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Abstract: We firstly discuss classical stability for a dynamical system of two ions levitated in a1

3D Radio-Frequency (RF) trap, assimilated with two coupled oscillators. We obtain the solutions2

of the coupled system of equations that characterizes the associated dynamics. In addition, we3

supply the modes of oscillation and demonstrate the weak coupling condition is inappropriate in4

practice, while for collective modes of motion (and strong coupling) only a peak of the mass can be5

detected. Phase portraits and power spectra are employed to illustrate how the trajectory executes6

quasiperiodic motion on the surface of torus, namely a Kolmogorov-Arnold-Moser (KAM) torus.7

In an attempt to better describe dynamical stability of the system, we introduce a model that8

characterizes dynamical stability and the critical points based on the Hessian matrix approach.9

The model is then applied to investigate quantum dynamics for many-body systems consisting of10

identical ions, levitated in 2D and 3D ion traps. Finally, the same model is applied to the case of a11

combined 3D Quadrupole Ion Trap (QIT) with axial symmetry, for which we obtain the associated12

Hamilton function. The ion distribution can be described by means of numerical modeling, based13

on the Hamilton function we assign to the system. The approach we introduce is effective to14

infer the parameters of distinct types of traps by applying a unitary and coherent method, and15

especially for identifying equilibrium configurations, of large interest for ion crystals or quantum16

logic.17

Keywords: radiofrequency trap; dynamical stability; eigenfrequency; Paul and Penning trap;18

Hessian matrix; Hamilton function; bifurcation diagram.19

PACS: 37.10.Ty; 02.30.-f; 02.40.Xx20

1. Introduction21

The advent of ion traps has led to remarkable progress in modern quantum physics,22

in atomic and nuclear physics or quantum electrodynamics (QED) theory. Experiments23

with ion traps enable ultrahigh resolution spectroscopy experiments, quantum metrol-24

ogy measurements of fundamental quantities such as the electron and positron g-factors25

[1], high precision measurements of the magnetic moments of leptons and baryons (ele-26

mentary particles) [2], Quantum Information Processing (QIP) and quantum metrology27

[3,4], etc.28

Scientists can now trap single atoms or photons, acquire excellent control on their29

quantum states (inner and outer degrees of freedom) and precisely track their evolu-30

tion by the time [5]. A single ion or an ensemble of ions can be secluded with respect31

to external perturbations, then engineered in a distinct quantum state and trapped in32

ultrahigh vacuum for a long period of time (operation times of months to years) [6–8],33

under conditions of dynamical stability. Under these circumstances, the superposition34

states required for quantum computation can live for a relatively long time. Ion localiza-35

tion results in unique features such as extremely high atomic line quality factors under36
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minimum perturbation by the environment [3]. The remarkable control accomplished37

by employing ion traps and laser cooling techniques has resulted in exceptional progress38

in quantum engineering of space and time [2,9]. Nevertheless, trapped ions can not be39

completely decoupled from the interaction with the surrounding environment, which is40

why new elaborate interrogation and detection techniques are continuously developed41

and refined [6].42

These investigations allow scientists to perform fundamental tests of quantum me-43

chanics and general relativity, to carry out matter and anti-matter tests of the Standard44

Model, to achieve studies with respect to the spatio-temporal variation of the fundamen-45

tal constants in physics at the cosmological scale [2], or to perform searches for dark46

matter, dark energy and extra forces [9]. Moreover, there is a large interest towards47

quantum many-body physics in trap arrays with an aim to achieve systems of many48

interacting spins, represented by qubits in individual microtraps [6,10].49

The trapping potential in a RF trap harmonically confines ions in the region where50

the field exhibits a minimum, under conditions of dynamical stability [1,11,12]. Hence, a51

trapped ion can be regarded as a quantum harmonic oscillator [13–15].52

A problem of large interest concerns the strong outcome of the trapped ion dynamics53

on the achievable resolution of many experiments, and the paper builds exactly in54

this direction. Fundamental understanding of this problem can be achieved by using55

analytical and numerical methods which take into account different trap geometries and56

various cloud sizes. The other issue lies in performing quantum engineering (quantum57

optics) experiments and high-resolution measurements by developing and implementing58

different interaction protocols.59

1.1. Investigations on classical and quantum dynamics using ion traps60

A detailed experimental and theoretical investigation with respect to the dynamics61

of two-, three-, and four-ion crystals close to the Mathieu instability is presented in62

[16], where an analytical model is introduced that is later used in a large number of63

papers to characterize regular and nonlinear dynamics for systems of trapped ions in64

3D QIT. We use this model in our paper and extend it. Numerical evidence of quantum65

manifestation of order and chaos for ions levitated in a Paul trap is explored in [17], where66

it is suggested that at the quantum level one can use the quasienergy states statistics to67

discriminate between integrable and chaotic regimes of motion. Double well dynamics68

for two trapped ions (in a Paul or Penning trap) is explored in [18], where the RF-drive69

influence in enhancing or modifying quantum transport in the chaotic separatrix layer70

is also discussed. Irregular dynamics of a single ion confined in electrodynamic traps71

that exhibit axial symmetry is explored in [19], by means of analytical and numerical72

methods. It is also established that period-doubling bifurcations represent the preferred73

route to chaos.74

Ion dynamics of a parametric oscillator in a RF octupole trap is examined in [20,21]75

with particular emphasis on the trapping stability, which is demonstrated to be position76

dependent. In Ref. [22] quantum models are introduced to describe multi body dynamics77

for strongly coupled Coulomb systems SCCS [23] stored in a 3D QIT that exhibits axial78

(cylindrical) symmetry.79

A trapped and laser cooled ion that undergoes interaction with a succession of80

stationary-wave laser pulses may be regarded as the realization of a parametric nonlinear81

oscillator [24]. Ref. [25] uses numerical methods to explore chaotic dynamics of a particle82

in a nonlinear 3D QIT trap, which undergoes interaction with a laser field in a quartic83

potential, in presence of an anharmonic trap potential. The equation of motion is similar84

to the one that portrays a forced Duffing oscillator with a periodic kicking term. Fractal85

attractors are identified for special solutions of ion dynamics. Similarly to Ref. [19],86

frequency doubling is demonstrated to represent the favourite route to chaos. An87

experimental confirmation of the validity of the results obtained in [25] can be found in88
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Ref. [26], where stable dynamics of a single trapped and laser cooled ion oscillator in the89

nonlinear regime is explored.90

Charged microparticles stored in a RF trap are characterized either by periodic91

or irregular dynamics, where in the latter case chaotic orbits occur [27]. Ref. [28]92

explores dynamical stability for an ion confined in asymmetrical, planar RF ion traps,93

and establishes that the equations of motion are coupled. Quantum dynamics of ion94

crystals in RF traps is explored in [29] where stable trapping is discussed along with the95

validity of the pseudopotential approximation. A phase space study of surface electrode96

ion traps (SET) that explores integrable, chaotic and combined dynamics is performed97

in [30], with an emphasis on the integrable and chaotic motion of a single ion. The98

nonlinear dynamics of an electrically charged particle stored in a RF multipole ion trap99

is investigated in [31]. An in-depth study of the random dynamics of a single trapped100

and laser cooled ion that emphasizes nonequilibrium dynamics, is performed in Ref.101

[32]. Classical dynamics and dynamical quantum states of an ion are investigated in [33],102

considering the effects of the higher order terms of the trap potential. On the other hand,103

the method suggested in [34] can be employed to characterize ion dynamics in 2D and104

3D QIT traps.105

All these experimental and analytical investigations previously described open106

new directions of action towards an in-depth exploration of the dynamical equilibrium107

at the atomic scale, as the subject is extremely pertinent. In our paper we perform a108

classical study of the dynamical stability for trapped ion systems in Section 2, based on109

the model introduced in [16,18]. The associated dynamics is shown to be quasiperiodic110

or periodic. We use the dynamical systems theory to characterize the time evolution of111

two coupled oscillators in a RF trap, depending on the chosen control parameters. We112

consider the pseudopotential approximation, where the motion is integrable only for113

discrete values of the ratio between the axial and the radial frequencies of the secular114

motion. In Section 3 we apply the Morse theory to qualitatively analyze system stability.115

The results are extended to many body strongly coupled trapped ion systems, locally116

studied in the vicinity of equilibrium configurations that identify ordered structures.117

These equilibrium configurations exhibit a large interest for ion crystals or quantum118

logic. Section 4 explores quantum stability and ordered structures for many body119

dynamics (assuming the ions are identical) in a RF trap. We find the system energy120

and introduce a method (model) that supplies the elements of the Hessian matrix of the121

potential function for a critical point. Section 5 applies the model suggested in Section 4.122

Collective models are introduced and we build integrable Hamiltonians which admit123

dynamic symmetry groups. We particularize this Hamiltonian function for systems of124

trapped ions in combined (Paul and Penning) traps with axial symmetry. An improved125

model results by which multi-particle dynamics in a 3D QIT is associated with dynamic126

symmetry groups [35–37] and collective variables. The ion distribution in the trap can be127

described by employing numerical programming, based on the Hamilton function we128

obtain. This alternative technique can be very helpful to perform a unitary description129

of the parameters of different types of traps in an integrated approach. We emphasize130

the contributions in Section 6 and discuss the potential area of applications in Section 7.131

2. Analytical model132

2.1. Dynamical stability for two coupled oscillators in a radiofrequency trap133

We use the dynamical systems theory to investigate classical stability for two cou-134

pled oscillators (ions) of mass m1 and m2, respectively, levitated in a 3D radiofrequency135

RF QIT. The constants of force are denoted as k1 and k2, respectively. Ion dynamics136

restricted to the xy-plane is described by a set of coupled equations:137 {
m1 ẍ = −k1x + b(x− y)
m2ÿ = −k2y− b(x− y) ,

(1)
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where b stands for the parameter that characterizes Coulomb repulsion between ions.
The control parameters for the trap are:

ki =
miq2

i Ω
8

, qi = 4
Qi
mi

V0

(z0Ω)2 ; i = 1, 2, (2)

with Ω the frequency of the micromotion, V0 denotes the RF trapping voltage, z0 is138

the trap axial dimension, Qi represents the electric charge and mi stands for the mass139

of the ion labeled as i. We use the time-independent (also known as pseudopotential)140

approximation of the RF trap electric potential, because it can be employed to achieve141

a good description of stochastic dynamics [32]. As heating of ion motion occurs in our142

case due to the Coulomb interaction between ions (as an outcome of energy transfer143

from the trapping field to the ions), the time-independent approximation can be safely144

used, which brings a significant simplification to the problem. Therefore, higher order145

terms in the Mathieu equation [1,38] that portrays ion motion can be discarded.146

The simplest non-trivial model to describe the dynamic behaviour is the Hamilton147

function of the relative motion of two levitated ions that interact via the Coulomb force148

in a 3D QIT that exhibits axial symmetry, under the time-independent approximation149

(autonomous Hamiltonian) [16–18]. The paper uses this well established model, which150

we extend.151

We consider the electric potential to be a general solution of the Laplace equation,152

built using spherical harmonics functions with time dependent coefficients (see Ap-153

pendix A). This family of potentials accounts for most of the ion traps that are used in154

experiments [29]. The Coulomb constant of force is b ≡ 2Q2/r3 < 0, resulting from a155

series expansion of Q2/r2 about a mean deviation of the ion with respect to the trap156

centre r0 ≡ (x0 − y0) < 0, established by the initial conditions.157

The expressions of the kinetic and potential energy are:158

T =
m1 ẋ2

2
+

m2ẏ2

2
, U =

k1x2

2
+

k2y2

2
+

1
2

b(x− y)2. (3)

It is assumed that the ions share equal electric charges Q1 = Q2. We denote159

k1 = 2Q1β1 , β1 =
4Q1V2

0
m1Ω2ξ4 −

2U0

ξ2 , (4)

with ξ2 = r2
0 + 2z2

0, where r0 and z0 denote the radial and axial trap semiaxes. We160

assume U0 = 0 (the d.c. trapping voltage) and consider r0 as negligible. The trap control161

parameters are U0, V0, ξ and ki. We select an electric potential V = 1/|z| and we perform162

a series expansion around z0 > 0, with z− z0 = x− y. The potential energy can be then163

cast into:164

U =
k1x2

1
2

+
k2x2

2
2

+
1

4πε0

Q1Q2

|x1 − x2|
. (5)

The Hamilton principle states the system is stable if the potential energy U exhibits165

a minimum166

k1,2x1,2 ∓ λ = 0 , λ =
1

4πε0

Q1Q2

|x1 − x2|2
. (6)

Then
k1x1 + k2x2 = 0 , x1 min =

λ

k1
, x2 min = − λ

k2
. (7)

Equation

λ = 3

√
1

4πε0

k2
1k2

2

(k1 + k2)
2 Q1Q2 , (8)
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supplies the points of minimum, x1 and x2, for an equilibrium state. We choose

z0 = x1 min − x2 min = λ
k1k2

k1 + k2
(9)

and denote
z = x1 − x2 , x1 = x1 min + x , x2 = x2 min + y , (10)

with z = z0 + x− y. Eq. (8) gives us

Q1Q2

4πε0
= λ3

(
k1k2

k1 + k2

)2
= λz2

0 . (11)

We turn back to eq. (5), then make use of eqs. (7) and (10) to express the potential energy
as

U =
k1

2

(
x2

1 min + x2
)
+

k2

2

(
x2

2 min + y2
)
+ λz0 +

λ

z0
(z− z0)

2 − . . . (12)

From eq. (3) we obtain b/2 = λ/z0. When the potential energy is minimum the system167

is stable.168

2.2. Solutions of coupled system of equations169

We seek for a stable solution of the coupled system of equations (1) of the form

x = A sin ωt , y = B sin ωt . (13)

The Wronskian determinant of the resulting system of equations must be zero for a stable
system ∣∣∣∣ b− k1 + m1ω2 −b

−b b− k2 + m2ω2

∣∣∣∣ = 0 . (14)

The determinant allows us to construct the characteristic equation:(
b− k1 + m1ω2

)(
b− k2 + m2ω2

)
− b2 = 0 . (15)

The discriminant of eq. (15) can be cast as

∆ = [m1(b− k2)−m2(b− k1)]
2 + 4m1m2b2 . (16)

The system admits solutions if the determinant is zero, as stated above. Hence, a solution
of eq. (15) would be:

ω2
1,2 =

m1(k2 − b) + m2(k1 − b)±
√

∆
2m1m2

. (17)

Then, we find a stable solution for the system of coupled oscillators170

x1 = C1 sin(ω1t + ϕ1) + C2 sin (ω2t + ϕ2) , (18a)

y1 = C3 sin(ω1t + ϕ3) + C4 sin (ω2t + ϕ4) , (18b)

which describes a superposition of two oscillations characterized by the secular frequen-
cies ω1 and ω2, that is to say the system eigenfrequencies. Assuming that b� k1,2 in eq.
(15), the strong coupling condition is∣∣∣∣ b

ki

∣∣∣∣� ∣∣∣∣m1 −m2

m2

∣∣∣∣ , (19)
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where the modes of oscillation are

ω2
1 =

1
2

(
k1

m1
+

k2

m2

)
, (20)

ω2
2 =

1
2

(
k1 − 2b

m1
+

k2 − 2b
m2

)
. (21)

By exploring the phase relations between the solutions of eq. (1), we can ascertain
that the ω1 mode corresponds to a translation of the ions (the distance r0 between ions
does not fluctuate), while the Coulomb repulsion remains steady as b is absent in eq. (20).
The axial current produced by this mode of translation can be detected (electronically). In
the ω2 mode the distance between the ions fluctuates about a fixed centre of mass (CM),
case when both the electric current and signal are zero. Optical detection is possible
in the ω2 mode [39] even if electronic detection is not feasible. As a consequence, for
collective modes of motion only a peak of the mass is detected that corresponds to the
ion average mass. In case of weak coupling the inequality in eq. (19) overturns, and
from eq. (17) we derive

ω2
1,2 = (k1,2 − b)/m1,2 , (22)

which means that each mode of the dynamics matches a single mass, while resonance is171

shifted with the parameter b. In addition, within the limit of equal ion mass m1 = m2,172

the strong coupling requirement in eq. (19) is always fulfilled regardless of how weak is173

the Coulomb coupling. This renders the weak coupling condition unsuitable in practice.174

For the stable solution described by eq. (18), we supply below the phase portraits175

for the coupled oscillators system, as shown in Figures 1 - 8.176

Figure 1. Parametre values C1 = 0.8, C2 =

0.6, C3 = 0.75, C4 = 0.6, ϕ1 = π/3, ϕ2 =

π/4, ϕ3 = π/2, ϕ4 = π/3, ω1/ω2 =

1.71/1.93 7−→ quasiperiodic dynamics.

Figure 2. Parametre values C1 = 0.75, C2 =

0.9, C3 = 0.8, C4 = 0.85, ϕ1 = π/3, ϕ2 =

π/4, ϕ3 = π/2, ϕ4 = π/3, ω1/ω2 =

1.96/1.85 7−→ quasiperiodic dynamics.

The phase portraits with parametre values C1 = 0.75, C2 = 0.9, C3 = 0.8, C4 = 0.85177

are illustrated in Figures 5 - 8.178

Figure 1 illustrates the phase portrait for a system of two coupled oscillators in a RF179

trap, where the eigenfrequencies ratio is ω1/ω2 = 1.71/1.93. When the eigenfrequencies180

ratio is a rational number ω1/ω2 ∈ Q, the solutions of the equations of motion (18) are181

periodic trajectories and ion dynamics is regular. In case when the eigenfrequencies182

ratio is an irrational number ω1/ω2 /∈ Q, iterative rotations occur around a certain point183

[40] that are called ergodic, according to the theorem of Weyl. It can be observed that the184

solutions 18 of the equations of motions, illustrated in Figures 1 - 8, demonstrate that ion185

dynamics is generally periodic or quasiperiodic, and stable. There are also a few cases186

which illustrate ergodic dynamics [40] and the occurrence of what may be interpreted187

as iterative rotations. According to Figures 1 - 8, by extending the motion in 3D we can188

ascertain that the trajectory executes periodic and quasiperiodic motion on the surface189
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Figure 3. Parametre values identical with those
from Fig. 1, ω1 = 1.2, ω2 = 2 7−→ periodic be-
haviour.

Figure 4. Parametre values C1 = 0.8, C2 =

0.6, C3 = 0.75, C4 = 0.6, ϕ1 = π/4, ϕ2 =

π/2, ϕ3 = π/3, ϕ4 = π/5, ω1 = 1.2, ω2 =

2 7−→ periodic dynamics.

Figure 5. ϕ1 = π/5, ϕ2 = π/6, ϕ3 = π/3, ϕ4 =

π/2, ω1/ω2 = 1.8/1.7 7−→ periodic behaviour.

Figure 6. ϕ1 = π/4, ϕ2 = π/2, ϕ3 = π/3, ϕ4 =

π/4, ω1 = 1.81, ω2 = 1.88 7−→ quasiperiodic
dynamics.

of a torus, referred to as a Kolmogorov-Arnold-Moser (KAM) torus [41]. By choosing190

various initial conditions different KAM tori can be generated.191

We have integrated the equations of motion given by eq. 1 to explore ion dynamics192

and illustrate the associated power spectra [42], as shown in Figures 9 - 16. The numerical193

modeling we performed clearly demonstrates that ion dynamics is dominantly periodic194

or quasiperiodic.195

Ref. [43] describes an electrodynamic ion trap in which the electric quadrupole196

field oscillates at two different frequencies. The authors report simultaneous tight197

confinement of ions with extremely different charge-to-mass ratios, e.g. singly ionized198

atomic ions together with multiply charged nanoparticles. The system represents the199

equivalent of two superimposed RF traps, where each one of them operates close to a200

frequency optimized in order to achieve tight storage for one of the species involved,201

which leads to strong and stable confinement for both particle species used.202

3. Dynamic stability for two oscillators levitated in a RF trap203

3.1. System Hamiltonian. Hessian matrix approach204

A well established model is employed to portray system dynamics, that relies on205

two control parameters: the axial angular moment and the ratio between the radial and206

axial secular frequencies characteristic to the trap. If we consider two ions with equal207

electric charges, their relative motion is described by the equation [16,18,19]208

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 23 March 2021                   doi:10.20944/preprints202102.0583.v2

https://doi.org/10.20944/preprints202102.0583.v2


Version March 18, 2021 submitted to Journal Not Specified 8 of 23

Figure 7. ϕ1 = π/6, ϕ2 = π/5, ϕ3 = π/2, ϕ4 =

π/4, ω1 = 1.8, ω2 = 1.9 7−→ periodic be-
haviour.

Figure 8. ϕ1 = π/6, ϕ2 = π/4, ϕ3 = π/2, ϕ4 =

π/8, ω1 = 1.5, ω2 = 1.9 7−→ periodic be-
haviour.

Figure 9. Phase portrait for b = 2, k1 = 4, k2 =

5, m1 = m2 = 1.

Figure 10. Associated power spectrum. Initial
conditions ẋ(0) = 0, ẏ(0) = 0, x(0) = 0, y(0) =
0.5 .

Figure 11. Phase portrait for b = 2, k1 =

17, k2 = 199, m1 = m2 = 1.

Figure 12. Associated power spectrum. Initial
conditions ẋ(0) = 0, ẏ(0) = 0, x(0) = 0, y(0) =
0.5.

d2

dt2

x
y
z

+ [a + 2q cos(2t)]

 x
y
−2z

 =
µ2

x
|r|3

x
y
z

 , (23)

where~r = x1 − x2, µx =
√

a + 1
2 q2 represents the dimensionless radial secular (pseudo-209

oscillator) characteristic frequency [44], while a and q stand for the adimensional trap210

parameters in the Mathieu equation, namely211
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Figure 13. Phase portrait for b = 3, k1 =

99, k2 = 102, m1 = 10, m2 = 13.

Figure 14. Associated power spectrum. Initial
conditions ẋ(0) = 0, ẏ(0) = 0, x(0) = 0, y(0) =
0.5.

Figure 15. Phase portrait for b = 2, k1 = 4, k2 =

5, m1 = 5, m2 = 7.

Figure 16. Associated power spectrum. Initial
conditions ẋ(0) = 0, ẏ(0) = 0, x(0) = 0, y(0) =
0.5.

a =
8QU0

mΩ2
(
r2

0 + 2z2
0
) , q =

4QV0

mΩ2
(
r2

0 + 2z2
0
) .

U0 and V0 denote the d.c and RF trap voltage, respectively, Q stands for the electric212

charge of the ion, Ω represents the RF drive frequency, while r0 and z0 are the trap213

radial and axial dimensions. For a, q � 1, such as in our case, the pseudopotential214

approximation is valid. Therefore we can associate an autonomous Hamilton function215

to the system described by eq. (23), which we express in scaled cylindrical coordinates216

(ρ, φ, z) as [16]217

H =
1
2

(
p2

ρ + p2
z

)
+ U(ρ, z) , (24)

where

U(ρ, z) =
1
2

(
ρ2 + λ2z2

)
+

ν2

2ρ2 +
1
r

, (25)

with r =
√

ρ2 + z2 , λ = µz/µx , and µz =
√

2(q2 − a). ν denotes the scaled axial218

(z) component of the angular momentum Lz and it is a constant of motion, while µz219

represents the second secular frequency [16]. We emphasize that both λ and ν are strictly220

positive control parameters. For arbitrary values of ν and for positive discrete values of221

λ = 1/2, 1, 2, eq. (25) is integrable and even separable, excluding the case when λ = 1/2222

and |ν| > 0 (ν 6= 0), as stated in [17].223
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The equations of the relative motion corresponding to the Hamiltonian function224

described by eq. (24) can be cast into [16,17]:225

z̈ =
z

r3/2 − λ2z , (26a)

ρ̈ =
ρ

r3/2 − ρ +
ν2

ρ3 , (26b)

with pρ = ρ̇ and pz = ż. The critical points of the U potential are determined as solutions226

of the system of equations:227

∂U
∂ρ

= ρ− ν2

ρ3 −
1
r2

ρ

r
= 0 , (27a)

∂U
∂z

= λ2z− 1
r2

z
r
= 0, (27b)

where ∂r/∂ρ = ρ/r and ∂r/∂z = z/r.228

3.2. Solutions of the equations of motion for the two oscillator system229

We use the Morse theory to determine the critical points of the potential U and to230

discuss the solutions of eq. (27), with an aim to fully characterize the dynamical stability231

of the coupled oscillator system. Then232

z
(

λ2 − 1
r3

)
= 0 , (28)

which leads to a number of two possible cases:233

Case 1. z = 0 . The first equation of the system (27) can be rewritten as

ρ− ν2

ρ3 −
ρ

r3 = 0 ,

which gives us ρ = r for z = 0. In such case, a function results

f (ρ) = ρ4 − ρ− ν2 , f ′(ρ) = 4ρ3 − 1 . (29)

The second relationship in eq. (29) shows that ρ = 3
√

1
4 is a point of minimum for

f (ρ). In case when ρ0 > 0, for ν 6= 0 and z0 = 0:

f (ρ) = ρ4
0 − ρ0 − ν2 = 0 .

In case when ν = 0 we obtain f (ρ) = ρ
(
ρ3 − 1

)
= 0. Then, the solutions are ρ1 = 0234

and ρ2 = 1, where only ρ2 = 1 is a valid solution. Moreover, for ν = 0 and z0 = 0, ρ0 = 1235

is a solution.236

Case 2. r3 = 1/λ2 ⇒
r = λ−2/3 . (30)

We return to the system of eqs. (27) and infer

ρ =

√
|ν|

4
√

1− λ2
, (31)

for λ < 1. In case when λ ≤ 1 and ν 6= 0, the system admits no solutions. In the scenario
when λ < 1, ν = 0 we find ρ = 0, while in case when λ = 1, ν = 0 it results that any
ρ ≥ 0 represents a solution. As r =

√
z2 + ρ2, then

z = ±
√

r2 − ρ2 = ±
√

λ−4/3 − ρ2 . (32)
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We differentiate among three possible sub-cases237

Subcase (i): λ < 1 , ν 6= 0 and

z12 = ±

√
λ−4/3 − |ν|√

1− λ2
,

provided that 1− λ2 > ν2λ8/3 or

z = 0 for 1− λ2
c = ν2λ8/3

c ,

where the c index of λ refers to critical.238

Subcase (ii): λ < 1, ν = 0 which leads to ρ = 0 and z12 = ±λ−2/3 .239

Subcase (iii): λ = 1, ν = 0 which results in z12 = ±
√

λ−4/3 − ρ2 , with ρ ≥ 0 .240

These are the solutions we find for the equations of motion corresponding to the241

two coupled oscilators system. After doing the math, the Hessian matrix of the potential242

U appears as243

H =

∣∣∣∣∣∣ 1 + 3ν2

ρ4 − 1
r3 +

3ρ2

r5
3ρz
r5

3ρz
r5 λ2 − 1

r3 +
3z2

r5

∣∣∣∣∣∣ . (33)

The determinant and the trace of the Hessian matrix result as244

detH =
3ν2

ρ4

(
λ2 − 1

r3 +
3z2

r5

)
+ λ2

(
1− 1

r3 +
3ρ2

r5

)
− 1

r3

(
1 +

2
r3 −

3z2

r2

)
, (34a)

TrH = 1 + λ2 +
3ν2

ρ4 +
1
r3 . (34b)

From eqs. (34) we infer that TrH = 0. Thus, the Hessian matrix H has at least a245

strictly positive eigenvalue.246

3.3. Critical points. Discussion.247

We use eqs. (34) with an aim to investigate the critical points for the system of248

interest. We consider two distinct cases:249

Case 1. z = 0 and r = ρ. Then eqs. (34) modify appropriately

detH =
3ν2

ρ4

(
λ2 − 1

ρ3

)
+ λ2

(
1 +

2
ρ3

)
− 1

ρ3

(
1 +

2
ρ3

)
, (35a)

TrH = 1 + λ2 +
3ν2

ρ4 +
1
ρ3 . (35b)

We discriminate among the following sub-cases:250

Subcase (i): ν = 0, z = 0, ρ = 1.251

We obtain a system of equations as follows

TrH = 2 + λ2 > 0 , (36a)

detH = 3
(

λ2 − 1
)

. (36b)

Moreover, a tabel results that describes the eigenvalues λ1 and λ2 of the Hessian
matrix:

λ1 λ2 Critical point
0 < λ < 1 > 0 > 0 Minimum

λ = 1 > 0 0 Degeneracy
λ > 1 > 0 < 0 Saddle point
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Thus, by investigating the signs of the Hessian matrix eigenvalues we can discrimi-252

nate between critical points, minimum points, saddle points and degeneracy. Only if253

λ = 1 the critical point is degenerate. When the determinant of the Hessian matrix of the254

potential detH 6= 0 the system is non-degenerate. The system is degenerate if detH = 0.255

Subcase (ii): z = 0, ν 6= 0.256

The derivatives of a smooth function must be continuous. We now turn back to eq.
(29). Then ν2 = ρ

(
ρ3 − 1

)
and

detH =

(
4− 1

ρ3

)(
λ2 − 1

ρ3

)
. (37)

We seek for degenerate critical points (characterized by detH = 0). We infer257

ρ = λ−2/3 or ρ = 4−3, which involves two distinct sub-subcases:258

a) ρ = λ−2/3. We return to eq. (27) and infer

λ−8/3 − λ−2/3 − ν2 = 0 .

b) ρ4 ≥ ρ , ρ ≥ 1. In such a situation we encounter a point of minimum when259

ρ > λ−2/3, while the case ρ < λ−2/3 implies a saddle point.260

Case 2. r = λ−4/3 , z2 = λ−4/3 − ρ2 .261

In this particular situation, after doing the math eqs. (34) can be recast into

detH = 12λ2
(

1− λ2
)(

1− λ4/3ρ2
)

, (38a)

TrH = 4− λ2 > 0 , (38b)

with 0 ≤ λ2 ≤ 1. We differentiate among several sub-cases as follows:262

Subcase (i): ν = 0 , λ2 = 1. We further infer z = ±
√

λ−4/3 − ρ2, with ρ2 ∈
[
−λ2/3, λ2/3

]
,263

ρ ≤ −λ−8/3. Then TrH = 3 and detH = 0, which characterizes a degenerate critical264

point.265

Subcase (ii): ν 6= 0 , λ2 = 0. We are in the case of a degenerate critical point, with
ρ =

√
|ν|. In this particular case detH = 0 and

ν2 = λ−8/3 − λ−2/3 .

Subcase (iii): 0 ≤ λ2 < 1 , ν 6= 0. The critical point is a point of minimum, as detH > 0:

ρ0 =

√
|ν|

4
√

1− λ2
, 1− λ2 > ν2λ4/3 ,

z1,2 =

√
λ−4/3 − ν√

1− λ2
.

Subcase (iv): 0 < λ2 < 1 , ν = 0. Then ρ = 0 and detH = 0, which indicates a point of266

minimum characterized by z12 = ±λ−2/3.267

Subcase (v): Case ν = 0 , λ = 0. In such case we infer ρ = 0 , z = 0. We are in the case of a268

degenerate critical point as (detH = 0).269

Subcase (vi): Case ρ = λ−2/3, λ = λc.

1− λ2
c = ν2λ8/3

c . (39)

The critical point is degenerate with z = 0 and (detH = 0).270

A critical point for which the Hessian matrix is non-singular, is called a non-271

degenerate critical point. A Morse function admits only non-degenerate critical points272

that are stable [45]. The degenerate critical points (defined by detH = 0) compose the273
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bifurcation set, whose image in the control parameter space (more precisely the ν− λ274

plan) establishes the catastrophe set of equations that defines the separatrix:275

ν =
√

λ−8/3 − λ−2/3 or λ = 0 . (40)

Our method relies on employing the Hessian matrix to better characterize dynam-276

ical stability and the critical points of the system. Figure 17 displays the bifurcation277

diagram for two coupled oscillators confined in a Paul trap. The ion relative motion278

is characterized by the Hamilton function described by eqs. (24) and (25). The dia-279

gram illustrates both stability and instability regions where ion dynamics is integrable280

and non-integrable, respectively. Ion dynamics is integrable and even separable when281

λ = 0.5, λ = 1, λ = 2 [17–19].282

	0

	20

	40

	60

	80

	100

	0 	0.5 	1 	1.5 	2 	2.5
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λ

ν=sqrt(λ**(-8/3)-λ**(-2/3))
λ=0.5
λ=1
λ=2
λ=0

Figure 17. The bifurcation set for a system of two ions confined in a Paul trap.

4. Quantum stability and ordered structures for many-body systems of trapped ions283

Furthermore, we apply the Hessian matrix approach and method previously intro-284

duced to investigate semiclassical stability and ordered structures for strongly coupled285

Coulomb systems (SCCS) confined in 3D QIT. In addition we suggest an analytical a286

method to determine the associated critical points. We consider a system consisting287

of N identical ions of mass mα and electric charge Qα (α = 1, 2, . . . , N), confined in a288

3D RF (Paul) trap. The coordinate vector of the particle labeled as α is denoted by289

~rα = (xα, yα, zα). A number of 3N generalized quantum coordinates qαi, i = 1, 2, 3,290

are associated to the 3N degrees of liberty. We also denote qα1 = xα, qα2 = yα, and291

qα3 = zα. Hence, the kinetic energy for a number of α particles confined in the trap can292

be expressed as293

T =
N

∑
α=1

3

∑
i=1

1
2mα

q̇2
αi , (41)

while the potential energy is294
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U =
1
2

N

∑
α=1

3

∑
i=1

kiq2
αi + ∑

1≤α<β≤N

QαQβ

4πε0
∣∣~rα −~rβ

∣∣ , (42)

where ε0 stands for the vacuum permittivity. For a spherical 3D trap: k1 = k2 = k3. In295

case of Paul or Penning 3D QIT k1 = k2, while the linear 2D Paul trap (LIT) corresponds296

to k3 = 0, k1 = −k2. The ki constants in case of a Paul trap result from the pseudo-297

potential approximation. The critical points of the system result as:298

N

∑
α=1

∆αU = 0 , ∆α =
∂2

∂x2
α
+

∂2

∂y2
α
+

∂2

∂z2
α

, (43)

∆U = 0 or
∂U
∂qγj

= 0, γ = 1, . . . , N; j = 1, 2, 3. (44)

We denote
∂qαi
∂qγj

= δαγδij , (45)

where δ stands for the Kronecker delta function. After doing the math we can write eq. (
44) as

∂U
∂qγj

=
1
2

N

∑
α=1

3

∑
i=1

2kiqαiδαγδij − ∑
1≤α<β≤N

1
4πε0

QαQβ

|~rα −~rβ|3
(
qαj − qβj

)(
δαγ − δβγ

)
, (46)

where the second term in eq. (46) represents the energy of the system, and introduce

ξαβ =
1

4πε0

QαQβ

|~rα −~rβ|3
, α 6= β. (47)

Moreover, ξαβ = ξβα. After some calculus the system energy can be cast as299

E = qγj

N

∑
α=1

ξαγ −
N

∑
α=1

ξαγqαj . (48)

We use eq. (46) and eq. (48), while the critical points (in particular, the minima)
result as a solution of the system of equations

∂U
∂qγj

=

(
k j −

N

∑
α=1

ξαγ

)
qγj +

N

∑
α=1

ξαγqαj = 0, 1 ≤ j ≤ 3, 1 ≤ α ≤ N . (49)

We consider q̄αj to be a solution of the system of equations (49) and obtain

U(q) = U(q̄) +
N

∑
α=1

3

∑
j=1

∂U
∂qαj

(
qαj − q̄αj

)
+

1
2

N

∑
α,α′=1

3

∑
j,j′=1

∂2U
∂qαj∂qα′ j′

(
qαj − q̄αj

)(
qα′ j′ − q̄α′ j′

)
+ . . . . (50)

We further infer

∂2U
∂qγj∂qγ′ j′

= k jδγγ′δjj′ −
N

∑
α=1

ξαγδγγ′δjj′ − qγj

N

∑
α=1

∂ξαγ

∂qγ′ j′
+

N

∑
α=1

ξγγ′δjj′ +
N

∑
α=1

∂ξαγ

∂qγ′ j′
qαj .

(51)
After performing the math (details are supplied in Appendix C) we cast eq. (51)300

into301
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∂2U
∂qγj∂qγ′ j′

= −
(

N

∑
α=1

ξαγ

)
δγγ′δjj′ + ξγγ′δjj′ + k jδγγ′δjj′+

qγj

N

∑
α=1

ηαγ

(
qαj′ − qγj′

)(
δαγ′ − δγγ′

)
−

N

∑
α=1

ηαγ

(
qαj′ − qγj′

)(
δαγ′ − δγγ′

)
qαj . (52)

We search for a fixed solution q0
γj of the system of equations (49). Then, the elements302

of the Hessian matrix of the potential function U in a critical point of coordinates q0
γj are:303

∂2U
∂q0

γj∂q0
γ′ j′

= k jδγγ′δjj′ + ξγγ′δjj′ −
(

N

∑
α=1

ξαγ

)
δγγ′δjj′+

ηγγ′

(
q0

γjq
0
γ′ j′ − q0

γjq
0
γj′ − q0

γ′ jq
0
γ′ j′ + q0

γ′ jq
0
γj′

)
+ q0

γjq
0
γj′

N

∑
α=1

ηαγδγγ′+

δγγ′

N

∑
α=1

ηαγq0
αjq

0
αj′ − δγγ′q

0
γj

N

∑
α=1

ηαγq0
αj′ − δγγ′q

0
γj′

N

∑
α=1

ηαγq0
αj . (53)

As it can be observed from eq. (53), our method allows one to determine (identify)304

the critical points of the potential function for the quantum system of N identical ions,305

where equilibrium configurations occur. It is exactly these equilibrium configurations306

that present a large interest for ion crystals or for quantum logic.307

5. Hamiltonians for systems of N ions308

We further apply our model to explore dynamical stability for systems consisting309

of N identical ions confined in a 3D QIT (Paul, Penning or combined traps) and show310

they can be studied locally in the neighbourhood of the minimum configurations that311

describe ordered structures (Coulomb or ion crystals [46]). Collective dynamics for312

many body systems confined in a 3D QIT that exhibits cylindrical (axial) symmetry313

is characterized in Refs. [1,22]. We explore a system consisting of N ions in a space314

with d dimensions, labeled as Rd. The coordinates in the manifold of configurations Rd
315

are denoted by xαj , α = 1, . . . , N , j = 1, . . . , d. In case of linear, planar or 3D (space)316

models, the number of corresponding dimensions is d = 1, d = 2 or d = 3, respectively.317

We will further introduce the kinetic energy T, the linear potential energy U1, the 3D318

QIT potential energy U, and the anharmonic trap potential V:319

T =
N

∑
α=1

d

∑
j=1

1
2mα

p2
αj , U1 =

1
2

N

∑
α=1

d

∑
j=1

δjxαj , (54a)

U =
1
2

N

∑
α=1

d

∑
i,j=1

κijx2
αj , V =

N

∑
α=1

v(xα, t) , (54b)

where mα is the mass of an ion labeled by α, xα = (xα1, . . . , xαd), while δj and κij represent
functions that ultimately depend on time. The Hamilton function associated to the
strongly coupled Coulomb system (SCCS) under investigation is

H = T + U1 + U + V + W ,

where W denotes the interaction potential between the ions.320
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Under the assumption of equal ion masses we introduce d coordinates xj of the
center of mass (CM)

xj =
1
N

N

∑
α=1

xαj , (55)

and d(N − 1) coordinates yαj to account for the relative ion motion321

yαj = xαj − xj ,
N

∑
α=1

yαj = 0 . (56)

We also introduce d collective coordinates sj and the collective coordinate s, identi-
fied as

sj =
N

∑
α=1

y2
αj , s =

N

∑
α=1

d

∑
j=1

y2
αj . (57)

Then
N

∑
α=1

x2
αj = Nx2

j +
N

∑
α=1

y2
αj . (58)

sj =
1

2N

N

∑
α,β=1

(
xαj − xβj

)2 , s =
1

2N

N

∑
α,β=1

d

∑
j=1

(
xαj − xβj

)2 . (59)

Eq. (59) shows s to symbolize the squared distance measured between the origin322

(fixed in the CM) and the point that designates the system of N ions in the manifold323

of configurations. The relation s = s0, with s0 > 0 constant, establishes a sphere324

of radius
√

s0 whose centre is located in the origin (of the configurations manifold).325

When investigating ordered structures of N ions, the trajectory is restricted within a326

neighbourhood ‖s− s0‖ < ε of this sphere, with ε sufficiently small. At the same time,327

the collective variable s can be also regarded as a dispersion:328

s =
N

∑
α=1

d

∑
j=1

(
x2

αj − x2
j

)
. (60)

We now submit pαj moments associated to the coordinates xαj. We also introduce d329

moments pj of the center of mass (CM) and d(N − 1) moments ξαj of the relative ion330

motion defined as331

pj =
1
N

N

∑
α=1

pαj , ξαj = pαj − pj ,
N

∑
α=1

ξαj = 0 , (61)

with pαj = −ih̄
(
∂/∂xαj

)
. We denote332

Dj =
1
N

N

∑
α=1

∂

∂xαj
, Dαj =

∂

∂xαj
− Dj ,

N

∑
α=1

Dαj = 0 . (62)

In addition333

N

∑
α=1

∂2

∂x2
j
= ND2

j +
N

∑
α=1

D2
αj . (63)

When d = 3 we denote by Lα3 the projection of the angular momentum of the334

α particle on axis 3. Then, the projections of the total angular momentum and of the335

relative motion angular momentum on axis 3, are labeled as L3 and L′3 respectively,336

determined as337

N

∑
α=1

Lα3 = L3 + L′3 , Lα3 = xα1 pα2 − xα2 pα1 , (64a)
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L3 = p1D2 − p2D1 , L′3 =
N

∑
α=1

(yα1ξα2 − yα2ξα1) . (64b)

The Hamilton function assigned to a many body system of N charged particles338

of mass M and equal electric charge Q, confined in a quadrupole combined (Paul and339

Penning) trap that displays axial (cylindrical) symmetry, in presence of a constant axial340

magnetic field B0, can be expressed as [1,36]341

H =
N

∑
α=1

[
1

2M

3

∑
j=1

p2
αj +

Kr

2

(
x2

α1 + x2
α2

)
+

Ka

2
x2

α3 −
ωc

2
Lα3

]
+ W ,

with

Kr =
Mω2

c
4
− 2Qc2 A(t) , Ka = 4Qc2 A(t) , ωc =

QB0

M
,

where ωc is the cyclotron frequency characteristic to a Penning trap, c2 is a constant342

that depends on the trap geometry and A(t) represents a time periodical function [47].343

The index r refers to radial motion while the index a refers to axial motion. We can also344

write H by adding the Hamilton function of the CM, HCM, and the Hamilton function345

associated to the ion relative motion H′:346

H = HCM + H′ , (65a)

HCM =
1

2NM

3

∑
j=1

p2
j +

NKr

2

(
x2

1 + x2
2

)
+

NKa

2
x2

3 −
ωc

2
L3 , (65b)

H′ =
N

∑
α=1

[
− h̄2

2M

3

∑
j=1

ξ2
αj +

Kr

2

(
y2

α1 + y2
α2

)
+

Ka

2
y2

α3

]
− ωc

2
L′3 + W . (65c)

Our results are in agreement with Ref. [22], where collective dynamical systems347

associated to the symplectic group are used to describe the axial and radial quantum348

Hamiltonians of the CM and of the relative ion motion. The space charge and its effect on349

the ion dynamics in case of a LIT is examined in Ref. [48], where the authors emphasize350

two distinguishable effects: (i) alteration of the specific ion oscillation frequency owing351

to variations of the trap potential, and (ii) for specific high charge density experimental352

conditions, the ions might perform as a single collective ensemble and exhibit dynamic353

frequency which is autonomous with respect to the number of ions. The model we sug-354

gest in this paper is appropriate to achieve a unitary approach aimed at generalizing the355

parameters for different types of 3D QIT. Further on, we apply this model to investigate356

the particular case of a combined Paul and Penning 3D QIT [49].357

We consider W to be an interaction potential that is translation invariant (it only de-358

pends of yαj). The ion distribution in the trap can be represented by means of numerical359

analysis and computer modeling [50,51], through the Hamilton function we provide360

Hsim =
n

∑
i=1

1
2M

pi
2 +

n

∑
i=1

M
2

(
ω2

1x2
i + ω2

2y2
i + ω2

3z2
i

)
+ ∑

1≤i<j≤n

Q2

4πε0

1∣∣~ri −~rj
∣∣ ,

(66)

where the second term accounts for the effective electric potential of the 3D QIT and the361

third term is responsible for the Coulomb repulsive force. In addition, we emphasize362

that the results obtained bring new contributions towards a better understanding of363

dynamical stability for charged particles levitated in a combined ion trap (Paul and364

Penning) [2], using both electrostatic DC and RF fields over which a constant static365
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magnetic field is superimposed. Applications span areas of large interest such as stable366

confinement of antimatter and fundamental physics with antihydrogen [2,52]. We can367

also mention precision measurements and tests of the Standard Model using 3D QITs.368

We can resume by stating that many body systems consisting of N ions stored in a369

3D QIT trap can be investigated locally in the neighbourhood of minimum configurations370

that characterize regular structures (Coulomb or ion crystals [46]). Collective models371

that exhibit a small number of degrees of freedom can be introduced to achieve a372

comprehensive portrait of the system, or the electric potential can be estimated by373

means of particular potentials for which the N-particle potentials are integrable. Little374

perturbations generally preserve quantum stability. The many body system under375

investigation is also characterized by a continuous part of the energy spectrum, whose376

classical equivalent is achieved through a class of chaotic orbits. Nevertheless, a weak377

correspondence can be traced between classical and quantum nonlinear dynamics, based378

on Husimi functions [1,22]. As a result, it comes straighforward to describe quantum379

ion crystals [53] by way of the minimum points associated to the Husimi function [37].380

6. Highlights381

We discuss dynamical stability for a classical system of two coupled oscillators in a382

3D RF (Paul) trap using a well known model from literature [16–18], based on two control383

parameters: the axial angular moment and the ratio between the radial and axial secular384

frequencies of the trap. We enlarge the model by performing a qualitative analysis, based385

on the eigenvalues associated to the Hessian matrix of the potential, in order to explicitly386

determine the critical points, the minima and saddle points. The bifurcation set consists387

of the degenerate critical points. Its image in the control parameter space establishes388

the catastrophe set of equations which establishes the separatrix. We also supply the389

bifurcation diagram particularized to the system under investigation.390

By illustrating the phase portraits we demonstrate that ion dynamics mainly consists391

of periodic and quasiperiodic trajectories, in the situation when the eigenfrequencies392

ratio is a rational number. In the scenario in which the eigenfrequencies ratio is an393

irrational number, the system is ergodic and it exhibits repetitive (iterative) rotations in394

the vicinity of a certain point. Our results also stand for ions with different masses or395

ions that exhibit different electrical charges, by generalizing the system investigated.396

By illustrating the phase portraits and the associated power spectra we show that397

ion dynamics is periodic or quasiperiodic for the parameter values employed in the398

numerical modeling.399

The model we introduce is then used to investigate quantum stability for N identical400

ions levitated in a 3D QIT, and we infer the elements of the Hessian matrix of the401

potential function U in a critical point. We then apply our model to explore dynamical402

stability for SCCS consisting of N identical ions confined in different types of 3D QIT403

(Paul, Penning, or combined traps) that exhibit cylindrical (axial) symmetry, and show404

they can be studied locally in the neighbourhood of the minimum configurations that405

describe ordered structures (Coulomb or ion crystals [46]). In order to perform a global406

description, we introduce collective models with a small number of degrees of freedom407

or the Coulomb potential can be approximated with specific potentials for which the408

N-particle potentials are integrable. Small enough perturbations maintain the quantum409

stability although the classical system may also exhibit a chaotic behaviour.410

We obtain the Hamilton function associated to a combined 3D QIT, which we show411

to be the sum of the Hamilton functions of the CM and of the relative motion of the ions.412

The ion distribution in the trap can be modeled by means of numerical analysis through413

the Hamilton function provided.414

The results obtained bring new contributions towards a better understanding of415

the dynamical stability of charged particles in 3D QIT, and in particular in combined416

ion traps, with applications such as high precision mass spectrometry for elementary417

particles, search for spatio-temporal variations of the fundamental constants in physics418
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at the cosmological scale, etc. Our approach is also very relevant in generalizing the419

parameters of different types of traps in a unified manner.420

7. Conclusions421

The paper suggests an alternative approach that is effective in describing the dy-422

namical regimes for different types of traps in a coherent manner. The results obtained423

bring new contributions towards a better understanding of the dynamical stability424

(electrodynamics) of charged particles in a combinational ion trap (Paul and Penning),425

using both electrostatic DC and RF fields over which a constant static magnetic field426

is superimposed. One of the advantages of our model lies in better characterizing ion427

dynamics for coupled two ion systems and for many body systems consisting of large428

number of ions. It also enables identifying stable solutions of motion and discussing the429

important issue of the critical points of the system, where the equilibrium configurations430

occur.431

Applications span areas of vivid interest such as stable confinement of antimatter432

and fundamental physics with antihydrogen [2,52] or high precision measurements (in-433

cluding matter and antimatter tests of the Standard Model) [9,54]. Better characterization434

of ion dynamics in such traps would lead to longer trapping times, which is an issue435

of outmost importance. Other possible applications are Coulomb or ion crystals (multi436

body dynamics). The results and methods used are appropriate for the ion trap physics437

community to compare regimes without having the details of the trap itself.438
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Abbreviations450

The following abbreviations are used in this manuscript:451

452

3D 3 Dimensional
CM Centre of Mass
LIT Linear Ion Trap
QED Quantum Electrodynamics
QIP Quantum Information Processing
QIT Quadrupole Ion Trap
RF Radiofrequency
SCCS Strongly Coupled Coulomb Systems
SET Surface Electrode Trap

453

Appendix A. Interaction potential. Electric potential of the trap.454

We denote
k1

2
= Q1β1, (A1)

where Q1 represents the electric charge of the ion labeled as 1. We assume the ions455

possess equal electric charges Q1 = Q2. The trap electric potential Φ1 = β1x1
2 + . . . ,456

can be considered as harmonic to a good approximation for the system of interest. In457
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case of a one-dimensional system of s particles (ions) or for a system with s degrees of458

freedom, the potential energy is:459

U =
s

∑
i=1

kiζ
2
i

2
+

1
2 ∑

1≤i<j≤s
bij
(
ζi − ζ j

)2 , (A2)

where ζi are the generalized coordinates and ζ̇i represent the generalized velocities. The460

electric potential is considered as a general solution of the Laplace equation, built using461

spherical harmonics functions with time dependent coefficients. By performing a series462

expansion of the Coulomb potential in spherical coordinates we can write down463

1∣∣∣~x− ~X
∣∣∣ =

∞

∑
k=0

[
rk/Rk+1 (α)
Rk/rk+1 (β)

]
4π

2k + 1

k

∑
q=−k

Y∗kq(Θ, Φ)Ykq(θ, ϕ) , (A3)

where Y∗kq and Ykq stand for the spherical harmonic functions. We choose r = |~x| and464

R = |~X|. The expression labeled as (α) in eq. (A3) corresponds to the case r < R,465

while the expression labeled by (β) is valid when r > R. We expand in series around R466

assuming a diluted medium. We infer the interaction potential as467

Vint =
1

4πε0
∑

1≤i<j≤s

QiQj∣∣~ri −~rj
∣∣ . (A4)

Appendix B. Dynamical stability468

As shown in Sec. 2.1, the expression of the autonomous Hamiltonian function469

associated to the system of two ions is given by eq. 24, where r =
√

ρ2 + z2 , λ =470

µz/µx , µz =
√

2(q2 − a). In fact λ and ν represet the two control parameters chosen,471

with λ the ratio between the secular axial and radial frequencies of the trap. ν denotes472

the scaled axial (z) component of the angular momentum Lz, while µz represents the473

second (or axial) secular frequency [16]. By calculus we infer474

λ2 = 4
q2 − a

q2 + 2a
, ν2 =

2L2
z

q2 + 2a
, (A5)

and we discriminate among three cases [17]:475

1. λ = 1
2 and from eq. (A5) we infer

a =
5q2

6

2. λ = 1. Eq.(A5) gives

a =
q2

2

3. λ = 2. By an analogous procedure we have

a = 0 .

Appendix C. Quantum Stability476

Using eqs. 44 and 45 we obtain477

∂

∂qγj

1
|~rα −~rβ|

= − 1
|~rα −~rβ|2

∂

∂qγj
|~rα −~rβ| (A6)

We also have

|~rα −~rβ| =

√√√√ 3

∑
h=1

(
qαh − qβh

)2
. (A7)
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Then
∂

∂qγj
|~rα −~rβ| = |~rα −~rβ|−1(qαj − qβj

)(
δαγ − δβγ

)
, (A8)

and
∂

∂qγj

1
|~rα −~rβ|

= − 1
|~rα −~rβ|3

(
qαj − qβj

)(
δαγ − δβγ

)
. (A9)

By using eq. (47) the last term in eq. (51) can be expressed as478

∂ξαγ

∂qγ′ j′
=

QαQγ

4πε0

∂

∂qγ′ j′

1
|~rα −~rγ|3

. (A10)

Moreover479

∂

∂qγ′ j′
|~rα −~rγ|−3 = −3|~rα −~rγ|−5

(
qαj′ − qγj′

)(
δαγ′ − δγγ′

)
. (A11)

Then, eq. (A10) can be cast into480

∂ξαγ

∂qγ′ j′
= −ηαγ

(
qαj′ − qγj′

)(
δαγ′ − δγγ′

)
; ηαγ =

QαQγ

4πε0
3|~rα −~rγ|−5, α 6= γ . (A12)

We use481

N

∑
α=1

qαδαγ = qγ . (A13)
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