Preprint
Article

Deep Neural Networks for Analysis of Microscopy Images - Synthetic Data Generation and Adaptive Sampling

Altmetrics

Downloads

191

Views

295

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

27 February 2021

Posted:

01 March 2021

You are already at the latest version

Alerts
Abstract
The analysis of microscopy images has always been an important yet time consuming process in in materials science. Convolutional Neural Networks (CNNs) have been very successfully used for a number of tasks, such as image segmentation. However, training a CNN requires a large amount of hand annotated data, which can be a problem for material science data. We present a procedure to generate synthetic data based on ad-hoc parametric data modelling for enhancing generalization of trained neural network models. Especially for situations where it is not possible to gather a lot of data, such an approach is beneficial and may enable to train a neural network reasonably. Furthermore, we show that targeted data generation by adaptively sampling the parameter space of the generative models gives superior results compared to generating random data points.
Keywords: 
Subject: Chemistry and Materials Science  -   Biomaterials
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated