Preprint
Technical Note

DAPT: A Package Enabling Distributed Automated Parameter Testing

Altmetrics

Downloads

260

Views

562

Comments

2

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

03 May 2021

Posted:

10 May 2021

You are already at the latest version

Alerts
Abstract
Modern agent-based models (ABM) and other simulation models require evaluation and testing of many different parameters. Managing that testing for large scale parameter sweeps (grid searches) as well as storing simulation data requires multiple, potentially customizable steps that may vary across simulations. Furthermore, parameter testing, processing, and analysis are slowed if simulation and processing jobs cannot be shared across teammates or computational resources. While high-performance computing (HPC) has become increasingly available, models can often be tested faster through the use of multiple computers and HPC resources. To address these issues, we created the Distributed Automated Parameter Testing (DAPT) Python package. By hosting parameters in an online (and often free) "database", multiple individuals can run parameter sets simultaneously in a distributed fashion, enabling ad hoc crowdsourcing of computational power. Combining this with a flexible, scriptable tool set, teams can evaluate models and assess their underlying hypotheses quickly. Here we describe DAPT and provide an example demonstrating its use.
Keywords: 
Subject: Computer Science and Mathematics  -   Algebra and Number Theory
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated