Preprint
Article

Deep Learning versus Spectral Techniques for Frequency Estimation of Single-Tones: Reduced Complexity for SDR and IoT Sensor Communications

Altmetrics

Downloads

222

Views

325

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

25 February 2021

Posted:

26 February 2021

You are already at the latest version

Alerts
Abstract
Despite the increasing role of machine learning in various fields, very few works considered artificial intelligence for frequency estimation (FE). This work presents a comprehensive analysis of deep-learning (DL) approach for frequency estimation of single-tones. It is shown that DL network with two layers having a few nodes can estimate frequency more accurately than well-known classical techniques. The study is comprehensive, filling gaps of existing works, where it analyzes error under different signal-to-noise ratios, numbers of nodes, and numbers of input samples; also, under missing SNR information. It is found that DL-based FE is not significantly affected by SNR bias or number of nodes. DL-based approach can work properly using minimal number of input nodes N at which classical methods fail. It is possible for DL to use as little as two layers with two or three nodes each, with complexity of O{N} versus O{Nlog2 (N)} for DFT-based FE, noting that less N is required for DL. Hence, DL can significantly reduce FE complexity, memory, cost, and power consumption, making DL-based FE attractive for resource-limited systems like some IoT sensor applications. Also, reduced complexity opens the door for hardware-efficient implementation using short word-length (SWL) or time-efficient software-defined radio (SDR) communications.
Keywords: 
Subject: Computer Science and Mathematics  -   Algebra and Number Theory
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated