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Abstract: We firstly discuss classical stability for a dynamical system of two ions levitated in a
3D Radio-Frequency (RF) trap, assimilated with two coupled oscillators. We obtain the solutions
of the coupled system of equations that characterizes the associated dynamics. In addition, we
supply the modes of oscillation and demonstrate the weak coupling condition is inappropriate in
practice, while for collective modes of motion (and strong coupling) only a peak of the mass can be
detected. Phase portraits and power spectra are employed to illustrate how the trajectory executes
quasiperiodic motion on the surface of torus, namely a Kolmogorov-Arnold-Moser (KAM) torus.
In an attempt to better describe dynamical stability of the system, we introduce a model that
characterizes dynamical stability and the critical points based on the Hessian matrix approach.
The model is then applied to investigate quantum dynamics for many-body systems consisting of
identical ions, levitated in 2D and 3D ion traps. Finally, the same model is applied to the case of a
combined 3D Quadrupole Ion Trap (QIT) with axial symmetry, for which we obtain the associated
Hamilton function. The ion distribution can be described by means of numerical modeling, based
on the Hamilton function we assign to the system. The approach we introduce is effective to
infer the parameters of distinct types of traps by applying a unitary and coherent method, and
especially for identifying equilibrium configurations, of large interest for ion crystals or quantum
logic.

Keywords: radiofrequency trap; dynamical stability; eigenfrequency; Paul and Penning trap;
Hessian matrix; Hamilton function; bifurcation diagram.
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1. Introduction

The advent of ion traps has led to remarkable progress in modern quantum physics,
in atomic and nuclear physics or quantum electrodynamics (QED) theory. Experiments
with ion traps enable ultrahigh resolution spectroscopy experiments, quantum metrol-
ogy measurements of fundamental quantities such as the electron and positron g-factors
[1], high precision measurements of the magnetic moments of leptons and baryons (ele-
mentary particles) [2], Quantum Information Processing (QIP) and quantum metrology
[3,4], etc.

Scientists can now trap single atoms or photons, acquire excellent control on their
quantum states (inner and outer degrees of freedom) and precisely track their evolu-
tion by the time [5]. A single ion or an ensemble of ions can be secluded with respect
to external perturbations, then engineered in a distinct quantum state and trapped in
ultrahigh vacuum for a long period of time (operation times of months to years) [6-8],
under conditions of dynamical stability. Under these circumstances, the superposition
states required for quantum computation can live for a relatively long time. Ion localiza-
tion results in unique features such as extremely high atomic line quality factors under
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minimum perturbation by the environment [3]. The remarkable control accomplished
by employing ion traps and laser cooling techniques has resulted in exceptional progress
in quantum engineering of space and time [2,9]. Nevertheless, trapped ions can not be
completely decoupled from the interaction with the surrounding environment, which is
why new elaborate interrogation and detection techniques are continuously developed
and refined [6].

These investigations allow scientists to perform fundamental tests of quantum me-
chanics and general relativity, to carry out matter and anti-matter tests of the Standard
Model, to achieve studies with respect to the spatio-temporal variation of the fundamen-
tal constants in physics at the cosmological scale [2], or to perform searches for dark
matter, dark energy and extra forces [9]. Moreover, there is a large interest towards
quantum many-body physics in trap arrays with an aim to achieve systems of many
interacting spins, represented by qubits in individual microtraps [6,10].

The trapping potential in a RF trap harmonically confines ions in the region where
the field exhibits a minimum, under conditions of dynamical stability [1,11,12]. Hence, a
trapped ion can be regarded as a quantum harmonic oscillator [13-15].

A problem of large interest concerns the strong outcome of the trapped ion dynamics
on the achievable resolution of many experiments, and the paper builds exactly in
this direction. Fundamental understanding of this problem can be achieved by using
analytical and numerical methods which take into account different trap geometries and
various cloud sizes. The other issue lies in performing quantum engineering (quantum
optics) experiments and high-resolution measurements by developing and implementing
different interaction protocols.

1.1. Investigations on classical and quantum dynamics using ion traps

A detailed experimental and theoretical investigation with respect to the dynamics
of two-, three-, and four-ion crystals close to the Mathieu instability is presented in
[16], where an analytical model is introduced that is later used in a large number of
papers to characterize regular and nonlinear dynamics for systems of trapped ions in
3D QIT. We use this model in our paper and extend it. Numerical evidence of quantum
manifestation of order and chaos for ions levitated in a Paul trap is explored in [17], where
it is suggested that at the quantum level one can use the quasienergy states statistics to
discriminate between integrable and chaotic regimes of motion. Double well dynamics
for two trapped ions (in a Paul or Penning trap) is explored in [18], where the RF-drive
influence in enhancing or modifying quantum transport in the chaotic separatrix layer
is also discussed. Irregular dynamics of a single ion confined in electrodynamic traps
that exhibit axial symmetry is explored in [19], by means of analytical and numerical
methods. It is also established that period-doubling bifurcations represent the preferred
route to chaos.

Ion dynamics of a parametric oscillator in a RF octupole trap is examined in [20,21]
with particular emphasis on the trapping stability, which is demonstrated to be position
dependent. In Ref. [22] quantum models are introduced to describe multi body dynamics
for strongly coupled Coulomb systems SCCS [23] stored in a 3D QIT that exhibits axial
(cylindrical) symmetry.

A trapped and laser cooled ion that undergoes interaction with a succession of
stationary-wave laser pulses may be regarded as the realization of a parametric nonlinear
oscillator [24]. Ref. [25] uses numerical methods to explore chaotic dynamics of a particle
in a nonlinear 3D QIT trap, which undergoes interaction with a laser field in a quartic
potential, in presence of an anharmonic trap potential. The equation of motion is similar
to the one that portrays a forced Duffing oscillator with a periodic kicking term. Fractal
attractors are identified for special solutions of ion dynamics. Similarly to Ref. [19],
frequency doubling is demonstrated to represent the favourite route to chaos. An
experimental confirmation of the validity of the results obtained in [25] can be found in
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Ref. [26], where stable dynamics of a single trapped and laser cooled ion oscillator in the
nonlinear regime is explored.

Charged microparticles stored in a RF trap are characterized either by periodic
or irregular dynamics, where in the latter case chaotic orbits occur [27]. Ref. [28]
explores dynamical stability for an ion confined in asymmetrical, planar RF ion traps,
and establishes that the equations of motion are coupled. Quantum dynamics of ion
crystals in RF traps is explored in [29] where stable trapping is discussed along with the
validity of the pseudopotential approximation. A phase space study of surface electrode
ion traps (SET) that explores integrable, chaotic and combined dynamics is performed
in [30], with an emphasis on the integrable and chaotic motion of a single ion. The
nonlinear dynamics of an electrically charged particle stored in a RF multipole ion trap
is investigated in [31]. An in-depth study of the random dynamics of a single trapped
and laser cooled ion that emphasizes nonequilibrium dynamics, is performed in Ref.
[32]. Classical dynamics and dynamical quantum states of an ion are investigated in [33],
considering the effects of the higher order terms of the trap potential. On the other hand,
the method suggested in [34] can be employed to characterize ion dynamics in 2D and
3D QIT traps.

All these experimental and analytical investigations previously described open
new directions of action towards an in-depth exploration of the dynamical equilibrium
at the atomic scale, as the subject is extremely pertinent. In our paper we perform a
classical study of the dynamical stability for trapped ion systems in Section 2, based on
the model introduced in [16,18]. The associated dynamics is shown to be quasiperiodic
or periodic. We use the dynamical systems theory to characterize the time evolution of
two coupled oscillators in a RF trap, depending on the chosen control parameters. We
consider the pseudopotential approximation, where the motion is integrable only for
discrete values of the ratio between the axial and the radial frequencies of the secular
motion. In Section 3 we apply the Morse theory to qualitatively analyze system stability.
The results are extended to many body strongly coupled trapped ion systems, locally
studied in the vicinity of equilibrium configurations that identify ordered structures.
These equilibrium configurations exhibit a large interest for ion crystals or quantum
logic. Section 4 explores quantum stability and ordered structures for many body
dynamics (assuming the ions are identical) in a RF trap. We find the system energy
and introduce a method (model) that supplies the elements of the Hessian matrix of the
potential function for a critical point. Section 5 applies the model suggested in Section 4.
Collective models are introduced and we build integrable Hamiltonians which admit
dynamic symmetry groups. We particularize this Hamiltonian function for systems of
trapped ions in combined (Paul and Penning) traps with axial symmetry. An improved
model results by which multi-particle dynamics in a 3D QIT is associated with dynamic
symmetry groups [35-37] and collective variables. The ion distribution in the trap can be
described by employing numerical programming, based on the Hamilton function we
obtain. This alternative technique can be very helpful to perform a unitary description
of the parameters of different types of traps in an integrated approach. We emphasize
the contributions in Section 6 and discuss the potential area of applications in Section 7.

2. Analytical model
2.1. Dynamical stability for two coupled oscillators in a radiofrequency trap

We use the dynamical systems theory to investigate classical stability for two cou-
pled oscillators (ions) of mass m; and my, respectively, levitated in a 3D radiofrequency
RF QIT. The constants of force are denoted as kj and ky, respectively. Ion dynamics
restricted to the xy-plane is described by a set of coupled equations:

)

mi¥ = —kix +b(x —y)
mylj = —koy —b(x —y),
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where b stands for the parameter that characterizes Coulomb repulsion between ions.
The control parameters for the trap are:

720) ;
ki = ml‘;l ;i = 47%( ‘?2)2 ;i=1,2, @)
i(Zg

with Q) the frequency of the micromotion, V) denotes the RF trapping voltage, zp is
the trap axial dimension, Q; represents the electric charge and m; stands for the mass
of the ion labeled as i. We use the time-independent (also known as pseudopotential)
approximation of the RF trap electric potential, because it can be employed to achieve
a good description of stochastic dynamics [32]. As heating of ion motion occurs in our
case due to the Coulomb interaction between ions (as an outcome of energy transfer
from the trapping field to the ions), the time-independent approximation can be safely
used, which brings a significant simplification to the problem. Therefore, higher order
terms in the Mathieu equation [1,38] that portrays ion motion can be discarded.

The simplest non-trivial model to describe the dynamic behaviour is the Hamilton
function of the relative motion of two levitated ions that interact via the Coulomb force
in a 3D QIT that exhibits axial symmetry, under the time-independent approximation
(autonomous Hamiltonian) [16-18]. The paper uses this well established model, which
we extend.

We consider the electric potential to be a general solution of the Laplace equation,
built using spherical harmonics functions with time dependent coefficients (see Ap-
pendix A). This family of potentials accounts for most of the ion traps that are used in
experiments [29]. The Coulomb constant of force is b = 2Q?/r> < 0, resulting from a
series expansion of Q?/r? about a mean deviation of the ion with respect to the trap
centre rg = (xo — yo) < 0, established by the initial conditions.

The expressions of the kinetic and potential energy are:

2 mzy'z k1 x2 kzyz 2

mlx _ kX Y- 1 _
> +T,U— > + > +2b(x Y. 3)

It is assumed that the ions share equal electric charges Q; = Q. We denote

T =

401V 2Up

kl = 2Q1ﬁl 7 ﬁl = leZg‘l - ? 7

(4)

with & = 7(2) + 22%, where 7y and zy denote the radial and axial trap semiaxes. We
assume Uy = 0 (the d.c. trapping voltage) and consider r( as negligible. The trap control
parameters are Uy, Vp, ¢ and k;. We select an electric potential V = 1/|z| and we perform
a series expansion around zg > 0, with z — z9 = x — y. The potential energy can be then
cast into:

_ kix? n kox3 1 Q1Q

u .
2 2 47teg |x1 — X7

©)

The Hamilton principle states the system is stable if the potential energy U exhibits
a minimum

1 1Q2
k A= A= —_—

1212 FA=0, e [y — 1o (6)
Then N A
kix1 +koxp =0, X1min = o Yomin =~ ()
1 2

1 K2k3
A=¢——12 01, 8
\/4 f kz)z 12 8)

Equation
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supplies the points of minimum, x; and xy, for an equilibrium state. We choose
kik
Z0 = X1min — ¥2min = Akl :—zkz )
and denote
Z=1X1—X2, X1 = Ximin T X, X2 = X2min +¥, (10)
with z = zg + x — y. Eq. (8) gives us
QQe _ y5( kike \_ 5
= = . 11
47teg A k14 ko Az (1)
We turn back to eq. (5), then make use of egs. (7) and (10) to express the potential energy
as
k1 ko A 2
u= E(x%min—’_xZ) +?( %mm+y2> +)\ZO+ %(Z_ZO) e (12)
From eq. (3) we obtain b/2 = A/zp. When the potential energy is minimum the system
is stable.

2.2. Solutions of coupled system of equations

We seek for a stable solution of the coupled system of equations (1) of the form

x = Asinwt, y= Bsinwt. (13)
The Wronskian determinant of the resulting system of equations must be zero for a stable
system
b—k + m1w2 —b -
‘ b b—ky+mpc? |~ (14)
The determinant allows us to construct the characteristic equation:
(b—kl +m1w2) (b—k2+m2w2) P =0. (15)
The discriminant of eq. (15) can be cast as
A = [my(b—ky) — my(b—k1)]? + 4mymab? . (16)

The system admits solutions if the determinant is zero, as stated above. Hence, a solution
of eq. (15) would be:

> ml(kz—b)ﬂLmz(kl—b)i\/Z.

= 17
Wiy Dty (17)
Then, we find a stable solution for the system of coupled oscillators
x1 =C; sin(wlt + ng) + C, sin (th + §02) , (18a)
y1=GC3 sin(wlt + §D3) + Cy sin ((Uzt + 4)4) , (18b)

which describes a superposition of two oscillations characterized by the secular frequen-
cies w; and w», that is to say the system eigenfrequencies. Assuming that b < k; , in eq.
(15), the strong coupling condition is

mi — ny
my

, (19)

g

b
ki
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where the modes of oscillation are
1/k k
2 1 2
= (=242 2
wl 2(m1+m2)r (0)
1/k;i—2b ky—2b
2 1k 2
wy = 2( - + . ) . (21)

By exploring the phase relations between the solutions of eq. (1), we can ascertain
that the w; mode corresponds to a translation of the ions (the distance ry between ions
does not fluctuate), while the Coulomb repulsion remains steady as b is absent in eq. (20).
The axial current produced by this mode of translation can be detected (electronically). In
the wy, mode the distance between the ions fluctuates about a fixed centre of mass (CM),
case when both the electric current and signal are zero. Optical detection is possible
in the wy mode [39] even if electronic detection is not feasible. As a consequence, for
collective modes of motion only a peak of the mass is detected that corresponds to the
ion average mass. In case of weak coupling the inequality in eq. (19) overturns, and
from eq. (17) we derive

Wiy = (kip—b)/my, (22)

which means that each mode of the dynamics matches a single mass, while resonance is
shifted with the parameter b. In addition, within the limit of equal ion mass m; = my,
the strong coupling requirement in eq. (19) is always fulfilled regardless of how weak is
the Coulomb coupling. This renders the weak coupling condition unsuitable in practice.

For the stable solution described by eq. (18), we supply below the phase portraits
for the coupled oscillators system, as shown in Figures 1 - 8.

5 Phase portrait 5 Phase portrait
15; 157
17 17
. 05+ N 0.5+
€ o0 = 0
-0.5 -0.5
1t -1
-1.5+ -1.5
-2 -2
2-15-1-050 05 1 15 2 2-15-1-050 05 1 15 2
x(t) x(t)
Figure 1. Parametre values C; = 0.8,C; = Figure 2. Parametre values C; = 0.75,C; =
06,C3 = 075,C4 = 06,91 = 71/3, ¢ = 09,C3 = 08,C4 = 085,91 = 71/3, ¢ =
/4,93 = mw/2,9s = n/3, wi/wy = /4,93 = m/2,9s = 7/3, wi/wy =
1.71/1.93 — quasiperiodic dynamics. 1.96/1.85 — quasiperiodic dynamics.

The phase portraits with parametre values C; = 0.75,C, = 0.9,C3 = 0.8,C4 = 0.85
are illustrated in Figures 5 - 8.

Figure 1 illustrates the phase portrait for a system of two coupled oscillators in a RF
trap, where the eigenfrequencies ratio is wy /wy = 1.71/1.93. When the eigenfrequencies
ratio is a rational number w /w, € Q, the solutions of the equations of motion (18) are
periodic trajectories and ion dynamics is regular. In case when the eigenfrequencies
ratio is an irrational number w; /w; ¢ Q, iterative rotations occur around a certain point
[40] that are called ergodic, according to the theorem of Weyl. It can be observed that the
solutions 18 of the equations of motions, illustrated in Figures 1 - 8, demonstrate that ion
dynamics is generally periodic or quasiperiodic, and stable. There are also a few cases
which illustrate ergodic dynamics [40] and the occurrence of what may be interpreted
as iterative rotations. According to Figures 1 - 8, by extending the motion in 3D we can
ascertain that the trajectory executes periodic and quasiperiodic motion on the surface
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X(t
® Figure 4. Parametre values C; = 0.8,C; =
Figure 3. Parametre values identical with those 06,C3 = 075,C4 = 06,91 = 7/4,¢>

from Fig. 1, w; = 1.2,wy = 2 —— periodic be- /2,93 = 7/3, ¢4 = /5w = 12,w; =

haviour. 2 — periodic dynamics.
5 Phase portrait 2 ‘Pha‘se Portlralf
15! 157
1t 1
05! - 0.5¢
g o = 8l
05! -0.5¢
A1 -1
15! -1.5¢
) N ———
2 2-15-1-050 05 1 1.5 2

“2-15-1-050 051 15 2
x(t)

Figure 5. ¢y = /5,9 = /6,93 = /3, 4y =
/2, wy/wy = 1.8/1.7 — periodic behaviour.

x(t)

Figure 6. 91 = 11/4,¢pp = 71/2, 93 = 11/3, 04 =
n/4,w; = 1.81,wy; = 1.88 —— quasiperiodic
dynamics.

of a torus, referred to as a Kolmogorov-Arnold-Moser (KAM) torus [41]. By choosing
various initial conditions different KAM tori can be generated.

We have integrated the equations of motion given by eq. 1 to explore ion dynamics
and illustrate the associated power spectra [42], as shown in Figures 9 - 16. The numerical
modeling we performed clearly demonstrates that ion dynamics is dominantly periodic
or quasiperiodic.

Ref. [43] describes an electrodynamic ion trap in which the electric quadrupole
field oscillates at two different frequencies. The authors report simultaneous tight
confinement of ions with extremely different charge-to-mass ratios, e.g. singly ionized
atomic ions together with multiply charged nanoparticles. The system represents the
equivalent of two superimposed RF traps, where each one of them operates close to a
frequency optimized in order to achieve tight storage for one of the species involved,
which leads to strong and stable confinement for both particle species used.

3. Dynamic stability for two oscillators levitated in a RF trap
3.1. System Hamiltonian. Hessian matrix approach

A well established model is employed to portray system dynamics, that relies on
two control parameters: the axial angular moment and the ratio between the radial and
axial secular frequencies characteristic to the trap. If we consider two ions with equal
electric charges, their relative motion is described by the equation [16,18,19]
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Figure 9. Phase portrait for b = 2,k; = 4,ky =
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Figure 11. Phase portrait for b = 2,k; =
17,k2 = 199,m1 =Mmyp = 1.
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where 7 = x1 — xp, iy =
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Figure 8. 1 = 71/6, 902 = w/4, 93 = 11/2, 04 =
n/8,wy = 15wy = 19 +— periodic be-
haviour.
Power spectrum
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& | |
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Frequency (Hz)

Figure 10. Associated power spectrum. Initial
conditions %(0) = 0,5(0) = 0,x(0) = 0,y(0) =
0.5

Power spectrum

log(Power)
)

-1 -06 -02 02 0.6 1
Frequency (Hz)

Figure 12. Associated power spectrum. Initial

conditions %(0) = 0,5(0) = 0,x(0) = 0,y(0) =

0.5.

dz X X ‘uz X
¥ [y] + [a + 2q cos(2t)] [ y ] = ﬁ [y] , (23)

—2z z

a + }q? represents the dimensionless radial secular (pseudo-

oscillator) characteristic frequency [44], while a and g stand for the adimensional trap

parameters in the Mathieu equation, namely
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5,m1 = 5,71’12 =7.
0.5.
8QUy 4QVo

T2 (r3+223) 1= e (r34223)

Up and Vp denote the d.c and RF trap voltage, respectively, Q stands for the electric
charge of the ion, () represents the RF drive frequency, while ry and zj are the trap
radial and axial dimensions. For 4,4 < 1, such as in our case, the pseudopotential
approximation is valid. Therefore we can associate an autonomous Hamilton function
to the system described by eq. (23), which we express in scaled cylindrical coordinates

(0, ¢,z) as [16]

1/, 2
H= E(pp +pz) + U(p,Z) ’ (24)
where )
1o 4202y, v 1
U(p,z)—2<p —i—)tz)—i—zpz—i-r, (25)

withr = \/p?2 422, A = uz/py , and p; = /2(g?> —a). v denotes the scaled axial
(z) component of the angular momentum L, and it is a constant of motion, while y,
represents the second secular frequency [16]. We emphasize that both A and v are strictly
positive control parameters. For arbitrary values of v and for positive discrete values of
A =1/2,1,2, eq. (25) is integrable and even separable, excluding the case when A = 1/2

and |v| > 0 (v # 0), as stated in [17].
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The equations of the relative motion corresponding to the Hamiltonian function
described by eq. (24) can be cast into [16,17]:

z

2= 5 — A2z, (26a)
2
. _ P v

with p, = p and p, = z. The critical points of the U potential are determined as solutions
of the system of equations:

ou 2 1p
a ., 1z
T)Z —/\ z— 77; —0, (27b)

where dr/dp = p/rand or/dz = z/r.

3.2. Solutions of the equations of motion for the two oscillator system

We use the Morse theory to determine the critical points of the potential U and to
discuss the solutions of eq. (27), with an aim to fully characterize the dynamical stability
of the coupled oscillator system. Then

z(AZ—i,,> =0, (28)

which leads to a number of two possible cases:
Case 1. z = 0 . The first equation of the system (27) can be rewritten as

which gives us p = r for z = 0. In such case, a function results
floy=p'—p =12, f'(p) =40°—1. (29)

The second relationship in eq. (29) shows that p = i/g is a point of minimum for
f(p). In case when pg > 0, for v # 0 and zg = 0:

flp) =p5—po—v>=0.

In case when v = 0 we obtain f(p) = p(p> — 1) = 0. Then, the solutions are p; = 0
and pp = 1, where only p, = 1is a valid solution. Moreover, for v =0and zp =0, pp =1
is a solution.

Case2.7’ =1/A% =
r=A"%/3, (30)

We return to the system of egs. (27) and infer
_ v (31)
S

for A < 1. Incase when A < 1and v # 0, the system admits no solutions. In the scenario
when A < 1,v = 0 we find p = 0, while in case when A = 1, v = 0 it results that any
p > 0 represents a solution. As r = /22 + p?, then

z=/12—p2 =£\/A 43— p2. (32)
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We differentiate among three possible sub-cases
Subcase (i): A < 1,v # 0and

|v]

NSV

Z1p =+ A—4/3

provided that 1 — A2 > v2A%/3 or
z=0for1—A2=1278/3,

where the ¢ index of A refers to critical.
Subcase (ii): A < 1,v = 0 which leads to p = 0 and z1p = +A72/3
Subcase (iii): A = 1,v = 0 which results in z;p = +4/A"%/3 — p2 ,withp > 0.

These are the solutions we find for the equations of motion corresponding to the
two coupled oscilators system. After doing the math, the Hessian matrix of the potential
U appears as

32 1, 30% 30z
o 1+pi4*73+ri5 % (33)
3pz /\z—l 322
/5 315

The determinant and the trace of the Hessian matrix result as

32/, 1 322 5 1 3p? 1 2 322

31?1
_ 2

From egs. (34) we infer that TrH = 0. Thus, the Hessian matrix H has at least a
strictly positive eigenvalue.

3.3. Critical points. Discussion.

We use eqgs. (34) with an aim to investigate the critical points for the system of
interest. We consider two distinct cases:
Case 1. z = 0 and r = p. Then egs. (34) modify appropriately

WA/, 1 ) 2 1 2
2 31/2 1

We discriminate among the following sub-cases:
Subcase (i):v=0,z=0,p=1
We obtain a system of equations as follows

TrH=2+A2>0, (36a)

detH = 3(A2 ~ 1) : (36b)

Moreover, a tabel results that describes the eigenvalues A1 and A; of the Hessian

matrix:
A A Critical point

0<A<T | >0]>0 Minimum
A=1 >0| 0 Degeneracy
A>1 >0 | <0 | Saddle point
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Thus, by investigating the signs of the Hessian matrix eigenvalues we can discrimi-
nate between critical points, minimum points, saddle points and degeneracy. Only if
A = 1 the critical point is degenerate. When the determinant of the Hessian matrix of the
potential det H # 0 the system is non-degenerate. The system is degenerate if detH = 0.
Subcase (ii): z =0, v # 0.

The derivatives of a smooth function must be continuous. We now turn back to eq.
(29). Thenv? = p(p® — 1) and

detH = (4— p13> (AZ — pla) ) (37)

We seek for degenerate critical points (characterized by detH = 0). We infer
p =A"2/3 or p =473, which involves two distinct sub-subcases:
a) p= A~2/3. We return to eq. (27) and infer

A8 A28 2 =0,

b) p* > p, p > 1. In such a situation we encounter a point of minimum when
p > A~2/3, while the case p < A=2/3 implies a saddle point.
Case2.7r=A"43, 22 =743 _ o2

In this particular situation, after doing the math eqs. (34) can be recast into

detH = 12A2 (1 - )3) (1 LY 3p2) , (38a)

TrH=4—-A>>0, (38b)
with 0 < A2 < 1. We differentiate among several sub-cases as follows:
Subcase (i): v = 0, A?> = 1. We further infer z = +,/A~4/3 — p2, with p? € {—/\2/3, /\2/3} ,

p < —A783 Then TrH = 3 and detH = 0, which characterizes a degenerate critical
point.
Subcase (ii): v # 0, A> = 0. We are in the case of a degenerate critical point, with
p = /|v|. In this particular case detH = 0 and

1/2 _ /\*8/3 _ /\*2/3 )

Subcase (iii): 0 < A2 < 1, v # 0. The critical point is a point of minimum, as detH > 0:

vaid 2 24,4/3
00 = r—v, 1—-A">v°A"?7,
V1-A2

— y-4a3_ Y
712 \/ M AT

Subcase (iv): 0 < A2 < 1,v = 0. Then p = 0 and detH = 0, which indicates a point of
minimum characterized by z1, = +A72/3,

Subcase (v): Case v = 0,A = 0. In such case we infer p = 0,z = 0. We are in the case of a
degenerate critical point as (detH = 0).

Subcase (vi): Case p = A~2/3, A = A.

1—A2=12)8/3 (39)

The critical point is degenerate with z = 0 and (detH = 0).

A critical point for which the Hessian matrix is non-singular, is called a non-
degenerate critical point. A Morse function admits only non-degenerate critical points
that are stable [45]. The degenerate critical points (defined by detH = 0) compose the
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bifurcation set, whose image in the control parameter space (more precisely the v — A
plan) establishes the catastrophe set of equations that defines the separatrix:

v=1VA83_A-2/30r A=0. (40)

Our method relies on employing the Hessian matrix to better characterize dynam-
ical stability and the critical points of the system. Figure 17 displays the bifurcation
diagram for two coupled oscillators confined in a Paul trap. The ion relative motion
is characterized by the Hamilton function described by eqs. (24) and (25). The dia-
gram illustrates both stability and instability regions where ion dynamics is integrable
and non-integrable, respectively. Ion dynamics is integrable and even separable when
A=05 A=1 A=2[17-19].

100 ‘
v=sqrt(A**(-8/3)-A**(-2/3)) ——
A=0.5 —
A=1
A=2
80 .
A=0
60 .
Radial symmetry Axial symmetry
> — =
Spherical symmetry
40 - - i
20 1| Bifurcation Set |
0 — !
0 0.5 1 1.5 2 2.5

A

Figure 17. The bifurcation set for a system of two ions confined in a Paul trap.

4. Quantum stability and ordered structures for many-body systems of trapped ions

Furthermore, we apply the Hessian matrix approach and method previously intro-
duced to investigate semiclassical stability and ordered structures for strongly coupled
Coulomb systems (SCCS) confined in 3D QIT. In addition we suggest an analytical a
method to determine the associated critical points. We consider a system consisting
of N identical ions of mass m, and electric charge Q, (¢« =1,2,...,N), confined in a
3D RF (Paul) trap. The coordinate vector of the particle labeled as a is denoted by
7o = (Xa,Ya,Za).- A number of 3N generalized quantum coordinates g,;,i = 1,2,3,
are associated to the 3N degrees of liberty. We also denote q,1 = x4, a2 = Ya, and
ga3 = Za- Hence, the kinetic energy for a number of « particles confined in the trap can
be expressed as

1

-2
Zma thi 4 (41)

-y

a=1i=1

while the potential energy is
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Z Zquaz ) 9 42)

231 1<a<B<N dreg[Fo — 7p|

where g( stands for the vacuum permittivity. For a spherical 3D trap: k; = k, = k3. In
case of Paul or Penning 3D QIT k; = kj, while the linear 2D Paul trap (LIT) corresponds
to ks = 0, k; = —ky. The k; constants in case of a Paul trap result from the pseudo-
potential approximation. The critical points of the system result as:

N 92 92 92
;ADLUZOIAa:az—i_ayZ—FaZZ/ (43)
0
AU—Oor—U—O, y=1,...,N;j=1,2,3. (44)
9yj
We denote
NMai _ g 5. (45)
aq'yj = Oay0ij ,
where 0 stands for the Kronecker delta function. After doing the math we can write eq. (
44) as
ou 1 QuQp

(9aj — ap;) (Oay — 8py) ,  (46)

1 N 3
v EZZZki%i%&j* )
a=1i=1

I 1<acpen 470 [Ta = gl

where the second term in eq. (46) represents the energy of the system, and introduce

1 thQﬁ

gac‘B = Hi‘?om/ a # P (47)

Moreover, §u5 = Cgq- After some calculus the system energy can be cast as

N

N
E= qvj Z Cay — Z gm%j . (48)

a=1 a=1

We use eq. (46) and eq. (48), while the critical points (in particular, the minima)
result as a solution of the system of equations

aU N N ‘
5= ki— Y Cay |07+ Y Gantlaj=0, 1<j<3, 1<a<N. (49)
qvj a=1 a=1

We consider {,; to be a solution of the system of equations (49) and obtain

N 3 ou
U(g) = U(@) + 3 ) 5= (90 = Taj) +
a=1j=1 aj
_ [ c— o N PR I (50)
2 tx,ale j,i’zzl 900y (ej = ) (%] " )
We further infer
o*Uu 98ay

a¢
kG jj Z‘:fww jif' %JZ +Z€w /+2 =g
a=1

3,0y 199y a% j
(51)
After performing the math (details are supplied in Appendix C) we cast eq. (51)

into
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Fu (}N z )5 Sijr + Eyp it + ki
= — 107 + / =+
30,007 A o Oy G T oy vy djp+

N N
Tvi 21 Moy (%J" - ”lw”) (Ouyr = Oyy') = 21 Moy (‘M’ B ‘771") (Gay = 00)aj - (52)
n= nN=

We search for a fixed solution qu j of the system of equations (49). Then, the elements
of the Hessian matrix of the potential function U in a critical point of coordinates qg j are:

*u
o = kb + &Sy — | L
aqg]aqg,] 7Y ]] Yyl (2 "‘7> 7Y ]]

N
0 0 00 _ 0 0 0 0 0 0
Nyy' (‘771"77’]" T Ayjlyy ~ Dy jyp T qv’ﬂw") Ty ; Moy Oy +

N N
Z Moy ajag — Sy Z Tayajr = Syyrlly Zl Mayaj - (53)
=

a=1 a=1

As it can be observed from eq. (53), our method allows one to determine (identify)
the critical points of the potential function for the quantum system of N identical ions,
where equilibrium configurations occur. It is exactly these equilibrium configurations
that present a large interest for ion crystals or for quantum logic.

5. Hamiltonians for systems of N ions

We further apply our model to explore dynamical stability for systems consisting
of N identical ions confined in a 3D QIT (Paul, Penning or combined traps) and show
they can be studied locally in the neighbourhood of the minimum configurations that
describe ordered structures (Coulomb or ion crystals [46]). Collective dynamics for
many body systems confined in a 3D QIT that exhibits cylindrical (axial) symmetry
is characterized in Refs. [1,22]. We explore a system consisting of N ions in a space
with d dimensions, labeled as R?. The coordinates in the manifold of configurations RY
are denoted by Xoj, &= 1,...,N, j=1,...,d. In case of linear, planar or 3D (space)
models, the number of corresponding dimensions is d = 1, d = 2 or d = 3, respectively.
We will further introduce the kinetic energy T, the linear potential energy Uj, the 3D
QIT potential energy U, and the anharmonic trap potential V:

N 1 ) 1 N d
T= EZZm pzxj' U12522§jxajr (54a)
a=1j=1 L a=1j=1
1 N d ) N
U=53 Y mp, V=1 v(xt), (54b)
a=1 i,j:1 a=1

where m, is the mass of an ion labeled by &, X, = (%41, . .., X44), while (5j and Kjj represent
functions that ultimately depend on time. The Hamilton function associated to the
strongly coupled Coulomb system (SCCS) under investigation is

H=T+UWU+U+V+W,

where W denotes the interaction potential between the ions.
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Under the assumption of equal ion masses we introduce d coordinates x; of the
center of mass (CM)

)
Xj= Xaj s (55)
N a=1

and d(N — 1) coordinates y,; to account for the relative ion motion

N
Yaj = Xaj = Xj, Y} Y =0. (56)
a=1
We also introduce d collective coordinates S and the collective coordinate s, identi-
fied as
N ) N d 2
szzlyzxj's:ZZa‘ (57)
n= =1i=1
Then
y 2 2 Y 2
a=1 a=1
1 N ) 1 N 4 )
si=on L (Xaj—¥)", s=55 X Y (x—xg)" (59)
«,p=1 «,p=1j=1

Eq. (59) shows s to symbolize the squared distance measured between the origin
(fixed in the CM) and the point that designates the system of N ions in the manifold
of configurations. The relation s = sy, with sp > 0 constant, establishes a sphere
of radius /sy whose centre is located in the origin (of the configurations manifold).
When investigating ordered structures of N ions, the trajectory is restricted within a
neighbourhood ||s — sp|| < € of this sphere, with ¢ sufficiently small. At the same time,
the collective variable s can be also regarded as a dispersion:

N d
5 = Zl g(xi]- - x]2) ) (60)
a=1j=

We now submit p,; moments associated to the coordinates x,;. We also introduce d
moments p; of the center of mass (CM) and d(N — 1) moments Gaj of the relative ion
motion defined as

1Y -
Pi= N L Puir S =P —pjs LG =0, (1)
a= &=

with p,j = —ih(9/9x,;). We denote

N 0
; axa] = az Dyj=0. (62)
In addition
N a N
;—JZ:NDML;D@. (63)

When d = 3 we denote by L,3 the projection of the angular momentum of the
« particle on axis 3. Then, the projections of the total angular momentum and of the
relative motion angular momentum on axis 3, are labeled as L3 and L} respectively,
determined as

N
Y Lus=Ls+ L3, Lug = Xu1Pu2 — Xa2Pad s (64a)

a=1
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N
Ly = p1Dy — p2D1, Ly = Y (Va1 Gaz — Ya2la1) - (64b)
a=1
The Hamilton function assigned to a many body system of N charged particles
of mass M and equal electric charge Q, confined in a quadrupole combined (Paul and
Penning) trap that displays axial (cylindrical) symmetry, in presence of a constant axial
magnetic field By, can be expressed as [1,36]

N
1 K K w
H=1}, [ZM ZpﬁjJr f("il +x§2> +7ax02¢3— chas +W,

=1 j=1
with )
K, = M:’C —200,A(t), Ko = 4Q0A(t) , we = %,

where w, is the cyclotron frequency characteristic to a Penning trap, c; is a constant
that depends on the trap geometry and A(t) represents a time periodical function [47].
The index r refers to radial motion while the index a refers to axial motion. We can also
write H by adding the Hamilton function of the CM, H¢y, and the Hamilton function
associated to the ion relative motion H’:

H=Hcp+H', (65a)
_ 1 > >, NKy/r 5 2 NK; , we
HCM - INM ];1 p] + > (x1 + xZ) + 5 X3 — 7[:3 , (65b)
N 2 3
h K K w
r_ _ 2 | Krfo 2 Ka o |  Wery
H _oc;ll M ];gtx]+ 2 (ya1+yu¢2) + 2 ]/,;(3‘| 2 L3+W' (65C)

Our results are in agreement with Ref. [22], where collective dynamical systems
associated to the symplectic group are used to describe the axial and radial quantum
Hamiltonians of the CM and of the relative ion motion. The space charge and its effect on
the ion dynamics in case of a LIT is examined in Ref. [48], where the authors emphasize
two distinguishable effects: (i) alteration of the specific ion oscillation frequency owing
to variations of the trap potential, and (ii) for specific high charge density experimental
conditions, the ions might perform as a single collective ensemble and exhibit dynamic
frequency which is autonomous with respect to the number of ions. The model we sug-
gest in this paper is appropriate to achieve a unitary approach aimed at generalizing the
parameters for different types of 3D QIT. Further on, we apply this model to investigate
the particular case of a combined Paul and Penning 3D QIT [49].

We consider W to be an interaction potential that is translation invariant (it only de-
pends of y,;). The ion distribution in the trap can be represented by means of numerical
analysis and computer modeling [50,51], through the Hamilton function we provide

Hsim =

ags

1 "M
mpiz + l; > (w%xf + wiy? + w%z?)
B 9 (66)
1
+ ) Q

1<icj<n 47T€0 7 =7l

where the second term accounts for the effective electric potential of the 3D QIT and the
third term is responsible for the Coulomb repulsive force. In addition, we emphasize
that the results obtained bring new contributions towards a better understanding of
dynamical stability for charged particles levitated in a combined ion trap (Paul and
Penning) [2], using both electrostatic DC and RF fields over which a constant static
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magnetic field is superimposed. Applications span areas of large interest such as stable
confinement of antimatter and fundamental physics with antihydrogen [2,52]. We can
also mention precision measurements and tests of the Standard Model using 3D QITs.
We can resume by stating that many body systems consisting of N ions stored in a
3D QIT trap can be investigated locally in the neighbourhood of minimum configurations
that characterize regular structures (Coulomb or ion crystals [46]). Collective models
that exhibit a small number of degrees of freedom can be introduced to achieve a
comprehensive portrait of the system, or the electric potential can be estimated by
means of particular potentials for which the N-particle potentials are integrable. Little
perturbations generally preserve quantum stability. The many body system under
investigation is also characterized by a continuous part of the energy spectrum, whose
classical equivalent is achieved through a class of chaotic orbits. Nevertheless, a weak
correspondence can be traced between classical and quantum nonlinear dynamics, based
on Husimi functions [1,22]. As a result, it comes straighforward to describe quantum
ion crystals [53] by way of the minimum points associated to the Husimi function [37].

6. Highlights

We discuss dynamical stability for a classical system of two coupled oscillators in a
3D RF (Paul) trap using a well known model from literature [16-18], based on two control
parameters: the axial angular moment and the ratio between the radial and axial secular
frequencies of the trap. We enlarge the model by performing a qualitative analysis, based
on the eigenvalues associated to the Hessian matrix of the potential, in order to explicitly
determine the critical points, the minima and saddle points. The bifurcation set consists
of the degenerate critical points. Its image in the control parameter space establishes
the catastrophe set of equations which establishes the separatrix. We also supply the
bifurcation diagram particularized to the system under investigation.

By illustrating the phase portraits we demonstrate that ion dynamics mainly consists
of periodic and quasiperiodic trajectories, in the situation when the eigenfrequencies
ratio is a rational number. In the scenario in which the eigenfrequencies ratio is an
irrational number, the system is ergodic and it exhibits repetitive (iterative) rotations in
the vicinity of a certain point. Our results also stand for ions with different masses or
ions that exhibit different electrical charges, by generalizing the system investigated.
By illustrating the phase portraits and the associated power spectra we show that
ion dynamics is periodic or quasiperiodic for the parameter values employed in the
numerical modeling.

The model we introduce is then used to investigate quantum stability for N identical
ions levitated in a 3D QIT, and we infer the elements of the Hessian matrix of the
potential function U in a critical point. We then apply our model to explore dynamical
stability for SCCS consisting of N identical ions confined in different types of 3D QIT
(Paul, Penning, or combined traps) that exhibit cylindrical (axial) symmetry, and show
they can be studied locally in the neighbourhood of the minimum configurations that
describe ordered structures (Coulomb or ion crystals [46]). In order to perform a global
description, we introduce collective models with a small number of degrees of freedom
or the Coulomb potential can be approximated with specific potentials for which the
N-particle potentials are integrable. Small enough perturbations maintain the quantum
stability although the classical system may also exhibit a chaotic behaviour.

We obtain the Hamilton function associated to a combined 3D QIT, which we show
to be the sum of the Hamilton functions of the CM and of the relative motion of the ions.
The ion distribution in the trap can be modeled by means of numerical analysis through
the Hamilton function provided.

The results obtained bring new contributions towards a better understanding of
the dynamical stability of charged particles in 3D QIT, and in particular in combined
ion traps, with applications such as high precision mass spectrometry for elementary
particles, search for spatio-temporal variations of the fundamental constants in physics
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at the cosmological scale, etc. Our approach is also very relevant in generalizing the
parameters of different types of traps in a unified manner.

7. Conclusions

The paper suggests an alternative approach that is effective in describing the dy-
namical regimes for different types of traps in a coherent manner. The results obtained
bring new contributions towards a better understanding of the dynamical stability
(electrodynamics) of charged particles in a combinational ion trap (Paul and Penning),
using both electrostatic DC and RF fields over which a constant static magnetic field
is superimposed. One of the advantages of our model lies in better characterizing ion
dynamics for coupled two ion systems and for many body systems consisting of large
number of ions. It also enables identifying stable solutions of motion and discussing the
important issue of the critical points of the system, where the equilibrium configurations
occur.

Applications span areas of vivid interest such as stable confinement of antimatter
and fundamental physics with antihydrogen [2,52] or high precision measurements (in-
cluding matter and antimatter tests of the Standard Model) [9,54]. Better characterization
of ion dynamics in such traps would lead to longer trapping times, which is an issue
of outmost importance. Other possible applications are Coulomb or ion crystals (multi
body dynamics). The results and methods used are appropriate for the ion trap physics
community to compare regimes without having the details of the trap itself.
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Abbreviations

The following abbreviations are used in this manuscript:

3D 3 Dimensional

CM Centre of Mass

LIT Linear Ion Trap

QED  Quantum Electrodynamics

QIP Quantum Information Processing
QIT Quadrupole Ion Trap

RF Radiofrequency

SCCS  Strongly Coupled Coulomb Systems
SET Surface Electrode Trap

Appendix A. Interaction potential. Electric potential of the trap.

We denote ¢

5 = Qip1, (A1)

where Q; represents the electric charge of the ion labeled as 1. We assume the ions
possess equal electric charges Q1 = Q5. The trap electric potential ®; = Byx;%> + ...,
can be considered as harmonic to a good approximation for the system of interest. In
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case of a one-dimensional system of s particles (ions) or for a system with s degrees of
freedom, the potential energy is:

s kiz
u= 51 % Y obi(Gi—2)°, (A2)

i=1 1<i<j<s

where {; are the generalized coordinates and ; represent the generalized velocities. The
electric potential is considered as a general solution of the Laplace equation, built using
spherical harmonics functions with time dependent coefficients. By performing a series
expansion of the Coulomb potential in spherical coordinates we can write down

‘J_c'—f(‘ k=0

1 = [ pk/RkH1 4 &
R ) | TGO, ()

where Yl:q and Yj, stand for the spherical harmonic functions. We choose r = |¥| and

R = |X|. The expression labeled as («) in eq. (A3) corresponds to the case r < R,
while the expression labeled by () is valid when 7 > R. We expand in series around R
assuming a diluted medium. We infer the interaction potential as

1 QiQ;

- 4meg 1<i<j<s 7 =7

(A4)

int

Appendix B. Dynamical stability

As shown in Sec. 2.1, the expression of the autonomous Hamiltonian function
associated to the system of two ions is given by eq. 24, where r = \/p?>+22, A =
Hz/ Py, Yz = /2(g%> — a). In fact A and v represet the two control parameters chosen,
with A the ratio between the secular axial and radial frequencies of the trap. v denotes
the scaled axial (z) component of the angular momentum L,, while y, represents the
second (or axial) secular frequency [16]. By calculus we infer

2 P?-a 217
=4 v = Pt (A5)

and we discriminate among three cases [17]:

1. A= % and from eq. (A5) we infer

qu
a=—
a= L

3. A = 2. By an analogous procedure we have

a=0.
Appendix C. Quantum Stability
Using egs. 44 and 45 we obtain
0 1 1 2 L
Tﬁ:_ﬁailm_rﬂ (A6)
qyj |Pa — 7p] |Pa — 7pl|* 04y

We also have

[ —7g| = J i (%h - ’7/311)2 : (A7)

h=1
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Then 5
Ww‘m — 7l = [P — 7 " (q0j — dp7) Oy — Ip) (A8)
and 3 , ,
3y Fa—Fgl  [Fa—FgP? (d0j = q8j) (Ouy = Opy) - (A9)
By using eq. (47) the last term in eq. (51) can be expressed as
d
Cay _ QuQy 0 _ 1_’ - (A10)
aq,y/]'/ 47T£0 aq,,r/]'/ |7’D¢ — 7’7|
Moreover
BT Y 7 (qay = 97 ) (Oarr = Sy (A11)
Ay "7 a =Tyl "\ a = yj’ ) Cay’ = Oxy') -

Then, eq. (A10) can be cast into

Wy _ o QQyan o os
aqw/ = ~Nay (qa]/ - q’y]/) (51;(7/ — (577/), Nay = 471?80 3|1’p¢ - T’ry| , & # v - (A12)
We use

N
Y Gabuy = gy - (A13)
a=1
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