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Abstract: A novel Nonlinear Consequent-Part Recurrent-Type-2 Fuzzy System
(NCPRT2FS) is presented for renewable energy systems modeling. Not only
does this paper present a new architecture of type-2 fuzzy system (T2FES) for
identification and behavior prognostication of an experimental solar cell set
and a wind turbine, but also it brings forward an exquisite technique to acquire
an optimal number of membership functions (MFs) and the corresponding
rules. Using nonlinear functions in the “Then” part of fuzzy rules, introducing
a new mechanism in structure learning, using adaptive learning rate and
convergence analysis of the learning algorithm are the innovations of this
paper. Another novel innovation is using some optimization techniques
(including pruning fuzzy rules, initial adjustment of MFs). Eventually, solar
cell photo-voltaic and wind turbine are deemed as case studies. The
experimental data are exploited and the consequent yields emerge so
persuasive. The root mean square error is less than 0.006 and the number of
fuzzy rules is equal or less than 4 rules, which indicates the very good
performance of the presented fuzzy neural network. Finally, the obtained
model is used for the first time for a geographical area for feasibility of
renewable energies.
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1. Introduction

Neural networks share lots of significant benefits such as
landmark computation ability, parallel processing and adaptation. The
fuzzy systems are competent of utilization of the expert knowledge
entitled by "if-then rules" and own actual parameter concepts. As
everyone knows, mathematical modeling is a substantial preliminary
in many control issues. On the other hand, prediction, simulation and
modeling of complicated systems established upon physical and
chemical principals appear so industrious in such a way that they will
not yield consolidated mathematical forms [1]. One may suggest
system identification as a solution to cope with this problematic issue.
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This method puts the mathematical equations at the access utilizing
input-to-output data analysis for increasing the efficiency of dynamic
process calculations [2]. Computational intelligence lies among the
efficient methods with an excellent fulfillment. Many papers have
recently been published on fuzzy modeling and identification.
Nonlinear system identification, founded on fuzzy and neuro-fuzzy
models, was surveyed [3]. Computational intelligence gets so feasible
in the area of renewable energy [4]. For design MPPT control [5], solar
water heater selection [6], Photovoltaic system failure diagnosis [7] and
solar power plant location alternatives [8] the computational
intelligence has been used. Neural networks were also used by
Grahovac et al. [9] in order to model and make anticipation of bio-
ethanol generation from intermediates and byproducts yielded in beet-
to-sugar procedure. The productivity of the neuro-fuzzy controller in
extraction of the maximum yield by flow and energy optimization was
demonstrated by Khiareddine et al. [10] in comparison with fuzzy and
algorithm controllers. It was asserted that the neuro fuzzy controller
is worthy of being implemented in experimental agricultural station at
Sahline in Tunisia. Ocario et al. [11] testified wind power forecasts in
the Portuguese system exploiting a novel hybrid evolutionary-adaptive
methodology. Etemadi et al. [12] predicted the wind power produced
by data-driven fuzzy modeling.

Type-2 fuzzy (T2F) logic which appears more capable and flexible
in comparison to type-1 has been being inquired during the last ten
years. A novel method was suggested for general T2F clustering by
Doostparast et al. [13]. Some other applications of T2F sets can be find
in textile engineering [14] and aerospace engineering [15]. Fuzzy c-
means clustering and high order cognitive map were exerted by Lu in
order to model and predict time series on the basis of type-1 fuzzy sets
[16]. T2FS identification has engrossed so many researchers [17-23].
Abiyev et al. [17] took advantage of T2F clustering to organize
construction of a wavelet type-2 TSK fuzzy neural system. They
brought forth an adaptive law to update parameters of antecedent part
and ultimately employed gradient learning algorithm to bring
parameters of the descendant part up to date. T2FSs were applied for
elicitation of fuzzy rules and casting derogatory features off [24]. The
proposed mechanism took benefit of self-evolution capability in such a
way that identification of the integral structure of the network would
get efficient and there would be no requirement for initial start-up of
network structure. The antecedent part and modulation parameters are
trained in order to hold parameter learning in the network true
utilizing error of back-propagation. Tuning parameters of the resultant
part, the rule-ordered Kalman filter algorithm assists in network
sharpness amelioration. Genetic algorithm [25] and PSO [26] are among
the learning mechanism of T2F neural networks which have been
conversed and scrutinized so far. Research development on T2F
systems has brought about their vast usages in so many various fields
such as time-series prediction [27], DC motor control [28], clinical
practice guideline encryption [29], pattern recognition [30], robot
control [31] and control of nonlinear systems [32,33]. A new smart type
reduction is held forth in [34]. A T2FS learned through its type-1
counterpart in [35]. The Learning process was held true merging and
extending the type-1 membership functions. Henceforth, the novel
constructed T2FS went under implementation on a programmable
chip.
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It is worthy notifying that most of the control engineers and
system analyzers get actual systems represented in nonlinear
dynamics; not only do these system outputs momentarily turn
dependent upon the input, but also they appear reliant on the delayed
inputs/outputs. This leads to a responsible consideration of both
external and internal dynamics as a non-negligible essential remark in
system modeling. Delayed inputs/outputs have to be used in external
dynamics. Another feedback denoted as "recurrent neuron" have to be
exerted in internal one either. Wu et al. [36] presented the solution of
recurrent fuzzy neural network for the problematic temporal
classification. Not only does this paper contribute to minimization of
the cost function utilizing recurrent fuzzy neural network, but also it
proposes maximization of the discriminability adopting a novel
approach. Some modern recurrent fuzzy systems get presented in [37].
The special kind of neural network in the resultant part functions input
variables in a nonlinear manner. Hardly have there been studies on
recurrent T2F systems so far. Some of them are surveyed in following.
A contributive recurrent interval T2FS is held forth in order to identify
nonlinear systems in [30]. The novel technique requires initial
knowledge about system order and the number of delayed inputs as
well. Furthermore, the convergence issue in the learning algorithm is
not taken into consideration and conversed even theoretically. Juang et
al. [15] put forth another contributive recurrent T2F neural network to
model dynamical systems. That there is not any rule pruning, is the
major defect with their work. It could bring about extremely
overlapped fuzzy sets. Soft switching of nonlinear model is superior to
linear one in order to identify nonlinear systems [1]. Consequently, our
suggested technique is established upon nonlinear resultant part in
fuzzy rules. Rarely may one find comprehensive works on nonlinear
consequent part in fuzzy systems; however, some of the studies on the
arena are shortly surveyed in following. Reduction of the number of
rules was carried out by Moodi in a fuzzy system using TSK fuzzy
model accompanied by nonlinear consequent part [38]. The resultant of
a rule is supposed to comprise a linear term and a nonlinear one. In
their attempts, the numerous rules get decreased and the model
precision simultaneously shows increase at the cost of complication
abundance in the fuzzy model. The NFNN was constructed applying
fuzzy rules which merge nonlinear functions. Linear consequent part
requires more rules on the ground of achieving the aspired precision
during modeling complicated nonlinear processes. The more number
of rules is equal with the more number of neurons [39]. Some recently
work on T2F neural networks can be seen in many applications such as
2DOF robot control [40], 3 parallel robot control [41], PMSM control
[42], water temperature control [43,44], environmental temperature
control [45] and UAV control [46]. Tavoosi and Badamchizadeh [47]
proposed a T2S with linear "then part” for dynamic modeling. Their
pivotal contribution was rule pruning in such a way that increase in
learning speed would be targeted to attain reduction of the parameters
in both MF parameters and descendant parts. Tavoosi et al [48,49] made
another contribution to the issue holding forth a novel technique for
analyzing stability of one class of T2F systems. Another analyzing
method of stability was also suggested by Jahangiri et al. [50]. Suratgar
and Nikravesh [51] proposed a modern technique of fuzzy linguistic
modeling and the integral stability analysis as well. In [52] a fuzzy
neural network has been used for the wind speed forecasting. In [53] a

3


https://doi.org/10.20944/preprints202103.0178.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 March 2021 d0i:10.20944/preprints202103.0178.v1

comparison between ANFIS and autoregressive method for wind
speed/power prediction has been done. In [54] a fuzzy control on basis
of predictive technique for a governing system has been presented. In
[55] a multilayer perceptron is combined with an adaptive fuzzy
system to forecast performance of a wind turbine. Some disadvantages
and shortcomings of the works studied above are: lack of convergence
proof, long training time (not usable in online applications), high
complexity of the model, lack of proper accuracy. On the other hand,
so far no applied research has been done to use renewable energies in
the Ilam region.

So, this paper proposes NCPRT2FS for nonlinear system
identification. The nonlinear systems here are the same as solar cells
and wind turbines. The objective of identifying the system is to use it
to specify the efficiency of the renewable energy system in the Ilam
region. The innovations of this article that set it apart from other works
are as follows: 1- Using nonlinear functions in the “Then” part of fuzzy
rules. 2- Introducing a new mechanism in structure learning. 3- Using
adaptive learning rate (Different from the previous works of others). 4-
Convergence analysis of the T2F neural network learning algorithm
presented in this article. 5- Finally, in this article, some optimization
techniques (including pruning fuzzy rules, initial adjustment of MFs,
etc.) are performed. The paper gets sectioned in six divisions. Section 2
comes next surveying T2F logic shortly. Section 3 entails inspection of
the structure of NCPRT2FS finally presenting identification of structure
and parameters. Learning convergence of NCPRT2FES is subsumed
relying upon Lyapunov theory in section 4. Section 5 holds forth
simulative identification studies taking into account solar cell photo-
voltaic and wind turbine as the case studies and utilizing their
experimental data.

2. A Review on Type-2 Fuzzy Sets and Systems

Firstly, Zadeh brought forward type-1 fuzzy logic, and introduced
T2F one in order to improve resolution in some problems of type-1 ten
years later. He deemed a fuzzy set which its MF was a fuzzy one
entitled "type-2 fuzzy set". T2F sets may be usually exploited when the
determination of accurate membership function turns so arduous. For
instance, some time series prediction lie among the problematic cases
which necessitate usage of T2F sets. Hence, exploiting T2F sets emerges
so advantageous in order to describe some system behaviors.

Certain defects with type-1 fuzzy sets were scrutinized by Castro
et al. [56]. Research on T2F systems were so confined before years of
1998. Critical and controversial questions and debate on T2F logic and
its usage commenced after publication of a book which contained
solidarity and intersection of T2F sets [57]. Extensive information on
T2FS computation, such as defuzzification and type reduction, was
suggested by Mendel [58]. A general T2F set, 4, may be specified by

(1):
i=(
fx O

JA)

fxEX [fuejx xu ]
S @

where pz(x) is a secondary MF, ], represents the primary

membership of x € X, with p€/, , and f,(u) €[0,1] denotes a
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secondary membership. The primary and secondary MFs in Gaussian
form are illustrated in Fig. 1.
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Figure 1. Primary and secondary MF.

Note that, the secondary MFs will be interval sets and the fuzzy
set would be interval T2F ones while f,(u) =1,vu €J, €[0,1]. For
more explanation, a crisp number would be fuzzified in two stages
supposing that Gaussian MF were exerted to attain a T2F number. First
off,

(x — M)?
Uy = exp (—0.5.7Z> )
Ox
where p,; is primary membership, M and o, are the primary
mean and spread of Gaussian MF, respectively, then
2
ot ) = exp (—0.5.7(“ 1) ) ©)
Om

where p,(x, ;) is secondary degree, a € [0,1] is the domain of
secondary MF for each x and o, isthe secondary spread of Gaussian
MF.

Simple and special sort of general T2F sets turn as interval T2F one.
Figure 2 depicts two interval T2F sets. A fuzzy set specified by a MF of
Gaussian form with the mean value of m and a standard deviation
amount in interval of [0y,0,] is demonstrated on Fig 2.a.Two cases of
interval T2F sets are given in Fig 2. Fig 2.b illustrates a fuzzy set with a
MF of Gaussian form encompassing a distinct standard deviation of o.
However, the mean value is quite uncertain and adopts values in the
interval of [my, m,].
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Figure 2. a) Uncertainty in width b) uncertainty in center.

MF of Gaussian form with determined standard deviation of o and
uncertain mean, seen in Fig. 2.a, is applied through all this paper.

2.1. Type-2 Fuzzy Systems

One may gain a crisp number defuzzifying the type-1 fuzzy [59]
system-output whereas T2FS yields a T2F set. That is the reason one has
to make endeavor to succeed in reduction of fuzzy set type from two to
one in a process entitled "Type Reduction". The process is a challenging
issue of high significance in T2F systems [60]. Figure 3 displays the
structure of a T2F system.

"
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b 4

Inference

Figure 3. The structure of a T2F system.

As it could be easily grasped through Fig 4, construction of the
T2FS will be the same as organization of type-1 if the "Type-Reduction"
block is neglected.

3. The Proposed NCPRT2FS

Section 3 tries to consolidate the nonlinear descendant or resultant
part of recurrent T2F systems into a formula. Reviewing two
informative useful points mentioned later, the descriptive equation of
(1) establishes the kth rule;

1) Type-2 TSK fuzzy systems, usually yield a polynomial
constructive of the inputs,

2) The output and its coefficients in are type-1 fuzzy sets [61].

This paper recommends a novel NCPRT2FS which its total
construction is illustrated in Fig. 4. As one may see, the system
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obviously embodies seven layers. Generally speaking, the kth rule
would be demonstrated in following terms in a first-order interval
type-2 linear TSK model with M rules and n inputs:

R¥:if x, is A¥ and ...and x,, is A% then §j, = Cp + Cp12 + - +
Ck,nxn (5)

where k=1,..,M is the rules number, x;(i =1,..,n) are
inputs, §, is output of the kth rule. J, is an interval type-1 fuzzy set
Af are antecedent sets, Cy; € [ch; — Ski Chi + Ski| represent
consequent sets, that ¢, ; represents the center of Cy; and sy ;is the
spread of Cy;.

In this paper, nonlinear consequent part is taken into account. The
resulting kth rule in NCPRT2FS which has got two antecedent variables
and three outputs with delayed time-shift ranging from one unit to 3 in
the descendant part is demonstrated in (2):

R*:if x, is A¥ and x, is A% then
Vi = Cio + Craxs + Cpxa + Crzy (€ — 1) + CraXy Xz + Cpsxyy (6 — 1) + Crexoy(t — 1)

+Cio7X7 + CepXs + Ciooy*(t — 1) + Crox1%,y(t — 1) (6)

One may make an extension to fuzzy rule (2) considering n
antecedent variables and time-delayed outputs in descendant part with
delaying shift in time ranging from one unit to m units. n may be
designed remarking nonlinearity degree and complexity of the
unknown system which is going to be identified next.

Xy

1
X I
| ! |
i ! [ |
L2 L3 L4 L5 L6 L7

.

0 L

Figure 4. The structure of the proposed NCPRT2FS.

The layers’ details are as:
Layer 0: This layer is inputs layer.
Layer 1: The output of fuzzification are written as:

_ (xi— 1mk,i>2

e (i, [Uk,i; 1mk’i]) =e Ok ©
_ (xi— 2mk,i>2

2t (i, [Uk,i; zmk’i]) =e Tk ©

where my; € [ 'my;, *my;| and o0; are uncertain mean and
spread for kth rule and ith input.
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Layer 2: The T-norm and S-norm are computed as:
i) = () (), k=12,.,M ,i=12,..,n 7
i () = i () + P (o) — e () ©))
Layer 3: The rule firings (f* and f*) are:

n n
£k=nﬁk,i ; fk=1_[ﬁk,i 9
i=1 i=1
Layer 4: The left-most/right-most firing are obtained as:
fk_wlkfk+mk£k . k_V_V;“cfk +Mc£k (10)
Powltwl T wEwk

where w are adjustable weights.
Layer 5: The rule left/right firings are:
VE = Co + CoaXy + Xy + Gzt — 1) + CaXs Xy + Cosxyy(t — 1) + CeXy(E — 1) + e px?
+ CpXs + CroY?(t = 1) + CaoX1 %2y (E = 1) = Speg = Sie1 %1 = S 2% = spe3ly(E — 1]
= Spalxixa] = Seslxy(t — D = selxoy(t — D = sp7%F — sex3 — sy’ (t — 1)
- 5k,10x1x23’(t -1)
(11)
VE = Cro + CoaXs F CrpXp + Cray(t — 1) + CaXaXp + sy y(t — 1) + coeXoy(t — 1) + ¢y pxf
+ CrgX3 + Croy?(t — 1) + CroX1 Y (t — 1) + S0 + Spa [x0] + Spc2lxz | + 31y (E = D
+ SealX1i2] + sl y(t — D]+ S|,y (E = D] + 5p7X7 + S + Sioy*(t — 1)
+ 5k,10x1x23’(t -1)

(12)
Layer 6: ¥, and j, are:
Z¥:1 flk)’lk
V=i (13)
YA
D) Y
Vr=—<m (14)
=117
Layer 7: The output is:
" It
y= Tr (15)

Structure learning is realized exploiting T2F clustering in this
article. As one knows, an efficacious rule and fuzzy set turn-out
algorithm is suggested to procreate fuzzy rules in real-time and
decrease the number of fuzzy sets in antecedent part in structure
learning [62]. Structure learning appears as a great assistance in
simplification of T2FS taking advantage of reduction of the fuzzy rules.
Scrutinizing more, its duty is not only production of novel membership
but also pruning additional MFs and rules. In the input space, a rule
geometrically corresponds to a cluster. Its firing strength could be taken
into account as the degree through which input data belongs to the
cluster. The center of the firing strength in the NCPRT2FS is calculated
by (16) since it is an interval.

f+f*
fe == (16)
And for generation a new MF, find
Hgle + Lz
e == - X i=12..,n (17)
For each incoming data X = {x, ..., x,,}, calculate
I =arg max f; (18)

1<k<M(t)

For each newly generated rule, compute
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I; = arg max ik
: glskski(t) Hae

i=12,..,n (19)

where M(t) and k;(t) are the existing rules number at time ¢ and
the number of fuzzy sets in input variable i, respectively. If I < @, the
system generate a new rule. Where @,, € (01) is a threshold that
defined [63]. If I; > p, where p € [0 1], is a threshold defined before,
then use the existing fuzzy set Ai" as the antecedent part of the new
rule in input variable i. Otherwise, one could turn out a novel fuzzy set
in input variable i and hold the equation, k;(t + 1) = k;(t)+1, true. The
number of fuzzy sets is defined by the parameter ¢ in each input
variable. Fuzzy clustering is a technique to structure a fuzzy model [64].
A new T2F clustering technique which is a development of
Krishnapuram and Keller Possibilistic C-Mean (PCM) [65] is suggested
and described by the following equations:

c N c N
~ . ~ ~ \m
Jm(x, i, ¢) = min ZZHZ}DU +Z77i2(1 — i) (20)
=1 =1

i=1 =1
{ N
10< Zﬁ” <N

s.T:{ j=1 (21)

| & € [0,1] Vi, j
max fi;; >0 Vj
where fi;; is type-2 MF in the j* data for the i*" cluster,
Moreover, the symbols D;j, ¢, and N are the Euclidean distance of the
jt* data in the i*" cluster center, number of clusters and the number
of input data, respectively. 7; isalso a positive number. D;; hastobe
as small as possible as the first term. On the other hand, the
membership values in a cluster have to be as large as possible as the
second term as well. They have to stay in the interval of [0 1] and their
sum is confined to get smaller than the number of input data. Equation

(21) appears as the descriptive term. That 7n; corresponds to ith cluster

and is of the order of D;j, is greatly welcomed [65]. The distance to the

cluster’s center must be as low as possible (first term). It is desirable

that n; relate to i*" cluster and be of the order of D;; [63].

_ I gDy
L
Using (20) the optimal value of centers of the clusters are achieved.

The initial uncertain mean m,; and standard deviation g;; for the

k;(t +1) tinterval T2F set in input variable i ar

i Vi=1,...,C

my i € [vi - 0.117,:, Vv + 0.117,:]

1 2
_ mli,i + mli,i
Oki(t+1)i — B lvi— - 32

Where, v; is the optimal value of the clusters center, § >0
denotes the degree of overlap between 2 fuzzy sets. In this paper, we
sets B at 0.5 so that the spread of the new fuzzy set is 50% the distance
between the average centers of the new fuzzy set and fuzzy set I;, so it
generate suitable overlapping between fuzzy numbers [61]. The initial
of parameters in the consequent part are set to

[cko = SkorCro + Sko] = [yd—01,yd+01] , k=12,..,M (22)


https://doi.org/10.20944/preprints202103.0178.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 March 2021 d0i:10.20944/preprints202103.0178.v1

where yd is the desired output for input ¥ = {xy, ..., x,}. All the
other consequent parameters are zero.

By repeating the above process for each training data, it creates
new rules one after the other until NCPRT2EFS is finally complete. For
learning of the network, adaptive learning rate backpropagation is
used. The network output is calculated for each input applied. The
calculated output is then compared to the target to obtain an error.
Assume that the input-output data pair {(x,:¢,)} Vp = 1, ..., q, where
p is the number of data, x and t are the input and output, respectively.
NCPRT2FS output error can be expressed as follows:

- ip - yprl (23)
A N\2
Ep = Eeg = E(tp =) 29
q
E=)E (25)
p=1
To update the consequent part parameters, the equations (26)—(45)
are used.
k k
Mero = "o +1.0.5. ¢, Mfl 7 + MfT I (26)
[ 2ie=1]1 k=1J7"]
newe i =%c; +1.05.e St + | X i=1.2 27)
ki — k,i + Ve Cp- M k M P2 et =4
k=1ﬁ Zk=1f7‘ |
ew old flk f;’k ]
Crz =" €3 +1.05. e |55 I + =5 Iz Lyt —-1) (28)
k=1J1 k=1Jr |
ew old flk /‘;" ]
Cka = "Cra +1.05. e, Z 1% Z FE .X1. Xy (29)
k=1/i k=17 ]
Pers = eps 1. 0.5.ep. f f f i X y(E=1) (30)
=1/ Py
Were="cs+1.05.e fl + 1 Xp.y(t — 1) 31
k6 — k,6 U0, €p. ZM fk ZM fk XD -
k=1J1 k=1Jr
ew old [ flk f;’k | 2
Cr7 = "7 +1.05. 85 |55 f"+ M LXq (32)
| Zik=1]1 k=1Jr"|
new old [ flk ka | 2
Crg = Crg+1.05.e5 |5y 1% + S Iz X5 (33)
k=1J1 k=1Jr |
new old [ flk ﬁ“ | 2
Cro =" "Cpo Tt n.0.5.ep. f Z FF ye(t—=1) (34)
i=1fi k=1Jr |
Ck1o = Ck1o +1.0.5.ep,. [Z f + Mfkfk].xl.xz.y(t —-1) (35)
=1/l k=1J1r
frk
o = "sp0 +1.0.5. ¢, S f N (36)
=1/1 =1Jr

fi* frk
new old
Ski = Ski+7].0.5.ep. M -
' ' D=1/ f
k 1kl 1 T

].lxil i=12  (37)

s = "s,3 +1.05.e,. [Z Ji e f ] ly(t—1)] (38)
k 1J1 1 T

e =" 5k4+77 0.5.ep. [Z f f ] |12, | 39)
=1/1 1 T

s =7 5k5+77 0.5.¢e,. [Z f f] [x.y(t — 1| (40)
=1/i w1 f

= +1n.0.5. t—1 41

Sk6 Sk6 n. €p- [Z 1fl fklfr] |22. y( )] (41)

sk7 = sk7+n 0.5.¢e,. [Z f Z%r f"] (42)
=1/1 =1/r
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k
Vs = s +1.0.5. ¢, [Z f ZMfT fk]_xz (43)
=1/ k=1Jr
ew _D ﬂ f:rk 2
Sk = *Ske +1.0.5.ep. s f - SH f ye(t—=1) (44)
k=1 l k=1 r

Sk10 = 5k10 +1.05.¢ep,. [Z ] |x1.x2.¥(t — 1| (45)

LA S fr
The learning rate is indicated by 7.

To update the left and right weights, the equations (46)-(49) are
used.

A~ k k
-9 1

new k _ old k
? L W+ wj’
k_ o~ 7k k
B _ Yi =V f f
newwlk = oldwlk +1.0.5. ey, M s ok 4 ok @7
jefi Wt W
vk —3 k— fk
—Vr f fr
new, k _ old,, k +1n.05.¢e e (48)
el v j:1 fr] wr + M‘
Kk
newwf_c — oldwjf +1.0.5. ey yr 5 J k @

M £l WK+ wk
And finally the equations for updating the antecedent parameters
can be described as follows:

k_ 5 k .
et = Imgld 4+ 9.0.5.¢ [J’l ~ Off  yr—9 off ] (50)
i i -U.5.6p. =T -
Zﬂw f] 0 Mg P S0 Tmy,;
k k_ o K
‘mpgY = *m{ +n.05.e yi =9 _0f; yr =9 Of (51)
i i p* 1fl azmki M1]‘;«J azmk,i
oY = gl +1.0.5.e,. s y]l 1 +2 — yj fr] (52)
[y 00y, ijlfr doy;
where,
off _ wi [ - Zﬂk,i : H?:l,l:ti(ﬁk,l)] +wf 'zk X — 1mk‘i =3)
0 1mk,i V_Vlk + Mk (O_k,i)z ’
of _ wi [fk - 1#k,i : H?:l,l:ti(ﬁk,l)] +wf 'ik xX; — kal 68
d ka,i Wlk + mk (g‘kl
_ x;— m
Kk wi [(fk - T 11¢1(#k1)) ( : kl) ]
afl — (akl
00y wE + wf
_ - _ x; — *m
W - [(fk = M g ei(fr)) - (x kl) ]
(akl
* wk + wk
1 tw
2 2
ke | (= )"+ (= Pmy)
wf 5
+ (o) (55)
wk + wk
W
afk _ Wi [fF = P Hz Lizi(fi)] + wi fk - tmy; 56)
0 "y Fo (Uk,i)z
afk _ Wi [fF = T Hz Lizi(fi)] + Wi fk My )
8 mas it (Uk,i)z
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- [(f" 2 o)) - 5 ’"'ﬂ)]

(58)

af‘rk — (Ukl.
ao'k‘i + Wk
vT/f [(fk l’lkl [T 1L¢L(l1kz)) (xl — mkl) ]
(akl
+ k
wr + Wy
M{ fk_[(xi— mkl) +(x1_ mkl) ]
+ - (le
W + wf

4. Convergence Analysis of Learning Algorithm

Lyapunov function is used to learning algorithm convergence
guarantee. Define lyaponov function as

1 1
Vo) = Ey (k) = 5 e3(k) = 5 (6 (k) ~

5,0)’ 59

Eq. (60) shows the layapunov function changes.
1
BV (k) = Yk + 1) = V() = 5 (e e + 1) = e () (60)

Next moment error is calculated from eq. (61).

ep(k +1) = e,(k) + Aey(k) = e, (k) + [

Ineq. (61), AW s parameter changing where

T
de, (k)
ow
1 2
W = [0k My "My, Criy Skl

AW (61)

In equation (62) the general form of gradient-based updating is

presented.
9E, (k)
Wk + 1) = W(k) + AW (k) = W (k) + n-(— o ) (62)
where,
9E, (k) a9y
= —ep (.= (63)
Eq. (60) can be rewritten as eq. (64).
1
AV (k) = 7 (e3(k +1) — ek (1)) (64)
1
= 2 [(ep(k + 1) = e, (kD] [(ep(k + 1) + €, ()]
1
= 5 ey (k) [2 (e,, (k)) + Aep(k)]
1
= de, (k) [e,,(k) + —Aep(k)]
_ de, (k) ay(k) e, (k) + 6ep (k) 6y(k)
T oaw 1% 2| ow
B a9(K)7" aY(k) e (k) — = aY(k) aY(k)
A % ow
2 [oy(k 1 0 k
a0 [ -[ ]
In order that AV, (k) < 0, the eq. (65) must be satisfied
0<n< 2 (65)
max

If (65) holds for every parameter W = [0y, "My, *My, Choir S,
then the algorithm is definitely convergent. We choose the initial 1 as:
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1
n=——--72
9y (k)
max |=5y7
After all the data has been applied, the variable learning rate is

determined by the following form.

(if _RMSEQD _, L y—na-1)
4 RMSE (1— 1)
Iif M>1 - n()=09xn{l—-1)
L RMSE(—-1)~ '
Where RMSE is Root Mean Square Error and ! is the number of
iteration.

5. Simulation results

In this paper two real renewable energy systems are used to
identification. For each system, the structure of the system and the
NCPRT2FS based identifier is shown in Fig. 5.

h 4

Nonlinear System >

zt

Figure 5. The structure of the system and the NCPRT2FS based identifier.

The inputs to the NCPRT2FS-based identifier are the main input
and delayed system output. The parameters of NCPRT2FS structure
should be adjusted to minimize plant output yd and identification yield
¥ per all input values of x.

Example 1: Real data of a 660kw wind turbine have been taken
from Iran Renewable Energy Organization (SUNA)'. The model of
wind turbine is 547-660kw made by VESTAS (Denmark) are given in
Table 1.

! http://www.suna.org.ir/en/home
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Figure 6. Manjil and Rudbar Wind Farm.

Table 1. Information for Example 1.

Cut-in wind speed: 4 m/s

Rated wind speed: 15 m/s

Cut-out wind speed: 25m/s

Survival wind speed: 60 m/s

Rotor: Generator:
Diameter: 47 m Type: Asynchronous
Swept area: 1.735 m? Number: 1.0
Number of blades: 3 Speed, max: 1.650 U/min
Rotor speed, max: = 28.5 U/min Voltage: 400 V
Tipspeed: 70.1 m/s Grid connection: | Thyristor
Type: 22.9 Grid frequency: | 50 Hz
Material: GFK

In this example u(k),k = 1,...,365 is wind speed that is fed to the
wind turbine system and obtains the 365 samples of y(k) that is
output power of the wind turbine. The other details are the same as
proposed NCPRT2FS in example 1. Fig. 7 shows the identification
results of the NCPRT2FS. Here the plant output (solid line) and the
NCPRT2FS identifier output (dashed line) is shown.
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Figure 7. Identification results of the NCPRT2FS for wind turbine.

The trained NCPRT2FS is used to calculate the wind power in a
place of Ilam’. Fig. 8 shows the wind speed of Ilam for a year. Fig. 9
shows the predicted wind power in Ilam.

10 T

Wind Speed (m/s)
N

1 1 1 | 1 1
0 50 100 150 200 250 300 350
Time (day)
Figure 8. Wind speed of a place in Ilam for a year.
6.5
— Or 7
2
<
o
o
= 5.5F .
o]
=
c
5 -
4.5 1 1 1 | 1 1 1
0 50 100 150 200 250 300 350

Time (day)

Figure 9. Predicted wind power of a place in Ilam for a year.

A city in the west of Islamic Republic of IRAN.
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The final values of the parameters of NCPRT2FS are shown in
Table 2.

Table 2. The final values of NCPRT2FS parameters.

my; “my; 9ij
u(k) my, = 3.62 my, =432 011 = 0.38
'my, = 6.13 2my, = 7.02 021 =110
Antecedent 1m31 =8.19 2m31 =951 031 = 0.89
parameters yike1) my, = 4.93 2my, = 5.12 012 = 0.21
Ym,, = 5.34 Zm,, = 5.66 022 = 0.09
s, = 5.81 %y, = 5.98 32 = 0.36
Y, = 6.11 2m,, = 6.48 042 = 0.18
Wl =192 wi =150 wi = 1.00 wi = 0.63
fourt layer w2 =1.66 wZ =092 w2 =071 w? = 0.06
adaptive weighs w3 = 0.80 w = 0.70 wi =0.56 wi =043
wt =187 wt =094 wi =085 wi =077
Rule 1 Rule 2 Rule 3 Rule 4 Rule 1 Rule 2 Rule 3 Rule 4

s10 = 0.40 Sp0 = 0.33 S30 = 0.27 S40 = 0.52 c0 = 1.00 €0 = 1.40 c30 = 1.00 C40 = 1.40
s;1 = 0.55 S,1 = 0.39 S3, = 0.48 5,1 =043 ¢, =110 c1 = 1.00 c31 = 1.00 cy1 = 1.00
s12 = 1.00 S22 = 1.00 s3, = 1.00 s42 = 1.00 ¢, =1.00 Cyp =132 c3, =081 cy2 =093
s13 =043 S,3 = 0.39 S33 = 0.65 S,3 = 0.90 c3 =100 cy3 = 1.00 c33 = 1.65 €43 = 1.82
consequent s34 = 0.62 Sp4 = 1.00 s34 = 1.00 S44 = 1.00 ¢4 = 1.00 C24 = 1.09 c34 = 1.00 csq = 1.00
parameters s15 = 0.87 S,5 = 0.10 S35 = 1.00 s,5 = 1.00 s =110 c5 = 1.00 c35 = 1.55 €45 = 1.90
s16 = 1.00 Sz6 = 1.00 s36 = 1.00 Sa6 = 1.00 ¢16 = 1o cy6 = 1.00 c36 = 1.00 ¢4 = 1.00
s17 = 0.69 Sp7 = 0.66 s37 = 0.31 S47 = 0.06 ¢,; =0.80 Cy7 =0.72 c37 = 0.67 cy7 =081
s = 0.96 S8 =0.11 S3g = 0.54 s, = 0.21 g =110 cy8 = 1.00 c3g = 0.92 €48 = 0.59
510 =0.30 Sp9 = 0.32 S39 = 0.36 S49 =0.98 ¢19 = 0.95 Cp9 =0.77 c39 =100 Cy9 = 1.00
5310 = 0.35 Sp10 = 0.31 S310 = 0.54 S410=0.50 | €110 =1.00 | cp19=0.44 C310 = 0.64 €410 = 0.89

Example 2: A real solar cell system is shown in Fig. 10.

alogen

ATOR MODEL SIN- 1008

25 Hle ad oBiws

T

()

Figure 10. Experimental solar cell testing system (a) and a solar cell (b).
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In this example u(k),k = 1,...,600 is solar radiation that is fed to
the real solar cell system and obtain the 600 samples of y(k). The other
details are the same as proposed NCPRT2FES in examples 1 and 2. Fig.
11 shows the identification results of the NCPRT2FS for three solar
radiations. Here the plant output (solid line) and the NCPRT2FS
identifier output (dashed line) is shown.

150 T T T T
Solar radiation= 1000 W/m2
1251 .
olar radiation= 800 W/m:
—~ 100[ ]
= Solar radiation= 600 W/m2
—
o 75 .
2
8 W
50 .
25F .
0 ! ! ! ! ! i
0 5 10 15 20 25 30 35
Voltage (volt)
Figure 11. Identification results of the NCPRT2FS for solar cell.
After structure learning, for NCPRT2FS three rules are generated
and the Root Mean Square Error (RMSE) value for the NCPRT2FS and
IT2-TSK-ENN for training and test are shown in table 3. The final values
of NCPRT2FS parameters are shown in Table 3.
Table 3. The final values of NCPRT2FS parameters.
my i %
u(k) my, = 251 Zmy, = 332 011 =43
1 _ 2 - 0y =12
Antecedent 1m21 598 2m21 615 21_ 11
ms; = 798 May = 949 031 =
parameters 1 2
y(k-1) my, = 69 my, =75 g2 =11
1mzz =82 zmzz =89 02 =5
"ms, =93 2my, = 97 03, =3
wl =020 wl = 0.06 wh=0.12 wl = 0.09
fourth layer adaptive —
w2 = 1.80 w2 = 1.00 W2 = 1.42 wZ = 0.98
weights
¢ W2 =057 wi =021 W = 1.93 wf = 1.10
Rule 1 Rule 2 Rule 3 Rule 1 Rule 2 Rule 3
S10 = 0.10 S20 = 0.84 S30 = 1.00 Ci10 = 0.56 C20 = 1.00 C30 = 1.22
1. =032 21 = 0.39 S31 = 0.37 i, = 0.94 21 = 1.60 31 = 1.00
12 = 1.00 Sp2 =10 S32 = 0.61 1z = 1.00 a2 = 1.00 32 = 1.00
513 =0.22 Sp3 =120 s33 = 0.50 c1,3 = 1.00 c3 =177 ¢33 =120
consequent S14=0.10 Sp4 = 042 S34 = 1.00 14 =161 24 = 0.60 34 =163
parameters 15 = 0.47 Sy =10 s35 = 1.00 15 =130 25 = 1.00 35 = 2.00
S16 = 0.10 S26 = 1.00 S36 = 1.00 C16 = 1.00 C26 = 1.11 C36 = 1.00
s1, =1.20 27 = 1.00 S37 = 0.19 1, =110 a7 = 150 3, = 0.88
SI,S =1.00 SZ,B =0.36 53,8 = 0.69 Cl,g = 1.60 CZ,B =0.89 C3,8 =091
S1,9 = 1.00 S29 = 0.28 S39 = 0.11 Ci19 = 1.53 C29 = 0.95 C39 = 0.48
S1,10 = 0.55 S2,10 = 0.35 S$3,10 = 0.50 Ci110 = 0.88 C210 = 1.00 C310 = 1.00

The trained NCPRT2FS is used to calculate the solar power of Ilam. Fig. 12 shows the solar radiation of Ilam for a year. Fig. 13 shows the predicted solar power in Ilam.
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Figure 12. Solar radiation of Ilam.
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Figure 13. Predicted solar power in ILAM for a year.
Table 4. presents the comparison of our proposed method with another
method (method of [46]).
Table 4. Comparison between results of the proposed method and the
method of [46].
Example Method of [46] Proposed NCPRT2FS
- Rules | epochs | Run Time RMSE Rules | epochs | Run Time RMSE
() (s)
4 34 4 0.0159 31 6 0.0057
2 27 4 0.00759 39 7 0.0013

Simulation results show that the proposed NCPRT2FS has high
performances in function approximation and system identification.
Table 4 shows that the number of rules of the proposed NCPRT2EFS is
almost less than method of [53], accuracy of identification is better than
[53], but the training time that achieves by average of 10 times run the
program (computer processor: Dual CPU T3200 @ 2.00 GHz2.00 GHz, RAM:
2.00 GB and MATLAB 2011a), is more than [53]. The references [23, 46]
presented two different T2F neural structures. They have also been
used and evaluated only to identify some theory systems. In the present
paper, however, both the T2F neural network structure is different from
references [23] and [53] and several experimental energy systems have
been used for modeling.
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6. CONCLUSION

In this paper, a novel Nonlinear Consequent-Part Recurrent T2FS
(NCPRT2ES) for identification and prediction of renewable energy
systems was proposed. Nonlinear consequent part helps to better
model highly nonlinear systems. Recurrent structure is a useful and yet
suitable choice for modeling and identification of dynamical systems.
Adaptive learning rate helps to prevent the NCPRT2FS from trapping
into local minima. Self-evolving structure helps to get simpler structure
of NCPRT2FS by ending up with finally a minimum number of fuzzy
sets and fuzzy rules. Simulation results showed that the NCPRT2FS
based on backpropagation algorithm with adaptive learning rate
performs better than IT2-TSK-FNN [53] in identification of highly
nonlinear time-varying systems. S47-660 kw wind turbine (VESTAS
company Denmark) and a solar cell were selected as case studies. After
data gathering, the proposed method was finally used the experimental
data for the purpose of identification. The RMSE was less than 0.006
and the number of fuzzy rules was equal and less than 4 rules, so the
results easily approved the remarkable capability of the NCPRT2FS
developed in the paper. In order to continue the work and look to the
future, we can use the evolutionary algorithms as a complement to the
proposed method for the development of the fuzzy neural network (to
increase accuracy, increase convergence, etc.). On the other hand,
different case studies (types of solar cells, types of wind turbines, etc.)
should be identified and the appropriate renewable system can be
extracted for each geographical location.
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Data Availability: The data that support the findings of this study are

available from the corresponding author, (j.tavoosi@ilam.ac.ir ), upon
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