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Abstract 

Along with climate change, the native forest replacement by exotic species, such as Eucalyptus 

globulus, is contributing to a highly fire-prone environment. Since E. globulus detains several 

post-fire regeneration strategies, sustainable practices are needed to manage eucalyptus stands. 

Thus, eucalyptus allelopathic potential can be used for weed control. Therefore, this study 

aimed at assessing the herbicidal potential of post-fire regenerated E. globulus leaves in 

Portulaca oleracea, and unraveling the main physiological processes disturbed by biocide 

application. For this, an aqueous extract prepared with fresh leaves (FLE; 617 gfresh weightL-1) and 

other with oven-dried leaves (DLE; 250 gdry weightL-1) were prepared and foliar-sprayed twice-a-

week at different dilutions in 7-days-old purslane plants. As positive control, glyphosate was 

used. After five weeks, results revealed that DLE at the highest dose detained the greatest 

herbicidal activity against P. oleracea. To understand how DLE impacted weed physiology, 

several biochemical and redox-related parameters were evaluated in purslane plants treated with 
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DLE highest dose. Results suggested an overproduction of hydrogen peroxide, causing severe 

oxidative damage in roots. Overall, this study showed that young E. globulus dried leaves had 

powerful herbicidal properties against P. oleracea and can represent a feasible approach for 

weed management, while reducing fire hazard. 

Keywords: sustainable agriculture; allelopathy; biocidal potential; phytotoxic effects; weed 

management. 

 
1Abbreviations 

 

1. INTRODUCTION 

Weeds are the main responsible for crop yield and quality losses, since both weeds and crops, 

compete for the same resources, such as light, water, minerals, and even space (Dadkhah and 

Asaadi, 2010). For this reason, modern agriculture is highly dependent on the use of synthetic 

herbicides, which can cost up to US$7 billion annually (Baucom, 2019). However, although 

these products are effective in eliminating weeds and avoiding major economic losses, their 

continued application has resulted in herbicide resistance acquisition by weed species (Baucom, 

2019) and, also, in the contamination of several environmental matrices, such as air, soil and 

water (Geetha, 2019; Hernandez et al., 2013; Shahena et al., 2020), where they can negatively 

affect non-target organisms, including crops (Aktar et al., 2009; Soares et al., 2019b). In this 

way, new, eco-friendly, and economic solutions to combat weeds need to be urgently found. 

Some plants have the ability to release compounds with a powerful biological activity 

into the environment, the allelochemicals, which prevent the growth and development of 

neighbouring plants (allelopathy) (Reigosa et al., 2000). This is the case of Eucalyptus globulus 

Labill. subsp. globulus, usually referred to as common eucalyptus or tasmanian blue gum, a 

hardwood tree native from southeast Australia, now widely distributed throughout the world 

 
1 Abbreviations: AOX- antioxidant; CTL- control; DLE- dried leaf extract; DW- dry weight; FLE- fresh leaf extract; 

FW- fresh weight; GLY- glyphosate; IAS- invasive alien species; LP- lipid peroxidation; MDA- malondialdehyde; 

OECD- Organisation for Economic Co-operation and Development; ROS- reactive oxygen species; SD- standard 

deviation. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 9 March 2021                   doi:10.20944/preprints202103.0047.v2

https://doi.org/10.20944/preprints202103.0047.v2


mainly due to its favourable wood characteristics for the paper industries (Águas et al., 2014). 

Although flowers, fruits, bark, and roots have allelochemicals in their composition, the 

recognised E. globulus allelopathic activity is mainly attributed to its leaves (Morsi and 

Abdelmigid, 2016). In fact, extracts prepared from leaves have been proven to be more effective 

in allelopathic inhibition than other organs (Morsi and Abdelmigid, 2016). Therefore, the 

allelopathic properties of E. globulus leaves can be used in a targeted way to suppress the 

growth of undesirable plant species, such as weeds (Puig et al., 2018). 

Thus far, multiple studies were performed aiming at finding effective synthetic herbicide 

alternatives, taking advantage of the allelopathic properties of eucalyptus leaves (Aragão et al., 

2015; El-Ghit and Hanan, 2016; Jaime and Ferrer, 2018). Most of these studies evaluated the 

herbicidal potential of concentrated essential oils from Eucalyptus species (Jaime and Ferrer, 

2018; Rassaeifar et al., 2013). However, leaf essential oils are obtained mainly by 

hydrodistillation procedures, which require expensive and specialized equipment (Dilworth et 

al., 2017), making them dependent of industrial transformation. As so, aqueous extracts 

prepared with eucalyptus leaves can constitute affordable alternatives, allowing the obtention of 

not only essential oils but also polyphenolic compounds from the leaves, while ensuring 

easiness and reproducibility of the procedure. Nonetheless, there are still some gaps regarding 

the use of eucalyptus-based products as biocides. 

Up to now, most of the works used extracts from Eucalyptus citriodora (Aragão et al., 

2015; Benchaa et al., 2018; Chaturvedi et al., 2012; El-Rokiek and Eid, 2009) and Eucalyptus 

camaldulensis (Chaturvedi et al., 2012; Dadkhah, 2013; Verdeguer Sancho et al., 2018). 

Nevertheless, due to the favourable properties of its wood for the pulpwood industries, E. 

globulus is the most recurrent exotic species in several countries, such as Portugal (Águas et al., 

2014). In this sense, the biocidal properties of this species have recently attracted more 

attention, with few studies evaluating the potential of concentrated essential oils (Jaime and 

Ferrer, 2018; Rassaeifar et al., 2013), leachates (Babu and Kandasamy, 1997; Padhy et al., 

2000), and aqueous extracts (Ataollahi et al., 2014; Dejam et al., 2014; Morsi and Abdelmigid, 

2016; Puig et al., 2018). However, concerning aqueous extracts, most of the studies conducted 
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so far evaluated the biocidal potential of E. globulus extracts in a pre-emergence context, 

concluding that they are capable of effectively impairing seed germination and seedling growth 

of Solanum nigrum L. (Ataollahi et al., 2014), Solanum melongena L. (Dejam et al., 2014), and 

Hordeum vulgare L. (Morsi and Abdelmigid, 2016), leaving much to clarify about the post-

emergent biocidal properties of E. globulus aqueous extracts. 

In addition, although some studies omit the age of the eucalyptus leaves utilized, only the 

mature leaves, collected from adult E. globulus trees, were used to prepare the aqueous extracts 

or leachates tested until now (Babu and Kandasamy, 1997; Bagavathy and Xavier, 2007; Puig et 

al., 2018). Thereby, the herbicidal potential of aqueous extracts prepared with young eucalyptus 

leaves constitutes a gap in knowledge and needs further investigation. 

Due to their smaller heights, young eucalyptus trees or young resprouts tend to be more 

susceptible to herbivory than mature trees and, for this reason, leaves from young trees tend to 

have higher amounts of defensive specialized metabolites than those of adult trees (O’Reilly-

Wapstra et al., 2007). The distinctive morphology between young and adult E. globulus leaves 

also points out to possible differences in their chemical composition: while leaves from young 

trees are blue-grey and have a thin and broad shape, mature leaves are typically dark green, 

thick and narrow (James and Bell, 2001). 

Furthermore, the use of the leaf biomass from young eucalyptus trees, instead of mature 

ones, for the preparation of the biocides may represent a sustainable approach to control 

eucalyptus populations, outside plantations. Due to their fire-adaptation traits, when affected by 

a wildfire, E. globulus trees have a great ability to produce new shoots and thus, lead to the 

reestablishment of a vast leaf area, mainly by the resprouting from dormant buds located in 

aboveground parts of the trees, such as leaf axils, branches, and boles, or in the subterranean 

lignotubers or root collars (Burrows, 2002, 2013; Catry et al., 2013). This reproduction strategy 

contributes to a rapid dispersion of the species even over areas previously occupied by native 

trees (Catry et al., 2013), hampering post-fire management efforts in the urban-rural interface. 

As E. globulus is the most abundant species in multiple countries, outside its native geographic 

range, its elimination or replacement with native and less fire-prone species is very difficult due 
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to several political, economic, and ecological factors. Thereby, adding value to the leaf biomass 

of post-fire regenerated eucalyptus trees represents a way of controlling the dispersion of this 

exotic species, preventing the reestablishment of non-managed Eucalyptus stands, which, in 

turn, contributes to a better land-use planning. In fact, biological actions to eradicate, control or 

contain a population of certain invasive alien species (IAS) are included in the Article 19 from 

the European Union (EU) 1143/2014 for the management of widely spread IAS 

(http://data.europa.eu/eli/reg/2014/1143/oj). 

With this in mind, this study aims to evaluate the post-emergent herbicidal potential of 

the leaves of young E. globulus trees that spontaneously resprout after a wildfire, in a common 

weed species, Portulaca oleracea L. (purslane) and to compare its effectiveness with synthetic 

herbicides, as well as to ascertain which biomolecules and cellular weed processes are affected 

by the biocide, in order to get an insight of its possible mode-of-action. Through the 

combination of physiological, histochemical and biochemical approaches, it was possible to 

conclude that, when dried, the leaves from post-fire regenerated E. globulus trees had the 

greatest herbicidal activity against purslane plants, mainly by inducing severe redox imbalances 

in their root system, which the antioxidant machinery was not able to overcome. 

 

2. MATERIALS AND METHODS 

2.1. Preparation of the aqueous extracts 

Foliage from young E. globulus trees, recently regenerated after a wildfire, were collected in 

December 2019 in a forest area of Porto, Portugal (41.197288, -8.534506) burnt in the summer 

of 2019, according to locals. After manually detaching the leaves from the stems, a portion of 

the fresh leaves was oven-dried at 60 ºC until reaching a constant weight. Then, fresh and dried 

leaves were reduced to small fragments, in order to promote the release of the allelochemicals, 

and underwent an extraction in deionised water at 70 ºC, for 30 min, with regular agitation. The 

two obtained solutions were centrifuged twice (-4 ºC, 15 000 g), during 25 and 15 min, 

respectively. The final concentration of the aqueous extracts corresponded to the maximum 
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volume of leaves that could be fully submersed in 1 L of deionised water. Considering the 

moisture content of fresh leaves [59 ± 0.6 % (w/w)], two biocides were obtained: one was 

prepared with dried leaves for a final concentration, in a dry weight (dw) basis, of 250 gdw L-1 

and the other was made with fresh leaves at a final concentration, in a fresh weight (fw) basis, of 

617 gfw L-1. Lastly, both aqueous extracts were filtered through nitrocellulose filters with 1.2 μm 

and stored at -80 ºC until use. In order to functionally characterize the obtained extracts, an 

exhaustive analysis of their phytochemical profile was obtained by gas chromatography with 

mass spectrometry detection (GC-MS) and high performance liquid chromatography with 

UV/Vis and tandem mass spectrometry detections (HPLC-UV/Vis-MS/MS) to identify volatile 

and polyphenolic compounds. Details on the obtained results can be found elsewhere (Pinto, 

2020). No major differences were recorded between both extracts, but those prepared with dried 

leaves presented a much larger diversity of ellagitannins and greater amounts of galloyltannins, 

two groups of hydrolysable tannins with known allelopathic activities (Pinto, 2020; Pinto et al., 

in prep). 

 

2.2. Preparation of the artificial soil  

The substrate used in all experiments consisted in a standard artificial soil, manually prepared 

according to the guidelines of the Organisation for Economic Co-operation and Development 

(OECD) (OECD, 2006), composed of 70% (w/w) sand, 20% (w/w) kaolin, and 10% (w/w) peat 

[pH (KCl) 6.0 ± 0.5].  

 

2.3.  Test-species and growth conditions 

Portulaca oleracea L. seeds were purchased from a local supplier and used as model weed 

species. Seeds were surface disinfected with 70% (v/v) ethanol for 10 min, followed by 20% 

(v/v) commercial bleach (5% active chlorine) for 10 min, and a series of successive washes in 

deionised water. Before sowing, visually damaged purslane seeds were discarded. The 

experiments were performed in plastic pots containing 150 gdw of the artificial soil. In order to 
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ensure the maintenance of soil moisture, a cup with deionised water was placed under each pot. 

At the beginning of the assays, the cups were filled with 100 mL of Hoagland solution (HS) 

(Taiz et al., 2015), instead of deionised water, to guarantee nutrient availability. The 

communication between each plastic pot and the cup HS/deionised water was performed by a 

cotton rope inserted in a hole at the bottom of the pots. All experimental assays were performed 

in a growth chamber with controlled conditions [temperature: 25 ºC; photoperiod: 16 h/8 h 

light/dark; photosynthetically active radiation (PAR): 120 μmol m-2 s-1]. 

 

2.4.  Evaluation of the biocidal potential of the aqueous extracts in purslane plants - 

optimization of the most effective dose and extract (FLE or DLE)  

To test the post-emergent herbicidal potential of the two aqueous extracts, as well as to 

determine the most effective formulation [fresh leaf extract (FLE) or dried leaf extract (DLE)] 

and concentration , FLE and DLE were foliar-applied (20 sprays each, corresponding to 15 mL 

of extract per pot), twice-a-week, at different concentrations [12.5, 25, 50, 75 and 100 % (v/v)], 

in 7-days-old purslane seedlings grown in OECD soil. The seedlings of the control (CTL) were 

sprayed, at the same rate, with deionised water. Glyphosate [RoundUpTM UltraMax; 360 g L-1 

glyphosate (GLY) as potassium salt] was used as a positive CTL to achieve a fair comparison 

between the biocides and commercially available options. Based on the manufacturer’s 

recommendations, a single application equivalent to 10 L ha-1 was performed. Considering the 

area of the plastic pots (0.011 m2), this application rate corresponded to 3.96 mg of GLY per 

pot/replicate. To ensure that the 15 mL of the pulverization carried the adequate amount of the 

active ingredient (4 mg), a solution 0.267 g L-1 of GLY was prepared. For each treatment, 4 

experimental replicates were used, each one with 20 purslane seeds sown. The percentage of 

viable plants, as well as their growth and macroscopic phytotoxicity symptoms were weekly 

monitored throughout the assay. Upon 5 weeks of treatments, plants were collected, separated 

into shoots and roots, and used for the estimation of biometric parameters (shoot and root 

biometry and fresh biomass), and for histochemical assays. 

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 9 March 2021                   doi:10.20944/preprints202103.0047.v2

https://doi.org/10.20944/preprints202103.0047.v2


2.4.1. Biometric evaluation 

At the end the assay, and upon the subsequent separation of shoots from roots, the length and 

fresh weight of both organs were measured. The shoot length of purslane plants was measured 

from the shoot apex to the shoot-root transition. Regarding shoot and root length, each plant 

from each replicate was individually measured, while shoot and root fresh biomass was 

obtained by measuring together all the individuals from each replicate. To eliminate the 

interference of individuals’ number, the shoot and root weight from each replicate was divided 

by the number of individuals of each replicate at the end of the assay. 

 

2.4.2. Histochemical detection of cell death  

The cellular viability was assessed based on the protocol of Romero‐Puertas et al. (2004). For 

this purpose, purslane shoots (one per replicate) were immersed in a solution of 0.25% (w/v) 

Evans Blue for 5 h. Then, the plant material was transferred to boiling 96% (v/v) ethanol in 

order to remove the photosynthetic pigments. The appearance of blueish spots on leaf surface is 

indicative of unviable cells (cell death). The results were photographically recorded. 

 

2.5.  Assessment of the phytotoxicity induced by the application of the optimized aqueous 

extract in purslane plants 

To understand the physiological processes affected by the aqueous extract application, 7-days-

old purslane seedlings, grown in OECD soil, were foliar sprayed with DLE at 75% (v/v) and 

100% (v/v) – the two most effective concentrations of the best biocide formulation. The CTL 

seedlings were sprayed with deionised water. For each treatment, 8 experimental replicates were 

considered. Five weeks upon the beginning of the treatments, purslane plants were collected, 

separated into roots and shoots, frozen in liquid nitrogen and stored at -80 ºC for further 

quantification of the levels of lipid peroxidation and H2O2 and of several biomolecules (sugars, 

proteins, amino acids, and photosynthetic pigments) as well as the activity of nitrogen 

metabolism-related enzymes (nitrate reductase and glutamine synthetase). For each 
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determination, samples from, at least, three experimental replicates from each experimental 

group [CTL, DLE at 75% (v/v) and 100% (v/v)] were used. 

 

2.5.1. Lipid peroxidation (LP) 

The spectrophotometric quantification of LP was performed by the quantification of 

malondialdehyde (MDA) levels, using samples of plant material homogenized in 0.1% (w/v) 

trichloroacetic acid (TCA) (Heath and Packer, 1968). After reading the absorbance (Abs) at 532 

and 600 nm (unspecific turbidity) and considering an extinction coefficient of 155 mM cm-1, 

MDA levels were calculated, and the results expressed in nmol g-1 fw. 

 

2.5.2. Hydrogen peroxide (H2O2) 

The determination of H2O2 levels was carried out based on the protocol of Alexieva et al. 

(2001), by following a spectrophotometric method in which H2O2 reacts with potassium iodide 

(KI; 1 M) for 1 h. After recording the Abs at 390 nm, the results were expressed as pmol g-1 fw, 

considering an extinction coefficient of 0.28 μM-1 cm-1. 

 

2.5.3. Total sugars, proteins, free amino acids, and proline 

The levels of total sugars were quantified according to the anthrone-based method of Irigoyen et 

al. (1992), using frozen samples of shoots and roots. Upon reaction between the extract and 

anthrone at high temperature conditions (100 ºC; 10 min), the Abs of each sample was 

registered at 625 nm. Sugar levels were calculated by linear regression, using a curve prepared 

with glucose standards, and results were expressed in μg g-1 fw. The content of total soluble 

proteins was quantified according to the method of Bradford (1976), using frozen plant aliquots. 

The protein levels were expressed in mg g-1 fw and were calculated through a calibration curve, 

obtained by using different known bovine serum albumin concentrations. The levels of total free 

amino acids were quantified based on a ninhydrin-based protocol, as described by Lee and 

Takahashi (1966). A calibration curve with solutions of known concentration of cysteine was 
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prepared. The results were expressed in μg g-1 fw. The quantification of proline was based on 

the spectrophotometric quantification of toluene-proline complex at 520 nm, following the 

method described by Bates et al. (1973), using ninhydrin. The proline content was expressed as 

μg g-1 fw, after calculating its levels through linear regression with standards of proline. 

 

2.5.4. Photosynthetic pigments 

The quantification of total chlorophylls and carotenoids was performed based on Lichtenthaler 

(1987), using frozen shoot samples homogenized in 80% (v/v) acetone and quartz sand. The 

concentration of chlorophyll a (Chl a), chlorophyll b (Chl b), and carotenoids (Car) were 

calculated according to Lichtenthaler (1987) formulas and expressed in a fw basis. 

 

2.5.5. Quantification of nitrogen metabolism-related enzymes 

2.5.5.1. Nitrate reductase (NR; EC 1.6.6.1) 

NR extraction from frozen plant samples was carried out on ice in 50 mM HEPES-KOH buffer 

(pH 7.8) with 1 mM phenylmethylsulfonyl fluoride (PMSF), 10 mM magnesium chloride 

(MgCl2), and 2% (w/v) polyvinylpolypyrrolidone (PVPP), following the protocol of Kaiser and 

Brendle-Behnisch (1991). After a 25 min centrifugation at 4 ºC and 15 000 g, the supernatant 

(SN) was used for the quantification of proteins (as described in 2.5.3.) and NR activity. The 

quantification of NR activity was accomplished by monitoring the degradation of NADH and 

results were expressed as mmol min-1 mg-1 of protein, using the extinction coefficient of NADH 

(6.22 mM-1 cm-1). 

 

2.5.5.2. Glutamine synthetase (GS; EC 6.3.1.2) 

GS extraction and activity were done following the method of Shapiro and Stadtman (1970) by 

homogenizing the frozen plant material in an extraction buffer containing 25 mM Tris-HCl (pH 

6.4), 10 mM MgCl2, 1 mM dithiothreitol (DTT), 10% (v/v) glycerol, 0.05% (w/v) Triton-X, and 

1% (w/v) PVPP. After centrifugation (20 min; 15 000 g; 4 ºC), the SNs were used to determine 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 9 March 2021                   doi:10.20944/preprints202103.0047.v2

https://doi.org/10.20944/preprints202103.0047.v2


the protein content (as described in 2.5.3.) and GS activity. The activity of GS was evaluated by 

the transferase assay and was expressed as nkat mg-1 of protein. 

 

2.6. Statistics 

Every experimental condition comprised, at least, three replicates (n ≥ 3) and all results were 

expressed as mean  standard deviation (SD). In order to test for significant differences between 

treatments, a one-way analysis of variance (ANOVA) was performed, followed by Dunnett’s 

post-hoc test, whenever p ≤ 0.05. The statistical analysis was carried out using GraphPad 

Prism 7.0 software. 

In order to test differences through time in the percentage of viable plants, a repeated-

measures ANOVA was performed, defining the factors “within subjects” and “between 

subjects” as “weeks” and “concentration of the aqueous extract”. Whenever significant 

differences were found (p ≤ 0.05), by assuming the correction of Greenhouse-Geisser, a one-

way ANOVA, followed by Dunnett’s post-hoc test, was performed for each factor. This 

procedure was conducted in SPSS Statistics 22 (IBM SPSS®). 

 

3. RESULTS 

3.1. Evaluation of the biocidal potential of the aqueous extracts in purslane plants - 

optimization of the most effective dose and extract (FLE or DLE) 

The two aqueous extracts – FLE and DLE - were foliar-applied, individually and in increasing 

concentrations to seedlings of P. oleracea, in order to determine the most effective type of 

extract and the corresponding concentration. GLY was used as a positive CTL. After five weeks 

of treatments, the percentage of viable plants, macroscopic phytotoxicity symptoms, growth-

related parameters, and cell death were analysed.  
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3.1.1. Percentage of viable plants over time 

The percentage of viable plants was weekly monitored during the five weeks of treatments with 

FLE (Figure 1a) or DLE (Figure 1b) (Table S1, Table S2 and Table S3). Concerning FLE, the 

percentage of viable plants suffered a slight reduction of about 17% in the last week of the 

experiment, when the plants were treated with FLE at 100% (v/v), compared to the CTL (Figure 

1a). Regarding DLE, a decrease in the percentage of viable plants treated with the highest 

concentration was observed from the third week until the end of the assay, following the same 

trend of GLY, although not so evident (Figure 1b). In the last week of the assay, a reduction of 

35% in the percentage of viable plants was recorded for the treatment to which DLE at 100% 

(v/v) was applied to purslane plants, in comparison to the CTL plants. For the same week, the 

single application of GLY induced a 75% decrease in this parameter, compared to the CTL. 

 

Please insert Figure 1 here 

 

3.1.2. Macroscopic phytotoxicity symptoms, biometric parameters and biomass 

production 

As shown in Figure 2, the inhibitory effects were more pronounced with the application of DLE, 

especially at 100% (v/v), which, in turn, were similar to those caused by GLY (positive CTL). 

Furthermore, the plants treated with the highest concentration of DLE, only developed one new 

leaf pair, with a lower leaf area, and a wilting appearance. Additionally, the application of FLE 

and DLE at any of the tested concentrations induced leaf chlorosis. 

 

Please insert Figure 2 here 

 

Both aqueous extracts affected the growth of purslane plants, inducing different effects 

depending on the applied concentration (Figure 2 and Table 1). The foliar spraying with low 

doses [12.5, 25 and 50% (v/v)] of FLE enhanced shoot elongation by about 15%, 20% and 29%, 

respectively, compared to the CTL. At higher concentrations [75 and 100% (v/v)], the shoot 
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length was only affected (decreased ca. 26%) when the extract at 100% (v/v) was applied. 

Likewise, the shoot biomass followed a similar trend: FLE at 25% (v/v) and 50% (v/v) induced 

an increase of 34% and 58%, respectively, while a reduction by about 32% was measured with 

the application of FLE at 100% (v/v) (Table 1). When it comes to roots, while the length was 

not significantly altered by the application of FLE at any of the tested concentrations, the fresh 

weight was significantly enhanced when P. oleracea plants were treated with FLE at 50% (v/v) 

and 75% (v/v), increasing 39% and 43%, respectively, and was impaired with the application of 

this extract at 100% (v/v), decreasing 31% (Table 1). 

Regarding the treatment with DLE, the shoot length was enhanced by about 22% with the 

application of the extract at 50% (v/v) and was impaired, approximately by 17% and 36%, when 

the DLE was applied at 75% (v/v) and 100% (v/v), respectively (Table 1). With respect to the 

biomass of the aerial part, a significant reduction (ca. 52%) in response to DLE was found with 

the application of the extract at 75% (v/v), decreasing more than 70% with the spraying of the 

extract at 100% (v/v), compared to CTL (Table 1). This reduction in shoot biomass induced by 

the application of DLE at 100% (v/v) was comparable to the one obtained with the application 

of GLY, which reduced purslane plants’ biomass in about 88% compared to the CTL (Table 1). 

In what concerns root length, DLE severely affected this endpoint, when it was applied at the 

two highest concentrations [75% (v/v) - decrease of 50%; 100% (v/v) - decrease of 65%, 

comparing to the CTL] (Table 1). Regarding root biomass, the foliar spraying of purslane plants 

with DLE at 75% (v/v) and 100% (v/v) caused a decrease in root biomass by 56% in both 

situations, in comparison to the CTL. The maximum inhibition rates for all evaluated endpoints 

(root length and biomass) were recorded for GLY-treated plants (Table 1). The statistical results 

of ANOVA analyses for shoot and root length and biomass are presented in Table S3. 

 

Please insert Table 1 here 
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3.1.3. Cell viability 

The histochemical detection of cell viability of P. oleracea plants treated with different 

concentrations of FLE and DLE, as well as with GLY, is represented in Figure 3 and Figure 4. 

In general, and compared to CTL, FLE only induced cell death when sprayed at 100% (v/v), 

where a pattern of cell death similar to the one obtained with GLY was found (Figure 3). In 

contrast, the application of DLE decreased cell viability in all tested concentrations, in a dose-

dependent manner, with the highest concentration showing a similar cell death pattern to that of 

GLY (Figure 4). 

 

Please insert Figure 3 here 

Please insert Figure 4 here 

 

3.2. Assessment of the phytotoxicity induced by the application of the optimized aqueous 

extract on purslane plants 

3.2.1. Redox status 

As can be seen in Table 2, MDA levels in purslane shoots were not significantly altered when 

the two concentrations [75 and 100% (v/v)] of DLE were applied. In contrast, the content of 

MDA considerably increased, approximately by 89%, in the roots of plants treated with the 

highest concentration of the eucalyptus extract (Table 2), compared to the untreated situation.  

Concerning H2O2, the levels of this reactive oxygen species (ROS) suffered a 3- and 5-

fold increase with the spraying of the highest concentration [100% (v/v)] of DLE in shoots and 

roots, respectively, compared to CTL (Table 2). The ANOVA statistical results of MDA and 

H2O2 levels are denoted in Table S4. 

 

Please insert Table 2 here 
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3.2.2. Total sugars, proteins, free amino acids and proline content 

Regarding the total sugar levels, the treatment with the highest concentration of DLE increased 

this parameter by 3 times in the shoots and roots of purslane plants, compared to the CTL 

situation (Table 2 and Table S4). 

Total soluble protein levels were substantially increased (about 89%) in the aerial part of 

purslane plants, with the application of DLE at 100% (v/v) (Table 2 and Table S4). In contrast, 

in the roots, the same concentration of DLE considerably decreased this parameter by about 

50%, in relation to the CTL situation (Table 2 and Table S4).  

As can be seen in Table 2 and Table S4, total free amino acid levels in P. oleracea shoots 

were reduced (26% over the CTL) only when the 75% (v/v) DLE was sprayed. Regarding the 

roots, the application of the highest concentration of the extract significantly increased, by 

approximately 59%, the levels of total free amino acids (Table 2 and Table S4). With regard to 

proline levels, there was a significant increase of about 37% in the shoots of purslane plants 

treated with DLE at the highest concentration, compared to the CTL situation (Table 2 and 

Table S4).  

 

3.2.3. Levels of photosynthetic pigments 

As shown in Table 2, total chlorophylls (a and b) were significantly impaired with the foliar 

spraying of the extract at 75% (v/v), decreasing the levels of these pigments by about 28%, 

compared to the untreated situation (Table S4). However, while the treatment with the highest 

concentration of DLE did not alter total chlorophyll levels, carotenoid production increased 

19% when this dose was applied to purslane plants, compared to CTL (Table 2 and Table S4). 

 

3.2.4. Nitrogen (N) metabolism 

The impact of DLE application on N nutrition of purslane plants was evaluated through the 

quantification of two enzymes belonging to N metabolism, NR and GS, in the aerial part and in 

the roots of P. oleracea plants. As shown in Table 2 and Table S4, NR activity significantly 
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increased in the shoots of purslane plants treated with 75% (v/v) DLE, with an increase of 58% 

over the CTL, while in the roots, the NR activity did not change with the treatments (Table 2). 

With regard to GS, the results revealed that although the activity of this enzyme was not altered 

in the aerial part of the plants (Table 2 and Table S4), this enzyme was positively affected 

(67%) in the roots by the highest applied concentration of DLE, in relation to the CTL situation 

(Table 2 and Table S4). 

 

4. DISCUSSION 

The herbicidal potential of E. globulus leaf extracts has been explored by some authors 

(Ataollahi et al., 2014; Babu and Kandasamy, 1997; Dejam et al., 2014; Morsi and Abdelmigid, 

2016; Padhy et al., 2000; Puig et al., 2018). However, most of these studies focused on the pre-

emergent activity of E. globulus extracts, evaluating their effects only on seed germination and 

seedling growth. From all these studies, only Puig et al. (2018) evaluated the biocidal potential 

of an aqueous extract prepared with fresh leaves in a post-emergent context. In that study, the 

authors used leaves from mature trees to prepare the extract and concluded that it possessed a 

biocidal action when daily-applied, by foliar spraying or watering, for 3 weeks on Lactuca 

sativa L., an agronomically relevant species. In this sense, in the present study, the biocidal 

activity of the extracts prepared with the leaves obtained from young E. globulus trees was 

evaluated in a post-emergent context by foliar spraying, twice a week, 7-days-old purslane 

seedlings with several dilutions of FLE (617 gfw L-1) and DLE (250 gdw L-1).  

 

4.1. DLE shows a high biocidal potential, impairing weed growth and compromising cell 

viability 

The application of FLE at low concentrations, especially at 50% (v/v), presented curious 

fertilizing properties, enhancing plant growth, namely shoot elongation and biomass production. 

As expected, the treatment with 50% (v/v) FLE did not alter the percentage of viable plants over 

the five weeks of the experiment, and did not induce an increase of cell death in purslane plants. 
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Altogether, these results show that, at least up to 50% (v/v), the FLE did not have toxic effects 

on purslane plants. In fact, the allelopathic activity of eucalyptus leaves against other plants is 

only effective when the allelochemicals are present at certain concentrations (Dahiya et al., 

2017), which were not achieved with the use of the diluted formulation. 

Nevertheless, at higher concentrations [75 and 100% (v/v)], FLE has been shown to 

negatively affect plant growth and leaf area. Particularly when applied at its maximum dose 

(617 gfw L-1), FLE significantly reduced the shoot length and the fresh weight of both shoots and 

roots. In addition, although the application of FLE at the highest concentration has only induced 

a significant reduction in the percentage of viable plants after 5 weeks, purslane plants treated 

with this concentration presented a pattern of cell death very similar to that obtained for 

treatment with GLY, the most widely used chemical herbicide in a post-emergence context 

(Duke and Powles, 2008). Altogether these results evidence that the FLE at 100% (v/v) had an 

effective herbicidal activity on purslane plants, although with a slower action than the synthetic 

herbicide. 

Regarding DLE, when applied at concentrations up to 50% (v/v), it did not induce 

relevant alterations in P. oleracea plants, as the FLE at the same percentages. Indeed, even 

though a significant increase in the shoot length was verified with the treatment of DLE at 50% 

(v/v), all the other endpoints remained unchanged. This may be due to the drying process of the 

leaves, which, on the one hand, may have induced the loss of volatile compounds and, on the 

other, may have caused the accumulation of greater amounts of compounds with allelopathic 

properties, such as hydrolysable tannins (Salminen, 2003).  

In opposition, the treatment of purslane plants with the highest concentrations of DLE [75 

and 100% (v/v)] caused a great reduction in most of the tested parameters, which evidences that 

DLE, at these concentrations, detained a strong and effective biocidal activity. As a matter of 

fact, the treatment with DLE at 75% (v/v) and 100% (v/v) markedly compromised cell viability 

in purslane leaves. Nevertheless, DLE at 100% (v/v) was the only one capable of effectively 

reducing the percentage of viable plants in the time frame of the experiment. Moreover, this 

concentration exhibited greater inhibitory effects on most of the growth-related parameters, 
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generally affecting the root system more than the aerial part of purslane plants, as will be 

discussed later. Accordingly, the treatment with DLE at 100% (v/v) severely impaired the 

growth of P. oleracea plants, compared to FLE at its maximum concentration. 

Despite the observed differences between FLE and DLE, the application of both 

eucalyptus-based herbicides induced leaf chlorosis. The explanation for this observation may 

reside in the mode-of-action of these biocides. Plant-based herbicides, like eucalyptus extracts, 

can affect weed growth by disrupting nutrient uptake, photosynthetic process, and membrane 

permeability (Radhakrishnan et al., 2018). Briefly, the allelochemicals present in plant 

herbicides can alter the structure and function of cell membranes, decreasing the absorption of 

macro and micronutrients, such as magnesium (Mg), potassium (K), and iron (Fe) 

(Radhakrishnan et al., 2018). Therefore, the observed chlorosis in purslane leaves treated with 

FLE and DLE may result in the reduction of Mg, K, and Fe intracellular levels, whose presence 

is essential for the normal function of chloroplasts (Taiz et al., 2015). In fact, while Mg is 

present at the active centre of the chlorophyll molecule, Fe composes many cytochromes and 

nonheme iron proteins involved in the photosynthetic metabolism, and K is crucial for 

maintaining cell electroneutrality and participates in a series of photosynthetic reactions (Taiz et 

al., 2015). Accordingly, a reduction in the levels of total chlorophylls was detected in the plants 

treated with DLE at 75% (v/v). Although not statistically significant, probably due to the large 

decrease in the percentage of viable plants, the content of chlorophylls a and b in plants treated 

with the most effective concentration of DLE, presented a downward trend. Indeed, an 

analogous study in which an aqueous extract prepared with fresh E. globulus leaves was applied 

to lettuce plants reported that the application of the extract induced a reduction in the total 

chlorophyll content that was accompanied by a decline in chlorophyll a fluorescence (Puig et 

al., 2018). These results allowed the authors to conclude that the light-independent reactions of 

photosynthesis were directly affected by the application of the extract (Puig et al., 2018). 

Moreover, besides chlorosis, DLE at 100% (v/v) caused foliar wilting, a symptom 

exclusively found in this treatment. This macroscopic symptom is usually associated to a loss of 

membrane integrity (Radhakrishnan et al., 2018). Indeed, a study conducted with the purpose of 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 9 March 2021                   doi:10.20944/preprints202103.0047.v2

https://doi.org/10.20944/preprints202103.0047.v2


assessing the herbicidal potential of E. citriodora oil on Phalaris minor Retz. reported the 

occurrence of wilting and chlorotic leaves in the treated plants, which was the result of a high 

degree of ion leakage induced by the biocide application, causing the loss of membrane 

permeability and integrity (Batish et al., 2007). In accordance, the intracellular H2O2 levels were 

greatly increased in the shoots of the purslane plants treated with the highest concentration of 

DLE, as will be discussed later. 

Overall, the herbicidal activity shown by DLE at 100% (v/v) was comparable to that of 

GLY although with an apparently slower action, but much faster and effective than that of FLE. 

In fact, the time lag to have an effect from DLE and FLE applications may depend mainly on 

the time needed to reach an effective dose, with the successive applications, rather than on the 

mode-of-action of the bioherbicides. Indeed, the reduction of the growth-related parameters and 

the pattern of cell death of the plants treated with DLE at 100% (v/v) were identical to the ones 

obtained when the synthetic herbicide was applied. In addition, the onset of the herbicidal 

effects of DLE was registered with only one week apart from that of GLY, as demonstrated by 

the results of the percentage of viable plants over the 5 weeks. Thus, from all the tested extracts 

and concentrations, it was possible to conclude that the DLE at 100% (v/v) had the greatest 

herbicidal activity against P. oleracea plants. 

 

4.2.  The biocidal potential of DLE is linked to an overproduction of H2O2, followed by a 

general deregulation of different cellular biomarkers 

To be effective, herbicides must interfere with some weed physiological processes, disturbing 

certain cellular/metabolic processes, or inhibiting the biosynthesis of cellular/molecular 

components by blocking a specific step of a metabolic pathway (Sherwani et al., 2015). 

Consequently, irreparable damages and tissue injuries are induced in weeds, ultimately leading 

to cell death and thus, their elimination (Sherwani et al., 2015). With the purpose of identifying 

some of the physiological mechanisms potentially hindered by the application of DLE in 
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purslane plants, several endpoints related with many aspects of plant physiology were analysed 

in the weeds treated with the two most effective concentrations of DLE [75 and 100% (v/v)]. 

The induction of oxidative stress seems to be one of the commonest key factors behind 

herbicide-induced metabolic impairments (Caverzan et al., 2019). Often, an overproduction of 

ROS takes place, followed by the occurrence of oxidative damage, translated into the oxidation 

of the main biomolecules, from lipids and sugars, to proteins and nucleic acids (Kaur, 2019). 

Thus, the first step onto dissecting the effects of DLE in weed physiology was the evaluation of 

the redox homeostasis in both shoots and roots of the treated plants. The obtained results 

showed different responses for the shoots and roots of purslane plants exposed to the DLE 

treatment. In the shoots, the application of DLE at 100% (v/v) significantly increased the cell 

H2O2 levels. In fact, ROS overproduction generally occurs in response to adverse conditions, 

further leading to oxidative stress, when the antioxidant (AOX) system is inhibited and/or 

unable to eliminate the ROS in excess (Soares et al., 2019a). In this sense, the levels of MDA, a 

molecule resulting from the peroxidation of membrane lipids (Heath and Packer, 1968), which 

is commonly used as an indicator of oxidative stress occurrence, were also quantified. 

Unexpectedly, and contrasting to the ROS levels, the shoot MDA content was not altered in any 

treatment. Although it may seem a little surprising, this can be the result of the registered 

increase in the levels of proline and carotenoids in this plant organ. Indeed, besides their 

functions as osmoprotectant and accessory photosynthetic pigment, respectively, the ability of 

these AOX to scavenge ROS and to stabilize biological membranes is becoming widely 

recognized, being now considered as potent inhibitors of LP (Gill and Tuteja, 2010; Szabados 

and Savouré, 2010). Therefore, the unchanged MDA levels in shoots of purslane plants treated 

with DLE was most probably due to the increase in proline and carotenoid levels, along with the 

possible stimulation of other defense-related strategies. Accordingly, sugar and total soluble 

protein levels were enhanced in purslane plants exposed to DLE at 100% (v/v). Alongside with 

proline, sugars, such as glucose and sucrose, have important AOX roles either by directly 

reacting with ROS, forming less harmful products, or by inducing the transcription of stress-

related genes, which results in the synthesis of important AOX players (Soares et al., 2019a). In 
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fact, the increase of the protein content observed when DLE at 100% (v/v) was applied can be 

indicative of the activation of gene expression, possibly resulting in the production of defense-

related proteins. Indeed, it is known that under stress conditions, plants have altered gene 

expression, which results in the increase of the content of diverse proteins and metabolites 

(Ahmad et al., 2010). Altogether, the obtained results highlight the occurrence of several redox 

disorders in shoots of DLE-exposed purslane plants, favoring the accumulation of H2O2 and the 

synthesis of different AOX metabolites, which prevented LP and thus, the occurrence of a 

severe oxidative stress condition.  

With regard to the roots, the same pattern of H2O2 accumulation as in the aerial part was 

found. In addition, and contrary to what was observed for shoots, the increase in H2O2 levels in 

the root may have exceeded the AOX system´s capacity to eliminate the excess of ROS, and 

induced the occurrence of oxidative stress, as demonstrated by the significant increase of MDA 

levels at the highest concentration. Thus, it appears that the significant increase of total sugars 

and free amino acids in the roots of purslane plants was not enough to counteract DLE-induced 

oxidative stress. A redox imbalance characterized by the overproduction of ROS can produce 

irreversible damages in plant cells, such as the oxidation of proteins, lipids, and even, nucleic 

acids (Soares et al., 2019a). Besides LP, the oxidation of proteins of purslane roots might have 

also occurred as a consequence of the oxidative stress imposed by the application of DLE at 

100% (v/v), since protein levels significantly decreased in this organ. In fact, it has been 

reported that the application of plant-based extracts to weeds enhances the production of the 

superoxide radical (O2
.-) and H2O2, resulting in membrane and protein damages (Radhakrishnan 

et al., 2018). In addition, the application of these biocides induces an electrolytic leakage that, 

among others, release considerable amounts of proteases (Radhakrishnan et al., 2018). This 

protease release, along with the protein oxidation induced by the high concentrations of ROS, 

namely H2O2, might explain the great decrease in protein levels registered in P. oleracea roots.  

In addition to oxidative stress, nutrient deficiencies or imbalances are one of the main 

causes that compromise plant growth (Rietra et al., 2017). Nitrogen is an essential 

macronutrient for plant growth and development since it is involved in the synthesis of multiple 
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organic compounds, such as amino acids and proteins (Taiz et al., 2015). Thus, disturbances in 

N nutrition are responsible for significant reductions in plant growth (Liu et al., 2017). The 

results of our study revealed that the foliar spraying of purslane plants with the highest 

concentration of DLE did not affect NO3
- assimilation in both organs, since the activity of NR 

was not altered. Nevertheless, a great increase in the activity of GS in the roots of P. oleracea 

plants treated with the maximum concentration of DLE was found. As mentioned before, the 

GS product, glutamine, is an important precursor for the biosynthesis of other amino acids and 

chlorophylls, among others (Németh et al., 2018). In this sense, the increase in GS activity in 

the roots of the plants treated with DLE at 100% (v/v) might be responsible for the increase in 

the amino acid content registered in plants exposed to the same treatment, possibly in the 

attempt of restoring the cell protein levels that were substantially affected by the oxidative burst 

induced by DLE application. 

Overall, the obtained results pointed out that the DLE at 100% (v/v) was able to induce 

severe phytotoxic effects in purslane plants, considerably impairing multiple weed physiological 

processes. Although the DLE at 100% (v/v) was applied by foliar spraying, the phytotoxic 

effects in the roots of purslane plants were more pronounced than in the shoots. This may have 

occurred because, after 20 sprays, the extract ended up accumulating in the soil, being absorbed 

by the plant´s root system. As a matter of fact, since the application of DLE at the maximum 

concentration induced great inhibitory effects in the growth and development of purslane plants, 

their root system was unable to fully develop, compromising the function of this organ. In these 

conditions, the allelochemicals can easily penetrate through the primary root structure 

(Radhakrishnan et al., 2018), causing more severe damage in the physiology of this organ than 

in the aerial part. In this way, the effects of DLE at 100% (v/v) in the shoots may have occurred 

due to the serious phytotoxic effects induced in the root system by the uptake of compounds 

with allelopathic activity and/or the interference of the allelochemicals with the absorption of 

nutrients by the roots, affecting several metabolic processes (Radhakrishnan et al., 2018).  

 

5. CONCLUSIONS 
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The foliar spraying of aqueous extracts prepared with young leaves of E. globulus, especially 

when dried, revealed to have strong biocidal properties against P. oleracea weeds, mainly by 

severely disturbing the redox homeostasis of their root system. This represent the first study to 

unravel the herbicidal potential of the leaf biomass from young E. globulus trees, recently 

resprouted after a wildfire, which can contribute, on one hand, to decrease fire hazard by 

reducing the uncontrolled dispersion of this species, and on the other, to possibly increase crop 

production by eliminating weeds.  

In the future, we intend to explore the biocidal potential of the leaves of young E. 

globulus trees in a pre-emergent scenario, and to assess their environmental safety, when 

applied in pre- and post-emergent contexts, in non-target organisms, such as crop species.  
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Figures and tables’ captions 

Figure 1. Percentage of viable plants over the five weeks of treatments with deionised water 

(CTL), glyphosate (GLY), and different concentrations [12.5, 25, 50, 75 and 100% (v/v)] of the 

aqueous extract prepared with fresh leaves (FLE; 617 gfw L-1) (a) and with dried leaves (DLE; 

250 gdw L-1) (b). Results are expressed as mean ± SD (n ≥ 3). º refers to statistically significant 

differences (p ≤ 0.05) between treatments and the control (CTL), for the last week; * refers to 

statistically significant differences (p ≤ 0.05) between weeks, for each treatment and the CTL. 

Figure 2. Macroscopic phytotoxicity symptoms of purslane plants after five weeks of 

treatments with deionised water (CTL), glyphosate (GLY), and different concentrations [12.5, 

25, 50, 75 and 100% (v/v)] of the aqueous extract prepared with fresh leaves (FLE; 617 gfw L-1) 

and with dried leaves (DLE; 250 gdw L-1). 

Figure 3. Cell death staining in shoots of purslane plants treated for five weeks with deionised 

water (CTL), glyphosate (GLY), and different concentrations [12.5, 25, 50, 75 and 100% (v/v)] 

of the aqueous extract prepared with fresh leaves (FLE; 617 gfw L-1). 

Figure 4. Cell death staining in shoots of purslane plants treated for five weeks with deionised 

water (CTL), glyphosate (GLY), and different concentrations [12.5, 25, 50, 75 and 100% (v/v)] 

of the aqueous extract prepared with dried leaves (DLE; 250 gdw L-1). 

Table 1. Shoot and root length and fresh weight of the purslane plants treated for five weeks 

with deionised water (CTL), glyphosate (GLY), and different concentrations [12.5, 25, 50, 75 
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and 100% (v/v)] of the aqueous extract prepared with fresh leaves (FLE; 617 gfw L-1) and with 

dried leaves (DLE; 250 gdw L-1). Results are expressed as mean ± SD (n ≥ 3). * above bars 

denotes significant differences (p ≤ 0.05) from the CTL situation. 

Table 2. Levels of MDA, H2O2, total sugars, total free amino acids, proline, total soluble 

proteins, photosynthetic pigments (chlorophylls and carotenoids) and of the activity of NR and 

GS in the shoots and roots of purslane plants treated for five weeks with deionised water (CTL), 

75% (v/v) and 100% (v/v) of the aqueous extract prepared with dried leaves (DLE; 250 gdw L-1). 

Results are expressed as mean ± SD (n ≥ 3). * above bars denotes significant differences (p ≤ 

0.05) from the CTL situation. 

 Figure 1                   

(a) (b) 

Figure 2 
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Figure 3 

 

 

 

 

Figure 4 

 

 

 

 

Table 1 

Endpoint 
 
Treatment 

Length (cm) Fresh weight (g) 

Shoots Roots Shoots Roots 

 
 
 

FLE 

CTL 7.37 ± 0.30 6.51 ± 0.22 0.26 ± 0.014 0.020 ± 0.0034 

12.5% 8.47 ± 0.13* 6.13 ± 0.56 0.25 ± 0.026 0.019 ± 0.0028 

25% 8.85 ± 0.45* 5.92 ± 0.78 0.34 ± 0.047* 0.015 ± 0.00023 

50% 9.52 ± 0.44* 7.27 ± 0.15 0.41 ± 0.0069* 0.028 ± 0.0016* 

75% 6.88 ± 0.09 6.43 ± 0.59 0.28 ± 0.0039 0.029 ± 0.0011* 

100% 5.47 ± 0.44* 6.12 ± 0.42 0.18 ± 0.035* 0.014 ± 0.0047* 

 
 
 

DLE 

CTL 7.31 ± 0.73 7.11 ± 1.01 0.27 ± 0.024 0.025 ± 0.0046 

12.5% 7.72 ± 0.52 8.02 ± 0.49 0.25 ± 0.010 0.020 ± 0.0027 

25% 7.33 ± 0.47 7.20 ± 0.59 0.25 ± 0.043 0.022 ± 0.0047 

50% 8.94 ± 0.77* 6.83 ± 0.15 0.26 ± 0.025 0.027 ± 0.0031 

75% 6.10 ± 0.051* 3.58 ± 
0.43* 

0.13 ± 0.013* 0.011 ± 0.0017* 

100% 4.65 ± 0.60* 2.46 ± 
0.46* 

0.079 ± 0.017* 0.011 ± 0.0001* 

GLY 2.65 ± 0.11* 0.79 ± 
0.35* 

0.037 ± 0.0074* 0.003 ± 0.00088* 
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Table 2 

 

Treatment 
 

Endpoint 

CTL 
DLE 

75% (v/v) 100% (v/v) 

Shoots Roots Shoots Roots Shoots Roots 

MDA (nmol 
g-1 fw) 

23.3 ± 3.4 3.24 ± 1.1 18.5 ± 3.7 1.53 ± 0.51 19.6 ± 1.1 6.11 ± 1.3* 

H2O2 (pmol g-

1 fw) 

13.9 ± 1.3 6.79 ± 0.81 21.8 ± 4.0 10.7 ± 2.5 43.5 ± 9.9* 34.4 ± 3.3* 

Total sugars 
(μg g-1 fw) 

1.32 ± 0.16 4.73 ± 2.1 2.00 ± 0.01 7.37 ± 0.61 3.96 ± 0.81* 12.2 ± 1.7* 

Total free 
amino acids 
(μg g-1 fw) 

262 ± 11 343 ± 36 195 ± 14* 381 ± 30 247 ± 2.1 544 ± 83* 

Proline (μg g-

1 fw) 

37.1 ± 2.4 - 48.3 ± 6.6 - 59.0 ± 15* - 

Total soluble 
proteins (mg 

g-1 fw) 

1.21 ± 0.14 1.23 ± 0.12 1.40 ± 0.049 1.27 ± 0.27 2.29 ± 0.35* 0.61 ± 0.099* 

Total 
chlorophylls 
(mg g-1 fw) 

0.315 ± 0.013 - 0.205 ± 0.05* - 0.278 ± 0.033 - 

Carotenoids 
(mg g-1 fw) 

0.0697 ± 0.0012 - 0.066 ± 0.0066 - 0.082 ± 002* - 

NR activity 
(mmol min-1 
mg-1 protein) 

110 ± 12 96.4 ± 15 175 ± 7.3* 111 ± 12 92.7 ± 7.2 108 ± 6.1 

GS activity 
(nkat mg-1 
protein) 

4.71 ± 1.2 49.2 ± 7.2 6.88 ± 0.77 58.7 ± 1.6 7.21 ± 3.9 82.1 ± 6.2* 
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