Building roofs are sources of unwanted heat for buildings situated in zones with a warm climate. Thus, reflective coatings have emerged as an alternative to reject a significant fraction of solar energy received by roofs. In this research, the thermal behavior of concrete slab-type roofs with traditional and solar reflective coatings was simulated using a computational tool. Weather data from four cities in Mexico with a warm climate were used as boundary conditions. This tool is an in-house code based on the Finite Volume Method developed by the author to perform building components simulations. The code was validated with experimental data from previous work. A series of comparative simulations were developed, taking a gray roof as a control case. The results showed that for the roof without thermal insulation (single roof), the solar reflective coatings reduced the exterior surface between 11 and 16∘C. Consequently, the single roofs’ daily heat gain was reduced by a factor ranging between 41 and 54%. On the other hand, for the insulated roof, the reflective coatings reduced the exterior surface temperature between 17 and 21∘C. At the same time, the daily heat gain of composite roofs was reduced between 37 and 56%.