choice coordination game.

Future extensions could break down a common assumption in many evolutionary
game theory models, such as the random matching a la Kandori, Mailath, and Rob
1993. In our model, every agent knows the current state. Robson and Vega-Redondo
is one of the most famous works breaking down this property. It would be
interesting to go deep into this assumption and modify the way agents estimate the
state. Such an analysis would exploit the role of bounded rationality in the formation
of social conventions. Specifically, we are interested in applying models such as the

one of Jehiel 2005.

For what concerns the literature on costly acquisition of information, many works
interpret the information’s cost as a cognition cost (see the seminal contributions by
Simon 1955, or Grossman and Stiglitz 1980). Our paper is one of those. Many studies
place this framework in a sender-receiver game. This is the case of Dewatripont and
Tirole 2005, who builds a model of costly communication in a sender-receiver setup.
More recent contributions in this literature are Dewatripont [2006], Caillaud and Tirole
2007, Tirole and Butler, Guiso, and Jappelli 2013l Bilancini and Boncinelli
2016 applies this model to persuasion games with labeling, Bilancini and Boncinelli
studies these kinds of models to dual-process theories in psychology. Finally,
Bilancini and Boncinelli 2018D) is the first to apply costly acquisition of information
to the analogy-based reasoning theory developed by Jehiel 2005E| To the best of our
knowledge, we are the first to use costly acquisition of information in an evolutionary
model.

Many works use a similar concept of cost in the evolutionary game theory literature:
the link formation one. Staudigl and Weidenholzer introduces the possibility
that agents can establish costly links with other players. The main finding is that if a
small number of players play the Payoff-Dominant action, other players connect with
them and play the Payoff-Dominant action. The work by Bilancini and Boncinelli
extends Staudigl and Weidenholzer 2014. They firstly twine evolutionary game
theory and costly interactions. This model introduces the fact that interacting with
a different type might be costly for an agent. They find that when the cost is low,
the Payoff-Dominant strategy is also the stochastically stable one. When the cost
is high, the two types in the population coordinate on two different strategies. One
on the Risk-Dominant and the other on the Payoff-Dominant. Similarly, Bilancini,
Boncinelli, and Wu studies the role of cultural intolerance and assortativity
in a coordination context. They divide the population into two cultural groups who
sustain a cost from interacting with the other group. They find interesting conditions
under which cooperation can emerge even with cultural intolerance.

6 Conclusions

We can summarize our results as follows. When agents learn the type of their op-
ponents at a low cost, they always coordinate. They play their favorite action with
their similar, while in inter-group interactions, they play the favorite action of the

6 A recent field of the literature concerns rational inattention, which is a way of endogenizing the
cost of information (see Mackowiak, Matejka, Wiederholt, et al. 2020/ for an exhaustive review). We
assume that the cost is exogenous and homogeneous for each player.
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group that is stronger in preferences or with size large enough. If the cost is high,
agents never learn the type of their opponents. Either all the agents play the same
action with every agent, or all the agents play their favorite action.

Comparing Section [£.2.1] and [£.2.2] we can see the impact of varying the cost levels
on the long-run results. A change in the cost level produces two effects that need
perhaps a further investigation. The first effect concerns the change in the payoft from
the interactions between agents. The second concerns the change in the purchase of
the information.

Consider a starting situation where the cost is low. Agents always coordinate on
their favorite action in inside-group interactions. If the cost increases, agents will stop
learning their opponent’s type (hence, they stop paying the cost), and they will begin
to play the same action with any other player. If this happens, either Monomorphic
States establish in the long-run, or the Type Monomorphic State emerges. In the first
case, a group of agents coordinates on its second best option, even in inside-group
interactions. For this group, there will be a certain loss in terms of welfare. In the
second case, agents miscoordinate in inter-group interactions, and hence, all of them
will have a certain loss in welfare.

Nevertheless, when the cost is low, there is a “free-riding” behavior that vanishes if
the cost increases. In fact, with low cost levels, only one type pays the cost, and the
other never pays it. In one case, A always plays its favorite action and never pays
the cost, while B affords it. In the other case, the opposite happens. Hence, when
the cost increases, one of the two groups will benefit from not paying the information
anymore. However, given that we characterize the equilibria just for cases when the
cost is low, this seems not relevant.

We conclude with a short comparison of our result with the one of Neary 2012. Our
results are not qualitatively different from that work, but it is worthwhile to mention
a contrast that is a consequence of introducing the possibility to differentiate the
action. In the model of Neary 2012, a change in the strength of preferences of one
type does not affect the behavior of the other type. We can find this effect even in
our model when the cost is high. For example, when M S, is stochastically stable,
and type B becomes enough stronger in preferences, the new stochastically stable
state becomes T'S. This means that A type does not change its behavior. However,
when the cost is sufficiently low, the change in payoffs of one type influences the other
type’s behavior in inter-group interactions. For instance, when PSj, is stochastically
stable, if type A becomes strong enough in preferences, P.S, becomes stochastically
stable. Both types change the way they behave in inter-group interactions.
Nevertheless, this is a quantitative difference. From the qualitative point of view, our
results are similar to the findings of Neary 2012. If the payoffs of one type change,
the other keeps playing its favorite action in inside-group interactions, but it changes
the action in inter-group ones. The same reasoning can be done with group size.
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A  Proofs

A.1 Proofs of Section 3
Proof of Lemma 1:

Consider a player ¢ € K currently playing aa, who is given the revision opportunity
at time t. On the one hand, VnX% U(ab, z_;(t)) = U(aa,z_;(t)). On the other
hand, VnX'%, Ui(ba, z_;i(t)) = U'(aa,z_s(t)). Therefore, player i chooses aa or ab

. ! .
depending on nX ¥ and ba or aa depending on nX¥.

. . . ! ’
Moreover, if player ¢ chooses ab instead of aa, nftff = nf¥, but nf{ < n/~ . If
. . / / .
player ¢ chooses ba instead of aa, nfilf < nfE but nfif( = nf'K This completes the

proofs.
O

With abuse of notation, we call best reply (BR), the action optimally taken by a
player in one of the three dynamics. For example, if a type A earns the highest
payoff by playing a against a player of type B, we say that a is her/his BR. We
do this in the context of complete information because of the separability of the
dynamics.

Proof of Lemma [J:

Thanks to Lemma 1, we can consider the 3 separated dynamics: nj*4, nP8, and n!.

Inside-group interactions.

Firstly, we prove the result for n/4 and then the argument stands for n? thanks
to symmetry of payoff matrix. We have to show that all the states in w® have an
absorbing component for n'4, that is 0 or N4. When n4 = Ny, Vi € A, a is BR
against type A at time t. Hence, Fy(Ng,0,41) = N4. Symmetrically if n44 =0, b
is always BR and so, F1(0,60;,,) = 0. Therefore, N4 and 0 are fixed points for n/ 4.
We need to show that these states are absorbing, that all the other states are tran-
sient, and that there are no cycles. Consider player i € A who is given the revision
opportunity at time ¢. We define 7 as the minimum number of A players such that
a is BR, and n? as the maximum number of A players such that b is BR. From
Equation (1) to (4), we know that nt = %, and that n? = % Assume
ni4 > nt. There is always a positive probability that a player not playing a is given
the revision opportunity. Hence, Fy(n4, 6,,1) > nf4. Symmetrically, we can say
that if n < 4, Fy(nf4,0,,1) < ni.

We now prove that if n4 < n4 # 0,

Pr <t1im Fi(nf,0,4) = an> = 0.
—00
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Equally, if n4 > a4 # Ny,

Pr <hm By (n*,0,41) = an> =0.

We prove the first case, and the result stands for the second, thanks to symmetry
in payoff matrices. Consider to be at period s in a state n4 < n? # 0. For
every player, b is BR. Define Pr (Fl(nS 0s101) = AA) = p. Such a probability
represents the event that only players playlng b are given the revision opportunity.
Pr (Fl( s+1>95+2) ffl) =p Pr (Fl( N1 Osr) = ”?ﬁkq) =" Ik — oo,
Pr (Fi(ni8, 1, 0s4x) = niy_1) = 0. Therefore,

If nng <nt, Pr (hm Fl( 9t+1) = O) =1,

If nd4 > 74, Pr <hm Fi(n4,0,,1) = NA> — 1.

Next, consider n < nf* < nt. For every i playing a, b is BR while, for every ¢

playing b, a is BR. There are no absorbing states between these states. If only agents
playing a are given the revision opportunity, they all choose b, and if enough of them
are given the revision opportunity, n{4 < n. The opposite happens if only players
playing b are given the revision opportunlty.

Inter-group interactions.

AB

We now pass to the analysis of n/. We define 4 important values for n48 and n4

Ty = mm{ nBApBA > Tals }, Tp = min {nAB|nAB > dlaNa },

Hat+ma Optmp
_ BA|,,BA TaNB _ AB|,,AB MMpNa
Dy = max {n |n"4 < —HA+7TA}7 and Dp = max {n In?" < HB+7rB}'

Given these values we also define two sets of states, Q5 and Q¢:

= {n!|nB* > Ty and n*8 > T} and Qf = {nI]nBA < Dy and n*5 < Dp}.
Wlth similar computatlon as for n, we can say that (0,0) and (N4, Np) are two
fixed points for n!. Are they absorbing states?
Consider the choice of a player i € A against player j € B and vice-versa. There
can be four possible combinations of states. States in which a is BR for every agent,
states in which b is BR for every agent. States, in which Vi € A, a is the best reply,
and b is the best reply Vj € B, and states for which the opposite is true. Let us call
the third situation as Q% and the fourth as Q%
Firstly, we prove that Q¢ and QY are the regions where a and b are BR. for every agent.
Secondly, we prove that there is no other absorbing state in Q% than (N4, Ng), and
no other absorbing state in Q4 than (0,0).
Assume that player ¢ € A is given the revision opportunity at period t. From Equa-
tion (1) to (4), a is the BR against type B if n?4 > ﬁrAerB Since T4 is defined as
the minimum value s.t. the latter holds, VnP?4 > Ty, Vi € A, a is BR with B types.
Now, assume that j € B is given the revision opportunity, a is the BR with type A
if nAB > HHB+N A Since T'p is defined as the minimum values s.t. this relation is true,
VnAB > Tg, a is the best reply Vj € B. Therefore, if nl € Q¢, n!f € Q4,¥s > 0.
Similarly, if nf € Q% nl € Q% vs > 0.
Consider being in a generic state (Ts+d, Ta+d') € Qf at time ¢, with d € [0, No—Tp)
and d' € [0, Ng — T4). In such a state, there is always a probability p that a player
not playing a is given the revision opportunity.

22



Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 8 April 2021

Therefore, if n{ € Qf\ (Na, Ng), Pr (Fa3 (nf,0,41) > nf) > p Similar to what we
proved before,

if nf € 4\ (Na,No),  Pr (Jim Fog(ni,0,1) = nf) =0,

it nf € 04\ (0,0), Pr(Jim Foy(nf,01) = nf) =0

Consequently,

Ifnl € Q2 Pr (tlggo Faa(n!,0i1) = (N, NB)> —1,

if né € QI}, Pr (tlim F2,3(ntl,9t+1) = (070)> =1
—00

We now consider Q2 and Q5. Take an n} € Q%: at each step, there is a positive
probability that only agents of type A are given the revision opportunity, since for
them a is the best reply, in the next period, there will be more or equal agents in
A playing a. Hence, if enough players of A that are currently playing b are given
the revision opportunity, n! € Q¢. By the same reasoning, there is also a positive
probability that only agents from B are given the revision opportunity, hence, that
nl € Q4. The same can be said for every state in Q%. Hence, starting from every
state in Q% J Q% there is always a positive probability to end up in Q% or Q5.

O

Lemma 4. Under complete information,

Pr (limt_wo nl = (N, NB)) =1-—Pr (limt_>oo ni = (0, 0))
Pr (limt_,oo an = NA) =1-—Pr (limt_,oo an = O).

Pr (lim,Hoo nfB = NB) =1-—Pr (limHoo ntBB = O).

Proof:

We prove the result for n!, and the argument stands for the two other dynamics
thanks to symmetry in the payoff matrix. Firstly, note that whenever the process
starts in Q¢UQY, the lemma is always true thanks to the proof of Lemma 2. We need
to show that this is the case, also when the process starts inside Q% | J Q5. We prove
the result for Q% using the same logic, and the result stands for Q% for symmetry of
payoff matrix.

Take n € Q% define as p, the probability of extracting m agents from A that are
currently playing b, and that would change action « if given the revision opportunity.
Define as p, the probability of picking m agents from B currently choosing a that
would change action to b if given the revision opportunity. The probability 1 —p, — py
defines all the other possibilities.

Let us take k steps forward in time:

Pr(ng € Qf) > (pa)*

. ’ " . . ’ " ’ " ’ "
"Meaning that n,/ > n,’ if either n,A% > n, 4B and n,P4 = n, B4 or n,B4 > n, P4 and

’ 1" ’ 1" ’ 1"
nAP =n, 48 or both n,24 > n, B4 and n,A8 > n, 4B,
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Pr (ny € Q7) > ()"

Pr (ng € Qe UQ‘}“) < (1—pa— ).

Consider period k + d:

Pr (”£+d S Q?) > (pa)"
Pr(ng,q € Q) > (pp)*

Pr(nfiq € QP | JO0) < (0= pa— )"

Clearly, the probability of being in 2¢(Q%) is now greater or equal than (p,)*((ps)*):
we know that once in Q4(QY) the system stays there. The probability of being in
Qb J Qb consequently, is lower than (1 — p, — py)**+e.

Taking the limit for d that goes to infinity

Jim (Pr (ng+d oly Q’})) = 0.
This means that if we start in a state in Q¢ there is no way of ending up in Q4° | J Q4

in the long-run; hence, the system ends up either in Q4 or in Q%, but given this, we
know that it ends up either in (0,0) or in (N4, Np).

O

Corollary 3. Under complete information,

Pr (limyoon! = (Na,Ng)) =1 IFF n{ € Q.

Pr (limyoon = (0,0)) =1 IFF n} € QY.

Pr (limyoo nf* = Ny) = 1 IFF ng* € [0, N4, and
Pr (limyoo nf'* = 0) = 1 IFF ng* € [0, n].

Pr (limyeo nP? = Ng) =1 IFF nf? € [aP Ng], and
Pr (limyeo nP? = 0) = 1 IFF nfP € [0, nP].

This result is a consequence of the previous lemmas, and therefore, the proof is
omitted. Since the only two absorbing states in the dynamics of n! are (0,0) and
(N4, Np), they are the only two candidates to be stochastically stable states. From
now on we call (0,0) as I? and (Na, Ng) as I%. We define as 04 the state where all
agents of type A play b with type A and Op the state where all agents of type B play
b with B type.

Formally, adding the set of players that choose the behavior by mistake, we obtain
a new dynamical system: wyy1 = F(wy, 0441, %i11). Where 1,41 is the set of players
that do not choose their best reply behavior.

Let us call 4 and Eg the two values for which agents in A and in B are indifferent

in playing a or b; F4 = {&T’;&—‘ and Fg = LZI\;AE%—‘. From now on we often use

values of N large enough to compare the arguments inside ceiling functions.
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Lemma 5. Under free acquisition of information, for N large enough, R(I%) =
CR(I%) = Ey for all values of payoffs and sizes of groups, while

No—Ep ifZe <fe

II N
R(I;) = CR(I,) = N
Ng—FEa if f£ > 32

Proof:

Firstly we know from Ellison 2000 that if there are just two absorbing states, the Ra-
dius of one is the Coradius of the other and vice-versa. Hence, R(I?) = CR(I%), and
R(I%) = CR(I%). Moreover, from the proof of Lemma 2, we know that D(I%) = Q¢
and D(I?) = Q8.

We prove that the minimum error path to exit the basin of attraction of I? is the one
that reaches (Fg,0) or (0, E4), and that the one to exit the basin of attraction of I%
is the one that reaches either (Ep, Ng) or (N4, E4). To prove this statement for 17,
firstly, note that once inside Q% every step which involves a passage to a state with
more people playing a requires an error. Secondly, note that in a state that is out of
Qb at least one of the two types is indifferent in playing b or a. In other words, in a
state where either n4? = Ep or n®4 = E, or both. Hence, the minimum resistance
path to exit from I? is the one either to (Eg,0) or to (0, E4). It is straightforward
to show that all the other paths have greater resistance than the two above. Since
we use uniform mistakes, every mutation counts the same value, and without loss of
generality, we can count each of them as 1. Since every resistance counts as 1, then
R(I?) = min{Ep; E4} = Fa. Similarly, R(I¢) = min{ N4 — Ep; Ng — E4}, and

n

TR NB
Ny—FEgp < Ng—FEj<+— — < —.
A B B A HA NA

O

Lemma 6. Under free acquisition of information, for N large enough, R(04) =
’VNAWA*TFA-‘ R(NA) — ’VNAHA+HA-‘ R(OB) — ’VNBHB‘FHB-‘ and R(NB) — ’VNBTFB*TFB—‘

Ma+ma Ma+ma Ip+rp [Ip+7p

Proof:

The proof is straight forward, indeed, the minimum path in terms of error required
to reach one absorbing state starting from the other one is the cost of exit from the
basin of attraction of the first. As a matter of fact, let us consider R(04), we know
from the proof of Lemma 2 that we are out of the basin of attraction of 04 when

we reach the state n. Hence, R(04) = [%W The same applies to the other

states.

O

Proof of Theorem 1:

We divide the proof for the three dynamics described so far: for what concerns
ni4, N4 is uniquely stochastically stable and for what concerns n??, 0p is uniquely
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stochastically stable, this proof follows directly from Lemmalf and therefore is omit-
ted. Let us pass to n]. We know from Lemma that R(I%) = E4 and that the value
of R(I?) depends on payoffs and group size. Let us firstly consider the case when
g—’f‘ < %—i and R(I%) = Ny — Ep. It is sufficient that E4 > N4 — Ep for I” to be
uniquely stochastically stable. Indeed, if this happens, R(I%) > CR(I?). This is the
case [FF

TaNpB TNa s _ Np

= — < —. 9)

Ha+7ma  lp+7p ma  Na
To complete the proof, we show that whenever :—i > %—f, then I is the uniquely

stochastically stable state. Firstly, note that ﬁ—i < :—if, hence, for :—’j > %—i > ﬁ—i,

R(I%) = Ny — Ep and E4 = R(I?). However, Equation (9) is reversed, so, I2 is

uniquely stochastically stable. For Z—i > g—i > %—i, R(I%) = Np — E4 and still

R(I%) = E4. In this case, I% is the uniquely stochastically stable if F4 < Np — F4,
hence, IFF

™ AN B < IT AN B
My+74 Ig+74
This happens for every value of the payoffs (given that I14 > m4) and of the group
size. We conclude that whenever 72 < %—}j, PSy, is uniquely stochastically stable and

when z—f > %—j, PS, is uniquely stochastically stable.

O

A.2 Proofs of Section 4

We define formally the dynamical system as w1 = Fo(wy, 041,95, ;). Where ¥, | =
{71, 1} is the set of players that make a mistake at time ¢. 7, is the set of
players that make a mistake in the coordination choice, and ¢/, ; the set of players
that make a mistake in the information choice.

For convenience, we call behavior 1 the optimal behavior when a player decides to
acquire the information: 1 = max(ab, ba, aa, bb).

We will use in some proofs the concept of Modified Coradius from Ellison 2000. We
write here the formal definition. Suppose w is an absorbing state and (wq,ws, ... wr)
is a path from state w’ to w. Let L, Lo,...,L, = @ be the sequence of limit sets
through which the path passes consecutively. The modified resistance is the original
resistance minus the Radius of the intermediate limit sets through which the path
passes,

r—1
r(wy,ws, ... wr) = 1wy, wa, ... W) — ZR(Li).
i=2
Define
r* (W' @) = min r*(wy,wa, . .. wr),

(w1,w2,...wr) €T (W',@)

the Modified Coradius is defined as follows
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CR*(w) = max r* (W, o).

Note that CR*(w) < CR(w). Thanks to theorem 2 in Ellison 2000, we know that
when R(w) > CR*(w), w is uniquely stochastically stable.

Proof of Lemma[3:

We first show that the nine states are effectively strict equilibria, that there is no
other possible equilibrium, and that a state is absorbing if and only if it is a strict
equilibrium.

Monomorphic States.

It is easy to show that (N4, Na, Ng, Np) and (0,0,0,0) are two strict equilibria.
We take the first case, and the argument stands also for the second, thanks to the
symmetry of the payoff matrix. Consider player ¢ € K who is given the revision
opportunity at time ¢:
. Nig + Nir — 1
Ui(a,2t) =~ =

N — Nk — Nk

N1 7Tlf< =0,

U'(b, z-i(t)) =

A N Nir—1
U'(1,2_(t)) = KX] Kl 8 —c=nF—c

(N, Na, Np, Np) is a strict equilibrium since 7 > 0 and ¢ > 0.

Polymorphic States.

Firstly let us consider the case of (N4,0,0, Ng). Since in this case, every player is
playing ab, the state is a strict equilibrium IFF max z{ = ab, Vi € N. If player i € K
is given the revision opportunity at time ¢:

i Nk —1

Ul(a z4(t)) = Jr—p e
i N/

V(b 2a(t)) = 37 gmh

N —1 Ny
N_lﬂf N_lwlf(—c.

For type A players, U'(a, z_;(t)) > U(b, 2_;(t)) since 2274 < J2=LT1,. For type B
players, U'(b, z_;(t)) > U(a, 2_(t)) as JeFmp < SATl5. U'(1,2_4(t)) is the highest

of the three Vi € N IFF ¢ < min {%7@4, J\]I\?__IIWB}.

Consider the case of (0, Na, Np,0), since every agent is playing ba, it must be that
max z{ = ba. 1 € K faces the following payoffs

U'(L, (1)) =
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Nk —1
N_]-Trlf{7

U'(b, 2-4(t)) =

; Nk —1 Ng
UL 2ilt) = r—7 ™ + 57

Note that Ui(a, z_;(t)) > Ui(b, z_;(t)) IFF T <

Nk—
N—

— C.

NN—%I, and therefore ba is the best
K

Wg( . When the opposite happens and so,

reply behavior in this case if ¢ <

. These conditions take the

form of the ones in Table 4.

Consider the remaining 4 PS, they are characterised by the following fact BR(n®%) =
BR(n®'%) but BR(n®'%") # BR(n®X"). In this case it must be that 7; = 0 is optimal
for i € K while 7; = 1 is optimal for j € K’. Thanks to the symmetry in payoff
matrices we can say that the argument to prove the results for these 4 states is
similar to the one for (N4,0,0, Ng) and (0, N4, Ng,0). All the conditions are listed
in Table 4.

Type Monomorphic State.
(Na, Na,0,0) is a strict equilibrium if a is the BR Vi € A and b, Vj € B. Consider a
player ¢ € A, who is given the revision opportunity at time ¢:

Ny—1
N —1

U'(a, z-i(t)) = I,

Ulb,z_(t)) =

Ny—1 Np

U'(L2i(t) = AT + 2

Given that U'(a, z_;(t)) > U’(b, 2_(t)), a is the best reply behavior IFF ¢ > &7,
Consider player 7 € B:

mA — C.

A N
Ul (a, z_(t)) = Nfle,
. Np—1
J . —
U (b, (1)) =~ 1lp,
. Ny Np—1
(1, 2_i(t)) = g —c.
U(,Zz(t)) N_17TB—|—N_1 B C

In this case when

T
state can not be a strict equ111br1um When #2

and U7 (b, z_;(t)) > U’(1,2_;(t)) IFF ¢ > —7TB

(b, z-i()) > U?(a, 2 (t)),

No other state is a strict equiltbrium.

For what concerns states where not all players of a type are playing the same ac-
tion with the same type, this is easy to prove. Indeed, by definition, in these states,
either not all players are playing their best reply action, or players are indifferent
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between two or more behaviors. In the first case, the state is not a strict equi-
librium by definition; in the second case, there is no strictness of the equilibrium
since there is not one best reply, but more behaviors can be best reply simultane-
ously. Hence, such states can not be strict equilibria. We are left with the 7 states
where every player of one type is doing the same thing against the same type. Such
states are: (0,0, Ng, Ng), (0, N4,0, Ng), (Na,0,Ng,0), (0,0, Ng,0), (Na, Na,0, Ng),
(0, N4,0,0), and (N4,0, Ng, Ng). It is easy to prove that these states enter in the
category of states where not every player is playing her/his best reply. Therefore,
they can not be strict equilibria.

Strict equilibria are always absorbing states.

We first prove the sufficient and necessary conditions to be a fixed point, and second
that every fixed point is an absorbing state. To prove the sufficient part we rely on
the definition of strict equilibrium. In a strict equilibrium, every player is playing
her/his BR, and no one has the incentive to deviate. Whoever is given the revision
opportunity does not change her/his behavior. Therefore, Fi.(wy, 0:+1) = w;. To prove
the necessary condition think about being in a state that is not a strict equilibrium;
in this case, by definition, we know that not all the players are playing their BR.
Among them, there are states in which there are no indifferent players, in this case,
with positive probability one or more agents who are not playing their BR are given
the revision opportunity and they change action, therefore, F.(wy,0;11) # w; for
some realization of #,,1. In states where some players are indifferent between two
or more behaviors, thanks to the tie rule, there is always a positive probability that
the indifferent agent changes her/his action since s/he is randomizing her /his choice.
Moreover, there is also a positive probability to select an agent indifferent between
two or more behaviors. In this case, s/he changes the one that is currently playing
with a positive probability too. Knowing this, we are sure that no state outside strict
equilibria can be a fixed point. In our case, a fixed point is also an absorbing state
by definition. Indeed, every fixed point absorbs at least one state: the one where all
players except one are playing the same behavior. In this case, if that player is given
the revision opportunity s/he changes for sure her/his behavior into the one played
by every agent.

O

Here we prove the results of the stochastic stability analysis of Section 4.

Proof of Theorem [3:

In this case R(MS,) = CR(MS,) and R(MS,) = R(MS,). Therefore, we just need
to calculate the two Radius.

Radius of each state.

Let us consider R(MS,). Since the basin of attraction of M S, is a region where a
is the best reply behavior for both types, many players should make a mistake such
that b becomes BR for one of the two types. For b to be BR for B players, it must

be that n4? + nBB < % This state can be reached with € mutations, at cost

Nrp+II Nma— i i
H;TJ;BB' In a state where n4 + nf4 < T, bis BR for A, this path happens
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NTla+ma SN NIla+ma Nnp+llp Nnp+llp
at cost e In principle JA754 > SEEECE hence, R(M.S,) should be —f2E-E.
However, it may not be sufficient to reach such a state.

Consider to reach a state s.t. n4f + nfB = M, since NHB HB Nra—ma
B+TB Iig Ma+ma

it must be that a is still the best reply Vi € A, "and therefore there is a path of
zero resistance to M S,. Nevertheless, once in that state, it can happen that only
B players are given the revision opportunity, and that they all choose behavior b.
This creates a path of zero resistance to a state (24, n47,0,0). Once in this state,
if 44 < N”—*:A, the state is in the basin of attraction of M.S,. This happens only if

TTa+
%ZAHZA +Np = ]\;}T;Tm More generally, considering & > 0, this happens if %—l—
_ NHB HB NHB HB _ NTI’A TA
Np = T k. Fixing payoffs and groups size, k = T TP — Np,

hence, the cost of this path would be

Nrmg+1lg Nllg—1IIg Nmy—7a Ny — 74
4 — —Ng=Ny— ——.
IIg +7p IIg+ 7B II4+ 74y Iy +ma

With a similar reasoning R(M.S)) = %

We prove that all the other paths with n errors are costlier than ones with . We
know that a is the BR for every state inside the basin of attraction of MS,, nobody
in the basin of attraction of M.S, optimally buys the information, and every player
once bought the information (by mistake) plays behavior aa. Every path with an 7
error also involves an ¢ error, and hence, is double that of the one described above.

Conditions for stochastically stable states.

MS, is stochastically stable IFF N, — &ma—ma ~ Nratlla - thig i5 verified when

IMa+mas IMa+ma
Ny > W Therefore, we conclude that MS, is stochastically stable in the

above scenario, while if the opposite happens, M.S, is stochastically stable.

[
Proof of Theorem [

We first calculate Radius, Coradius, and Modified Coradius for the three states we are
interested in, and then we compare them to draw inference about stochastic stability.

Radius of each state.

The Radius of M .S, is the minimum number of errors that makes b BR for B players.
This number is M. The alternative is to make b BR for A: hence, a path to
state (0,0, Ng, Ngf and then to (0,0,0,0). The number of ¢ errors for this path is

—N ATTA . Therefore R MS = —NWB+HB . lth a Slmllar reasonln we can ConClude
I ; a T WV
A+TA Ip+7p

that R(MS,) = ffatia,

Consider T'S: the minimum error path to exit from its basin of attraction reaches
either M S, or M S}, depending on payoffs. In other words, the minimum number of
errors to exit from D(T'S) is the one that makes either a or b as BR. Consider the path
from T'S to M S,: in this case, some errors are needed to make a BR for B. The state
in which a is BR for B depends on payoffs and group size. In a state (N4, Na, k', k'),
a is BR for every player in B if (Ng+ k' —1)mp > (N — N4 — k')I15. This inequality
is obtained declining Equation (5) to (8), comparing B playing a/ab or b/ba. Fixing

payoffs, we can calculate the exact value of &k’ that is NBHBI"T JiﬁrﬂB”B this would be
B
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the cost of the minimum error transition from 7'S to M S,. With a similar argument,
the cost of the minimum error transition from 7'S to M S, is & AH%AJEFZAJ”A

There are no paths involving 7 errors that are lower than the two proposed above.
The intuition is the following. Consider a situation in which m players of A are given
the revision opportunity at one step and they all choose to buy the information. In
this case, they all optimally choose behavior ab. This means that at the cost of n there
is a path to a state in which N4 —m players are playing b against B, in this state b is
still the BR for B type, while a is still the BR for A. Hence, from that state, there is a

path of zero resistance to T'S. The same happens when B players choose by mistake

to buy the information. Therefore, R(T'S) = min q Yelle—Namptnp Nalla—Npmatma §
Iig+nmp ITa+ma

Coradius of each state

We start from 7'S: in this case, we have to consider the two minimum paths to reach
it from M S, and M.S,. Therefore, ]\g”‘—:ri*“ and % Firstly, the argument to
prove that these two are the minimum error paths to reach T'S from M S, and M.S,
are given by the previous part of the proof. Secondly, we have to prove that this path
is the maximum among the minimum paths starting from any other state and ending
in T'S. There are three regions from which we can start and end-up in 7'S: the basin
of attraction of M Sy, the one of M.S,, and all the other states which are not in the
basins of attraction of the three states considered. We can say that from this region,
there is always a positive probability to end up in MS,, M S,, or T'S. Hence, we can
consider as 0 the cost to reach T'S from this region. The other two regions are the one
considered above, and since we are taking the maximum path to reach 7'S from any
other state we have to take the sum of this two. Hence, CR(T'S) = Aﬁ“‘:&“ + ]\Ef:g‘g :
Let us think about M S. Similarly to the two previous proofs we can focus only on ¢
paths. Note that in this case, T'S is always placed between the two M S. Let us start
from M Sy: in this case we can consider 3 different path starting from any state and
arriving to M Sy,. The first one starts in 7'S, the second starts in every state outside
the basin of attractions of the three absorbing states, and the last starts in MS,.
In the second case there is at least one transition of zero resistance to MS,. Next,
assume to start in 7°S: the minimum number of errors to reach M.S, from TS is the
one that makes b BR for A players. Therefore, & AH“‘HAN BTALTA

Now, we need to consider the case of starting in M S,,. Flrstly, con31der the minimum
number of errors to make b BR for A players. This number is M. Secondly,
consider the minimum number of errors to make b BR for B players and then once

reached T'S the minimum that makes b BR for A players.

NTI Nrp+Tl  Nally— N
minr(MSa;MSb):min{ atma Nip + B4 ally B7TA+7TA}.

My +7m4 I+ 7p II4 4+ ma

Nallo—Npma+ma
Ma+ma

Since the two numbers in the expression are all greater than
say that CR(MS,) = minr(MS,, M Sy).
Reaching a state where b is BR for type A from T'S is for sure less costly than

reaching it from MS,, since in T'S there are more people playing b. Therefore,
NITpo+7a > Nrnp+Ilp NpAllo—Npmwa+ma _ Nrnp+Ilp Nallga— NBWA+7FA
[Mpg+ma — lp+7p + Ma+ma hence OR(MSb) lip+mp + Ma+ma

With a similar reasoning, CR(MS,) = &ratlla | Npllp— Nampins

Ma+ma lip+7p
Modified Coradius of each state.

we can
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Firstly, note that CR(T'S) = CR*(TS), since between M S and T'S there are no
intermediate states. Formally,

N Iy N II
CR*(TS) =minr*(MS,,...,TS)+minr*(MS,...,TS) = At A4 5+ B
g+ ma Il +7p

The maximum path of minimum resistance from each M.S to the other MS passes
through T'S. Hence, for each M .S, we need to subtract from the Coradius the cost of
passing from T'S to the other MS. Let us consider CR*(MS,), we need to subtract
to the Coradius the cost of passing from 7'S to M .S,: this follows from the definition
of Modified Coradius. Hence,

_ Nma+1a  Npllp— Namp +7p  Nally — Npma + 74

CR*(MS,) = + _
( ) Mg+ 74 [l + 7p Iy +7a
Similarly,
N II Nylly — N Ngllg — N
C’R*(MSb): s+ 1llp Allg B7TA—|-7TA_ Bllp A7TB+7TB‘

Il + 7p My +ma g + 7p
Note that CR*(MS,) < CR(MS,) and CR*(MS,) < CR(MS}).

Conditions for stochastically stable states.

It is easy to verify that if R(MS,) > CR(MS,), both R(MS,) < CR(MS},) and
R(TS) < CR(TS). Similar for R(MS,) > CR(MS,) or R(T'S) > CR(TS). When
R(MS,) < CR(MS,), R(MSy,) < CR(MSy), and R(TS) < CR(TS), we need
to use Modified Coradius. Given that CR(TS) = CR*(TS) it will never be that
R(TS) > CR*(TS). We can show that when R(MS,) > CR*(MS,,), then R(MS,) <
CR*(MS,) and vice-versa.

When R(MS,) = CR*(MS,), it is also possible that R(MS,) = CR*(MS,). Thanks
to Theorem 3 in Ellison 2000, we know that either both states are stochastically
stable, or none of the two is. Note that for the ergodicity of our process the second
case is impossible, hence, it must be that when both R(MS,) = CR*(MS,) and
R(MSy) = CR*(MS,), both p*(MSy) > 0 and p*(MS,) > 0.

0

Proof of Theorem [J):

We split the absorbing states into 2 sets and then apply Theorem 1 by Ellison 2000.
Define the following two sets of states: M; = {PS,, PS,} and My = (PS\ M;)UMS.
Similarly, define M| = PSS, and Mj = MS U (PS \ Mj).

Analysis with My and Ms.

R(M;) is the minimum number of errors to escape the basins of attraction of both

PS, and PS,. The dimension of these basins of attraction is determined by the value
of ¢. In a state inside D(PS,), ba is BR for B, and a is BR for A. Similarly, ab is
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optimal for A inside D(PS,) and b is optimal for B. The minimum error paths that
starts in PS,, and P.S, and exit from their basins of attraction involve e errors.

We calculate the dimension of these basins of attraction for 0 < ¢ < min{4;, %}
We start from PS, and the argument stands for the other states in P.S for symmetry
of payoffs matrix.

Firstly, we consider the minimum number of errors that makes a BR for B play-

ers. Consider the choice of a B player inside a category of states where n®? ¢

[0, %) and n4B ¢ (%,NA]. Referring to Equation (5) to (8), the opti-

mal level of ¢ s.t. 1 is the best reply for B players is

. {NBHB — nBB(HB +7p) — g nAB(HB +7p) — NAHB}
¢ < min )

N -1 ’ N -1
If 0 < ¢ < min{4;, 7% }, whenever nBB ¢ [O, %) and nB ¢ (r][\;“TH% NA],
1 is the BR for B. Therefore, a path towards a state where n? 2 %, is a
transition out of the basin of attraction of PS,. Starting from n®? = 0, the cost of

this transition is % This cost is determined by € errors, since once in PS,, it

is sufficient that a number of B plays by mistake b. Another possible path is to make
ba BR for A. The cost of this transition is Nﬁ“—ii’“‘ With similar arguments, it is
possible to show that the cost of exit from M; starting from P.S; is the same. For

: — i Npllptmp Nallat+ma
this reason, R(M;) = mln{ Mptnp ° Iatra (-

We can show that the minimum error path to exit from the basin of attraction
of M, reaches either PS, from MS,, or PS, from MS,. Therefore, R(M,) =

Nama+lly Nprp+lip
Ma+ma 7 Ilp+7p

size: the stochastically stable state must be in M.
Analysis with M, and M.

Let us consider the path that goes from M| to PS,. Starting in PS}, it is sufficient
that NB”A players from A play a for a transition from PS, to D(PS,) to happen.

Since M < mm{NBHBJ”rB, NAHA*”A} we can say that R(M]) = NB”A . With a

min{ R(M,) > R(Ms;) for every value of payoffs and group

Ma+ma lip+mp Ma+ma
similar argument it can be shown that R(M}) = HJ\;AIBB When R(M}) > R(M{), PS,
is uniquely stochastically stable. When R(M]) > R(M)), PS, is uniquely stochasti-
cally stable.

R(Mj) = R(Mj) when 38 = I,

Np > 7a
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