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Abstract: A novel Nonlinear Consequent-Part Recurrent-Type-2 Fuzzy System 
(NCPRT2FS) is presented for renewable energy systems modeling. Not only 
does this paper present a new architecture of type-2 fuzzy system (T2FS) for 
identification and behavior prognostication of an experimental solar cell set 
and a wind turbine, but also it brings forward an exquisite technique to acquire 
an optimal number of membership functions (MFs) and the corresponding 
rules. Using nonlinear functions in the “Then” part of fuzzy rules, introducing 
a new mechanism in structure learning, using adaptive learning rate and 
convergence analysis of the learning algorithm are the innovations of this 
paper. Another novel innovation is using some optimization techniques 
(including pruning fuzzy rules, initial adjustment of MFs). Eventually, solar 
cell photo-voltaic and wind turbine are deemed as case studies. The 
experimental data are exploited and the consequent yields emerge so 
persuasive. The root mean square error is less than 0.006 and the number of 
fuzzy rules is equal or less than 4 rules, which indicates the very good 
performance of the presented fuzzy neural network. Finally, the obtained 
model is used for the first time for a geographical area for feasibility of 
renewable energies. 

Keywords: Self-Evolving; Nonlinear Consequent-Part; Convergence Analysis; 
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1. Introduction 
Neural networks share lots of significant benefits such as 

landmark computation ability, parallel processing and adaptation. The 
fuzzy systems are competent of utilization of the expert knowledge 
entitled by "if-then rules" and own actual parameter concepts. As 
everyone knows, mathematical modeling is a substantial preliminary 
in many control issues. On the other hand, prediction, simulation and 
modeling of complicated systems established upon physical and 
chemical principals appear so industrious in such a way that they will 
not yield consolidated mathematical forms [1]. One may suggest 
system identification as a solution to cope with this problematic issue. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 5 March 2021                   doi:10.20944/preprints202103.0178.v1

©  2021 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202103.0178.v1
http://creativecommons.org/licenses/by/4.0/


 

2 

This method puts the mathematical equations at the access utilizing 
input-to-output data analysis for increasing the efficiency of dynamic 
process calculations [2]. Computational intelligence lies among the 
efficient methods with an excellent fulfillment. Many papers have 
recently been published on fuzzy modeling and identification. 
Nonlinear system identification, founded on fuzzy and neuro-fuzzy 
models, was surveyed [3]. Computational intelligence gets so feasible 
in the area of renewable energy [4]. For design MPPT control [5], solar 
water heater selection [6], Photovoltaic system failure diagnosis [7] and 
solar power plant location alternatives [8] the computational 
intelligence has been used. Neural networks were also used by 
Grahovac et al. [9] in order to model and make anticipation of bio-
ethanol generation from intermediates and byproducts yielded in beet-
to-sugar procedure. The productivity of the neuro-fuzzy controller in 
extraction of the maximum yield by flow and energy optimization was 
demonstrated by Khiareddine et al. [10] in comparison with fuzzy and 
algorithm controllers.  It was asserted that the neuro fuzzy controller 
is worthy of being implemented in experimental agricultural station at 
Sahline in Tunisia. Ocario et al. [11] testified wind power forecasts in 
the Portuguese system exploiting a novel hybrid evolutionary-adaptive 
methodology. Etemadi et al. [12] predicted the wind power produced 
by data-driven fuzzy modeling.  

Type-2 fuzzy (T2F) logic which appears more capable and flexible 
in comparison to type-1 has been being inquired during the last ten 
years. A novel method was suggested for general T2F clustering by 
Doostparast et al. [13]. Some other applications of T2F sets can be find 
in textile engineering [14] and aerospace engineering [15]. Fuzzy c-
means clustering and high order cognitive map were exerted by Lu in 
order to model and predict time series on the basis of type-1 fuzzy sets 
[16]. T2FS identification has engrossed so many researchers [17-23]. 
Abiyev et al. [17] took advantage of T2F clustering to organize 
construction of a wavelet type-2 TSK fuzzy neural system. They 
brought forth an adaptive law to update parameters of antecedent part 
and ultimately employed gradient learning algorithm to bring 
parameters of the descendant part up to date. T2FSs were applied for 
elicitation of fuzzy rules and casting derogatory features off [24]. The 
proposed mechanism took benefit of self-evolution capability in such a 
way that identification of the integral structure of the network would 
get efficient and there would be no requirement for initial start-up of 
network structure. The antecedent part and modulation parameters are 
trained in order to hold parameter learning in the network true 
utilizing error of back-propagation. Tuning parameters of the resultant 
part, the rule-ordered Kalman filter algorithm assists in network 
sharpness amelioration. Genetic algorithm [25] and PSO [26] are among 
the learning mechanism of T2F neural networks which have been 
conversed and scrutinized so far. Research development on T2F 
systems has brought about their vast usages in so many various fields 
such as time-series prediction [27], DC motor control [28], clinical 
practice guideline encryption [29], pattern recognition [30], robot 
control [31] and control of nonlinear systems [32,33]. A new smart type 
reduction is held forth in [34]. A T2FS learned through its type-1 
counterpart in [35]. The Learning process was held true merging and 
extending the type-1 membership functions. Henceforth, the novel 
constructed T2FS went under implementation on a programmable 
chip.  
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It is worthy notifying that most of the control engineers and 
system analyzers get actual systems represented in nonlinear 
dynamics; not only do these system outputs momentarily turn 
dependent upon the input, but also they appear reliant on the delayed 
inputs/outputs. This leads to a responsible consideration of both 
external and internal dynamics as a non-negligible essential remark in 
system modeling. Delayed inputs/outputs have to be used in external 
dynamics. Another feedback denoted as "recurrent neuron" have to be 
exerted in internal one either. Wu et al. [36] presented the solution of 
recurrent fuzzy neural network for the problematic temporal 
classification. Not only does this paper contribute to minimization of 
the cost function utilizing recurrent fuzzy neural network, but also it 
proposes maximization of the discriminability adopting a novel 
approach. Some modern recurrent fuzzy systems get presented in [37]. 
The special kind of neural network in the resultant part functions input 
variables in a nonlinear manner. Hardly have there been studies on 
recurrent T2F systems so far. Some of them are surveyed in following. 
A contributive recurrent interval T2FS is held forth in order to identify 
nonlinear systems in [30]. The novel technique requires initial 
knowledge about system order and the number of delayed inputs as 
well. Furthermore, the convergence issue in the learning algorithm is 
not taken into consideration and conversed even theoretically. Juang et 
al. [15] put forth another contributive recurrent T2F neural network to 
model dynamical systems. That there is not any rule pruning, is the 
major defect with their work. It could bring about extremely 
overlapped fuzzy sets. Soft switching of nonlinear model is superior to 
linear one in order to identify nonlinear systems [1]. Consequently, our 
suggested technique is established upon nonlinear resultant part in 
fuzzy rules. Rarely may one find comprehensive works on nonlinear 
consequent part in fuzzy systems; however, some of the studies on the 
arena are shortly surveyed in following. Reduction of the number of 
rules was carried out by Moodi in a fuzzy system using TSK fuzzy 
model accompanied by nonlinear consequent part [38]. The resultant of 
a rule is supposed to comprise a linear term and a nonlinear one. In 
their attempts, the numerous rules get decreased and the model 
precision simultaneously shows increase at the cost of complication 
abundance in the fuzzy model. The NFNN was constructed applying 
fuzzy rules which merge nonlinear functions. Linear consequent part 
requires more rules on the ground of achieving the aspired precision 
during modeling complicated nonlinear processes. The more number 
of rules is equal with the more number of neurons [39]. Some recently 
work on T2F neural networks can be seen in many applications such as 
2DOF robot control [40], 3 parallel robot control [41], PMSM control 
[42], water temperature control [43,44], environmental temperature 
control [45] and UAV control [46]. Tavoosi and Badamchizadeh [47] 
proposed a T2S with linear "then part" for dynamic modeling. Their 
pivotal contribution was rule pruning in such a way that increase in 
learning speed would be targeted to attain reduction of the parameters 
in both MF parameters and descendant parts. Tavoosi et al [48,49] made 
another contribution to the issue holding forth a novel technique for 
analyzing stability of one class of T2F systems. Another analyzing 
method of stability was also suggested by Jahangiri et al. [50]. Suratgar 
and Nikravesh [51] proposed a modern technique of fuzzy linguistic 
modeling and the integral stability analysis as well. In [52] a fuzzy 
neural network has been used for the wind speed forecasting. In [53] a 
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comparison between ANFIS and autoregressive method for wind 
speed/power prediction has been done. In [54] a fuzzy control on basis 
of predictive technique for a governing system has been presented. In 
[55] a multilayer perceptron is combined with an adaptive fuzzy 
system to forecast performance of a wind turbine. Some disadvantages 
and shortcomings of the works studied above are: lack of convergence 
proof, long training time (not usable in online applications), high 
complexity of the model, lack of proper accuracy. On the other hand, 
so far no applied research has been done to use renewable energies in 
the Ilam region. 

So, this paper proposes NCPRT2FS for nonlinear system 
identification. The nonlinear systems here are the same as solar cells 
and wind turbines. The objective of identifying the system is to use it 
to specify the efficiency of the renewable energy system in the Ilam 
region. The innovations of this article that set it apart from other works 
are as follows: 1- Using nonlinear functions in the “Then” part of fuzzy 
rules. 2- Introducing a new mechanism in structure learning. 3- Using 
adaptive learning rate (Different from the previous works of others). 4- 
Convergence analysis of the T2F neural network learning algorithm 
presented in this article. 5- Finally, in this article, some optimization 
techniques (including pruning fuzzy rules, initial adjustment of MFs, 
etc.) are performed. The paper gets sectioned in six divisions. Section 2 
comes next surveying T2F logic shortly. Section 3 entails inspection of 
the structure of NCPRT2FS finally presenting identification of structure 
and parameters. Learning convergence of NCPRT2FS is subsumed 
relying upon Lyapunov theory in section 4. Section 5 holds forth 
simulative identification studies taking into account solar cell photo-
voltaic and wind turbine as the case studies and utilizing their 
experimental data. 

2. A Review on Type-2 Fuzzy Sets and Systems 
Firstly, Zadeh brought forward type-1 fuzzy logic, and introduced 

T2F one in order to improve resolution in some problems of type-1 ten 
years later. He deemed a fuzzy set which its MF was a fuzzy one 
entitled "type-2 fuzzy set". T2F sets may be usually exploited when the 
determination of accurate membership function turns so arduous. For 
instance, some time series prediction lie among the problematic cases 
which necessitate usage of T2F sets. Hence, exploiting T2F sets emerges 
so advantageous in order to describe some system behaviors.  

Certain defects with type-1 fuzzy sets were scrutinized by Castro 
et al. [56]. Research on T2F systems were so confined before years of 
1998. Critical and controversial questions and debate on T2F logic and 
its usage commenced after publication of a book which contained 
solidarity and intersection of T2F sets [57]. Extensive information on 
T2FS computation, such as defuzzification and type reduction, was 
suggested by Mendel [58].  A general T2F set, 𝐴ሚ, may be specified by 
(1): 

𝐴ሚ = න 𝜇஺෨(𝑥)/𝑥
௫∈௑

=
∫ ൤∫

𝑓௫(𝜇)
𝜇ఓ∈௃ೣ

൨
௫∈௑

𝑥
                                                                         (1) 

where 𝜇஺෨(𝑥)  is a secondary MF, 𝐽௫  represents the primary 
membership of 𝑥 ∈ 𝑋 , with 𝜇 ∈ 𝐽௫  , and 𝑓௫(𝜇) ∈ [0,1]  denotes a 
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secondary membership. The primary and secondary MFs in Gaussian 
form are illustrated in Fig. 1.   

 

Figure 1. Primary and secondary MF. 

 

Note that, the secondary MFs will be interval sets and the fuzzy 
set would be interval T2F ones while 𝑓௫(𝜇) = 1 , ∀𝜇 ∈ 𝐽௫ ⊆ [0,1]. For 
more explanation, a crisp number would be fuzzified in two stages 
supposing that Gaussian MF were exerted to attain a T2F number. First 
off, 

 

𝜇ଵ = exp ቆ−0.5.
(𝑥 − 𝑀)ଶ

𝜎௫
ଶ ቇ                                                                  (2) 

where 𝜇ଵ  is primary membership, 𝑀  and 𝜎௫  are the primary 
mean and spread of Gaussian MF, respectively, then 

𝜇ଶ(𝑥, 𝜇ଵ) = exp ቆ−0.5.
(𝑎 − 𝜇ଵ(𝑥))ଶ

𝜎௠
ଶ ቇ                                                          (3) 

where 𝜇ଶ(𝑥, 𝜇ଵ) is secondary degree, 𝑎 ∈ [0,1] is the domain of 
secondary MF for each 𝑥 and 𝜎௠ is the secondary spread of Gaussian 
MF. 

Simple and special sort of general T2F sets turn as interval T2F one. 
Figure 2 depicts two interval T2F sets. A fuzzy set specified by a MF of 
Gaussian form with the mean value of m and a standard deviation 
amount in interval of [𝜎ଵ,𝜎ଶ] is demonstrated on Fig 2.a.Two cases of 
interval T2F sets are given in Fig 2. Fig 2.b illustrates a fuzzy set with a 
MF of Gaussian form encompassing a distinct standard deviation of σ. 
However, the mean value is quite uncertain and adopts values in the 
interval of [𝑚ଵ, 𝑚ଶ]. 
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a                                                                            b 

Figure 2. a) Uncertainty in width b) uncertainty in center. 

MF of Gaussian form with determined standard deviation of σ and 
uncertain mean, seen in Fig. 2.a, is applied through all this paper. 

2.1. Type-2 Fuzzy Systems 
One may gain a crisp number defuzzifying the type-1 fuzzy [59] 

system-output whereas T2FS yields a T2F set. That is the reason one has 
to make endeavor to succeed in reduction of fuzzy set type from two to 
one in a process entitled "Type Reduction". The process is a challenging 
issue of high significance in T2F systems [60]. Figure 3 displays the 
structure of a T2F system. 

 

Figure 3. The structure of a T2F system. 

As it could be easily grasped through Fig 4, construction of the 
T2FS will be the same as organization of type-1 if the "Type-Reduction" 
block is neglected. 

3. The Proposed NCPRT2FS 
Section 3 tries to consolidate the nonlinear descendant or resultant 

part of recurrent T2F systems into a formula. Reviewing two 
informative useful points mentioned later, the descriptive equation of 
(1) establishes the kth rule;  

1) Type-2 TSK fuzzy systems, usually yield a polynomial 
constructive of the inputs,  

2) The output and its coefficients in are type-1 fuzzy sets [61].  
This paper recommends a novel NCPRT2FS which its total 

construction is illustrated in Fig. 4. As one may see, the system 
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obviously embodies seven layers. Generally speaking, the kth rule 
would be demonstrated in following terms in a first-order interval 
type-2 linear TSK model with M rules and n inputs: 

 
𝑅௞: 𝑖𝑓 𝑥ଵ 𝑖𝑠 𝐴ሚଵ

௞ 𝑎𝑛𝑑 … 𝑎𝑛𝑑 𝑥௡  𝑖𝑠 𝐴ሚ௡
௞  𝑡ℎ𝑒𝑛 𝑦෤௞ = 𝐶௞,଴ + 𝐶௞,ଵ𝑥ଵ + ⋯ +

𝐶௞,௡𝑥௡                  (5) 
where 𝑘 = 1, … , 𝑀  is the rules number,  𝑥௜(𝑖 = 1, … , 𝑛)  are 

inputs, 𝑦෤௞  is output of the 𝑘𝑡ℎ rule. 𝑦෤௞ is an interval type-1 fuzzy set 
𝐴ሚ௜

௞  are antecedent sets, 𝐶௞,௜ ∈ ൣ𝑐௞,௜ − 𝑠௞,௜ , 𝑐௞,௜ + 𝑠௞,௜൧  represent 
consequent sets, that 𝑐௞,௜  represents the center  of 𝐶௞,௜  and 𝑠௞,௜is the 
spread of 𝐶௞,௜. 

In this paper, nonlinear consequent part is taken into account. The 
resulting kth rule in NCPRT2FS which has got two antecedent variables 
and three outputs with delayed time-shift ranging from one unit to 3 in 
the descendant part is demonstrated in (2): 

𝑅௞: 𝑖𝑓  𝑥ଵ  𝑖𝑠  𝐴ሚଵ
௞   𝑎𝑛𝑑    𝑥ଶ  𝑖𝑠  𝐴ሚଶ

௞   𝑡ℎ𝑒𝑛   
 𝑦෥௞ = 𝐶௞,଴ + 𝐶௞,ଵ𝑥ଵ + 𝐶௞,ଶ𝑥ଶ + 𝐶௞,ଷ𝑦(𝑡 − 1) + 𝐶௞,ସ𝑥ଵ𝑥ଶ + 𝐶௞,ହ𝑥ଵ𝑦(𝑡 − 1) + 𝐶௞,଺𝑥ଶ𝑦(𝑡 − 1) 

+𝐶௞,଻𝑥ଵ
ଶ + 𝐶௞,଼𝑥ଶ

ଶ + 𝐶௞,ଽ𝑦ଶ(𝑡 − 1) + 𝐶௞,ଵ଴𝑥ଵ𝑥ଶ𝑦(𝑡 − 1)                                   (6) 

One may make an extension to fuzzy rule (2) considering n 
antecedent variables and time-delayed outputs in descendant part with 
delaying shift in time ranging from one unit to m units. n may be 
designed remarking nonlinearity degree and complexity of the 
unknown system which is going to be identified next. 

 
Figure 4. The structure of the proposed NCPRT2FS. 

The layers’ details are as: 
Layer 0: This layer is inputs layer.  
Layer 1: The output of fuzzification are written as: 

𝜇௞,௜(𝑥௜ , ൣ𝜎௞,௜, 𝑚௞,௜
ଵ ൧)ଵ = 𝑒

ି.ହቆ
௫೔ି ௠ೖ,೔

భ

ఙೖ,೔
ቇ

మ

                                                                      (5) 

𝜇௞,௜(𝑥௜ , ൣ𝜎௞,௜, 𝑚௞,௜
ଶ ൧)ଶ = 𝑒

ି.ହቆ
௫೔ି ௠ೖ,೔

మ

ఙೖ,೔
ቇ

మ

                                                                      (6) 

where 𝑚௞,௜ ∈ ൣ 𝑚௞,௜
ଵ , 𝑚௞,௜

ଶ ൧  and 𝜎௞,௜  are uncertain mean and 
spread for 𝑘𝑡ℎ rule and 𝑖𝑡ℎ input. 
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Layer 2: The T-norm and S-norm are computed as: 
𝜇௞,௜(𝑥௜) = 𝜇௞,௜

ଵ (𝑥௜). 𝜇௞,௜
ଶ (𝑥௜)  ,        𝑘 = 1,2, … , 𝑀  , 𝑖 = 1,2, … , 𝑛                     (7)  

𝜇̅௞,௜(𝑥௜) = 𝜇௞,௜
ଵ (𝑥௜) + 𝜇௞,௜

ଶ (𝑥௜) − 𝜇௞,௜(𝑥௜)                                                                 (8) 

Layer 3: The rule firings (𝑓௞ and 𝑓̅௞)  are: 

𝑓௞ = ෑ 𝜇௞,௜

௡

௜ୀଵ

   ;       𝑓̅௞ = ෑ 𝜇̅௞,௜

௡

௜ୀଵ

                                                                                  (9) 

Layer 4: The left-most/right-most firing are obtained as: 

𝑓௟
௞ =

𝑤ഥ௟
௞𝑓̅௞ + 𝑤௟

௞𝑓௞

𝑤ഥ௟
௞ + 𝑤௟

௞  ;    𝑓௥
௞ =

𝑤ഥ௥
௞𝑓̅௞ + 𝑤௥

௞𝑓௞

𝑤ഥ௥
௞ + 𝑤௥

௞
                                                           (10) 

where 𝑤 are adjustable weights. 
Layer 5: The rule left/right firings are: 

𝑦௟
௞ = 𝑐௞,଴ + 𝑐௞,ଵ𝑥ଵ + 𝑐௞,ଶ𝑥ଶ + 𝑐௞,ଷ𝑦(𝑡 − 1) + 𝑐௞,ସ𝑥ଵ𝑥ଶ + 𝑐௞,ହ𝑥ଵ𝑦(𝑡 − 1) + 𝑐௞,଺𝑥ଶ𝑦(𝑡 − 1)    + 𝑐௞,଻𝑥ଵ

ଶ

+ 𝑐௞,଼𝑥ଶ
ଶ + 𝑐௞,ଽ𝑦ଶ(𝑡 − 1) + 𝑐௞,ଵ଴𝑥ଵ𝑥ଶ𝑦(𝑡 − 1) − 𝑠௞,଴ − 𝑠௞,ଵ|𝑥ଵ| − 𝑠௞,ଶ|𝑥ଶ| − 𝑠௞,ଷ|𝑦(𝑡 − 1)|

− 𝑠௞,ସ|𝑥ଵ𝑥ଶ| −  𝑠௞,ହ|𝑥ଵ𝑦(𝑡 − 1)| − 𝑠௞,଺|𝑥ଶ𝑦(𝑡 − 1)| − 𝑠௞,଻𝑥ଵ
ଶ − 𝑠௞,଼𝑥ଶ

ଶ − 𝑠௞,ଽ𝑦ଶ(𝑡 − 1)

− 𝑠௞,ଵ଴𝑥ଵ𝑥ଶ𝑦(𝑡 − 1)                     

(11) 

 𝑦௥
௞ = 𝑐௞,଴ + 𝑐௞,ଵ𝑥ଵ + 𝑐௞,ଶ𝑥ଶ + 𝑐௞,ଷ𝑦(𝑡 − 1) + 𝑐௞,ସ𝑥ଵ𝑥ଶ + 𝑐௞,ହ𝑥ଵ𝑦(𝑡 − 1) + 𝑐௞,଺𝑥ଶ𝑦(𝑡 − 1)    + 𝑐௞,଻𝑥ଵ

ଶ

+ 𝑐௞,଼𝑥ଶ
ଶ + 𝑐௞,ଽ𝑦ଶ(𝑡 − 1) + 𝑐௞,ଵ଴𝑥ଵ𝑥ଶ𝑦(𝑡 − 1) + 𝑠௞,଴ + 𝑠௞,ଵ|𝑥ଵ| + 𝑠௞,ଶ|𝑥ଶ| + 𝑠௞,ଷ|𝑦(𝑡 − 1)|

+ 𝑠௞,ସ|𝑥ଵ𝑥ଶ| +  𝑠௞,ହ|𝑥ଵ𝑦(𝑡 − 1)| + 𝑠௞,଺|𝑥ଶ𝑦(𝑡 − 1)| + 𝑠௞,଻𝑥ଵ
ଶ + 𝑠௞,଼𝑥ଶ

ଶ + 𝑠௞,ଽ𝑦ଶ(𝑡 − 1)

+ 𝑠௞,ଵ଴𝑥ଵ𝑥ଶ𝑦(𝑡 − 1)     

(12) 

Layer 6:  𝑦ො௟ and 𝑦ො௥ are: 

𝑦ො௟ =
∑ 𝑓௟

௞𝑦௟
௞ெ

௞ୀଵ

∑ 𝑓௟
௞ெ

௞ୀଵ

                                                                      (13) 

𝑦ො௥ =
∑ 𝑓௥

௞𝑦௥
௞ெ

௞ୀଵ

∑ 𝑓௥
௞ெ

௞ୀଵ

                                                                      (14) 

Layer 7: The output is: 

𝑦ො =
𝑦ො௟ + 𝑦ො௥

2
                                                                             (15) 

Structure learning is realized exploiting T2F clustering in this 
article. As one knows, an efficacious rule and fuzzy set turn-out 
algorithm is suggested to procreate fuzzy rules in real-time and 
decrease the number of fuzzy sets in antecedent part in structure 
learning [62]. Structure learning appears as a great assistance in 
simplification of T2FS taking advantage of reduction of the fuzzy rules. 
Scrutinizing more, its duty is not only production of novel membership 
but also pruning additional MFs and rules. In the input space, a rule 
geometrically corresponds to a cluster. Its firing strength could be taken 
into account as the degree through which input data belongs to the 
cluster. The center of the firing strength in the NCPRT2FS is calculated 
by (16) since it is an interval. 

 

𝑓௞ =
𝑓௞ + 𝑓̅௞

2
                                                                         (16) 

And for generation a new MF, find 
 

𝜇
஺෨೔

ೖ =
𝜇

஺෨೔
ೖ + 𝜇̅

஺෨೔
ೖ

2
      ,     𝑖 = 1,2, … , 𝑛                                  (17) 

 

For each incoming data 𝑥⃗ = {𝑥ଵ, … , 𝑥௡}, calculate 
𝐼 = arg max

ଵஸ௞ஸெ(௧)
𝑓௞                                                               (18) 

 

For each newly generated rule, compute 
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𝐼௜ = arg max
ଵஸ௞ஸ௞೔(௧)

𝜇
஺෨೔

ೖ      ,     𝑖 = 1,2, … , 𝑛                        (19) 

 

where 𝑀(𝑡) and 𝑘௜(𝑡) are the existing rules number at time t and 
the number of fuzzy sets in input variable i, respectively. If 𝐼 ≤ ∅௧௛, the 
system generate a new rule. Where ∅௧௛ ∈ (0 1)  is a threshold that 
defined [63]. If 𝐼௜ > 𝜌, where 𝜌 ∈ [0 1], is a threshold defined before, 
then use the existing fuzzy set 𝐴ሚ௜

ூ೔ as the antecedent part of the new 
rule in input variable 𝑖. Otherwise, one could turn out a novel fuzzy set 
in input variable i and hold the equation, 𝑘௜(𝑡 + 1) = 𝑘௜(𝑡)+1, true. The 
number of fuzzy sets is defined by the parameter ρ in each input 
variable. Fuzzy clustering is a technique to structure a fuzzy model [64]. 
A new T2F clustering technique which is a development of 
Krishnapuram and Keller Possibilistic C-Mean (PCM) [65] is suggested 
and described by the following equations: 

𝐽௠(𝑥, 𝜇෤, 𝑐) = 𝑚𝑖𝑛 ቎෍ ෍ 𝜇෤௜௝
௠𝐷௜௝ + ෍ 𝜂௜

௖

௜ୀଵ

ே

௝ୀଵ

௖

௜ୀଵ

෍൫1 − 𝜇෤௜௝൯
௠

ே

௝ୀଵ

቏                          (20) 

𝑆. 𝑇:

⎩
⎪
⎨

⎪
⎧0 < ෍ 𝜇෤௜௝

ே

௝ୀଵ

< 𝑁       

𝜇෤௜௝ ∈ [0,1]          ∀𝑖, 𝑗

max 𝜇෤௜௝ > 0      ∀𝑗   

                                                                 (21) 

where 𝜇෤௜௝  is type-2 MF in the 𝑗௧௛  data for the 𝑖௧௛  cluster, 
Moreover, the symbols 𝐷௜௝, c, and N are the Euclidean distance of the 
𝑗௧௛  data in the 𝑖௧௛ cluster center, number of clusters and the number 
of input data, respectively.  𝜂௜ is also a positive number. 𝐷௜௝  has to be 
as small as possible as the first term. On the other hand, the 
membership values in a cluster have to be as large as possible as the 
second term as well. They have to stay in the interval of [0 1] and their 
sum is confined to get smaller than the number of input data. Equation 
(21) appears as the descriptive term. That 𝜂௜ corresponds to ith cluster 
and is of the order of 𝐷௜௝, is greatly welcomed [65]. The distance to the 
cluster’s center must be as low as possible (first term). It is desirable 
that 𝜂௜ relate to 𝑖௧௛ cluster and be of the order of 𝐷௜௝  [63]. 

𝜂௜ =
∑ 𝜇෤௜௝

௠𝐷௜௝
ே
௝ୀଵ

∑ 𝜇෤௜௝
௠ே

௝ୀଵ

        ∀𝑖 = 1, … , 𝑐 

Using (20) the optimal value of centers of the clusters are achieved. 
The initial uncertain mean 𝑚௞,௜  and standard deviation 𝜎௞,௜  for the 
𝑘௜(𝑡 + 1) th interval T2F set in input variable 𝑖 are 

 
𝑚௞,௜ ∈ [𝑣௜ − 0.1𝑣௜ , 𝑣௜ + 0.1𝑣௜]                                                                     

 

𝜎 ௞೔(௧ାଵ)௜ = 𝛽 ቤ𝑣௜ −
𝑚ூ೔,௜

ଵ +  𝑚ூ೔,௜
ଶ

2
ቤ                                                         

 

Where, 𝑣௜  is the optimal value of the clusters center, β > 0 
denotes the degree of overlap between 2 fuzzy sets. In this paper, we 
sets β at 0.5 so that the spread of the new fuzzy set is 50% the distance 
between the average centers of the new fuzzy set and fuzzy set I୧, so it 
generate suitable overlapping between fuzzy numbers [61]. The initial 
of parameters in the consequent part are set to 

ൣ𝑐௞,଴ − 𝑠௞,଴, 𝑐௞,଴ + 𝑠௞,଴൧ =  [𝑦𝑑 − 0.1, 𝑦𝑑 + 0.1]         ,        𝑘 = 1,2, … , 𝑀                     (22) 
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where 𝑦𝑑 is the desired output for input 𝑥⃗ = {𝑥ଵ, … , 𝑥௡}. All the 
other consequent parameters are zero. 

By repeating the above process for each training data, it creates 
new rules one after the other until NCPRT2FS is finally complete. For 
learning of the network, adaptive learning rate backpropagation is 
used. The network output is calculated for each input applied. The 
calculated output is then compared to the target to obtain an error. 
Assume that the input-output data pair ൛൫𝑥௣: 𝑡௣൯ൟ ∀𝑝 = 1, … , 𝑞, where 
𝑝 is the number of data, x and t are the input and output, respectively. 
NCPRT2FS output error can be expressed as follows: 

𝑒௣ = 𝑡௣ − 𝑦ො௣,                                                                           (23) 

𝐸௣ =
1

2
𝑒௣

ଶ =
1

2
൫𝑡௣ − 𝑦ො௣൯

ଶ
                                                     (24) 

𝐸 = ෍ 𝐸௣

௤

௣ୀଵ

                                                                             (25) 

To update the consequent part parameters, the equations (26)–(45) 
are used.  

𝑐௞,଴
௡௘௪ = 𝑐௞,଴

௢௟ௗ + 𝜂. 0.5. 𝑒௣. ቈ
𝑓௟

௞

∑ 𝑓௟
௞ெ

௞ୀଵ

+
𝑓௥

௞

∑ 𝑓௥
௞ெ

௞ୀଵ

቉                                         (26) 

𝑐௞,௜
௡௘௪ = 𝑐௞,௜

௢௟ௗ + 𝜂. 0.5. 𝑒௣. ቈ
𝑓௟

௞

∑ 𝑓௟
௞ெ

௞ୀଵ

+
𝑓௥

௞

∑ 𝑓௥
௞ெ

௞ୀଵ

቉ . 𝑥௜           𝑖 = 1,2          (27) 

  𝑐௞,ଷ
௡௘௪ = 𝑐௞,ଷ

௢௟ௗ + 𝜂. 0.5. 𝑒௣. ቈ
𝑓௟

௞

∑ 𝑓௟
௞ெ

௞ୀଵ

+
𝑓௥

௞

∑ 𝑓௥
௞ெ

௞ୀଵ

቉ . 𝑦(𝑡 − 1)                      (28) 

𝑐௞,ସ
௡௘௪ = 𝑐௞,ସ

௢௟ௗ + 𝜂. 0.5. 𝑒௣. ቈ
𝑓௟

௞

∑ 𝑓௟
௞ெ

௞ୀଵ

+
𝑓௥

௞

∑ 𝑓௥
௞ெ

௞ୀଵ

቉ . 𝑥ଵ. 𝑥ଶ                            (29) 

𝑐௞,ହ
௡௘௪ = 𝑐௞,ହ

௢௟ௗ + 𝜂. 0.5. 𝑒௣. ቈ
𝑓௟

௞

∑ 𝑓௟
௞ெ

௞ୀଵ

+
𝑓௥

௞

∑ 𝑓௥
௞ெ

௞ୀଵ

቉ . 𝑥ଵ. 𝑦(𝑡 − 1)                (30) 

𝑐௞,଺
௡௘௪ = 𝑐௞,଺

௢௟ௗ + 𝜂. 0.5. 𝑒௣. ቈ
𝑓௟

௞

∑ 𝑓௟
௞ெ

௞ୀଵ

+
𝑓௥

௞

∑ 𝑓௥
௞ெ

௞ୀଵ

቉ . 𝑥ଶ. 𝑦(𝑡 − 1)               (31) 

𝑐௞,଻
௡௘௪ = 𝑐௞,଻

௢௟ௗ + 𝜂. 0.5. 𝑒௣. ቈ
𝑓௟

௞

∑ 𝑓௟
௞ெ

௞ୀଵ

+
𝑓௥

௞

∑ 𝑓௥
௞ெ

௞ୀଵ

቉ . 𝑥ଵ
ଶ                                   (32) 

𝑐௞,଼
௡௘௪ = 𝑐௞,଼

௢௟ௗ + 𝜂. 0.5. 𝑒௣. ቈ
𝑓௟

௞

∑ 𝑓௟
௞ெ

௞ୀଵ

+
𝑓௥

௞

∑ 𝑓௥
௞ெ

௞ୀଵ

቉ . 𝑥ଶ
ଶ                                   (33) 

𝑐௞,ଽ
௡௘௪ = 𝑐௞,ଽ

௢௟ௗ + 𝜂. 0.5. 𝑒௣. ቈ
𝑓௟

௞

∑ 𝑓௟
௞ெ

௞ୀଵ

+
𝑓௥

௞

∑ 𝑓௥
௞ெ

௞ୀଵ

቉ . 𝑦ଶ(𝑡 − 1)                     (34) 

𝑐௞,ଵ଴
௡௘௪ = 𝑐௞,ଵ଴

௢௟ௗ + 𝜂. 0.5. 𝑒௣. ቈ
𝑓௟

௞

∑ 𝑓௟
௞ெ

௞ୀଵ

+
𝑓௥

௞

∑ 𝑓௥
௞ெ

௞ୀଵ

቉ . 𝑥ଵ. 𝑥ଶ. 𝑦(𝑡 − 1) (35) 

𝑠௞,଴
௡௘௪ = 𝑠௞,଴

௢௟ௗ + 𝜂. 0.5. 𝑒௣. ቈ
𝑓௟

௞

∑ 𝑓௟
௞ெ

௞ୀଵ

−
𝑓௥

௞

∑ 𝑓௥
௞ெ

௞ୀଵ

቉                                       (36) 

𝑠௞,௜
௡௘௪ = 𝑠௞,௜

௢௟ௗ + 𝜂. 0.5. 𝑒௣. ቈ
𝑓௟

௞

∑ 𝑓௟
௞ெ

௞ୀଵ

−
𝑓௥

௞

∑ 𝑓௥
௞ெ

௞ୀଵ

቉ . |𝑥௜|      𝑖 = 1,2          (37) 

𝑠௞,ଷ
௡௘௪ = 𝑠௞,ଷ

௢௟ௗ + 𝜂. 0.5. 𝑒௣. ቈ
𝑓௟

௞

∑ 𝑓௟
௞ெ

௞ୀଵ

−
𝑓௥

௞

∑ 𝑓௥
௞ெ

௞ୀଵ

቉ . |𝑦(𝑡 − 1)|                (38) 

𝑠௞,ସ
௡௘௪ = 𝑠௞,ସ

௢௟ௗ + 𝜂. 0.5. 𝑒௣. ቈ
𝑓௟

௞

∑ 𝑓௟
௞ெ

௞ୀଵ

−
𝑓௥

௞

∑ 𝑓௥
௞ெ

௞ୀଵ

቉ . |𝑥ଵ𝑥ଶ|                          (39) 

𝑠௞,ହ
௡௘௪ = 𝑠௞,ହ

௢௟ௗ + 𝜂. 0.5. 𝑒௣. ቈ
𝑓௟

௞

∑ 𝑓௟
௞ெ

௞ୀଵ

−
𝑓௥

௞

∑ 𝑓௥
௞ெ

௞ୀଵ

቉ . |𝑥ଵ. 𝑦(𝑡 − 1)|           (40) 

𝑠௞,଺
௡௘௪ = 𝑠௞,଺

௢௟ௗ + 𝜂. 0.5. 𝑒௣. ቈ
𝑓௟

௞

∑ 𝑓௟
௞ெ

௞ୀଵ

−
𝑓௥

௞

∑ 𝑓௥
௞ெ

௞ୀଵ

቉ . |𝑥ଶ. 𝑦(𝑡 − 1)|           (41) 

𝑠௞,଻
௡௘௪ = 𝑠௞,଻

௢௟ௗ + 𝜂. 0.5. 𝑒௣. ቈ
𝑓௟

௞

∑ 𝑓௟
௞ெ

௞ୀଵ

−
𝑓௥

௞

∑ 𝑓௥
௞ெ

௞ୀଵ

቉ . 𝑥ଵ
ଶ                                  (42) 
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𝑠௞,଼
௡௘௪ = 𝑠௞,଼

௢௟ௗ + 𝜂. 0.5. 𝑒௣. ቈ
𝑓௟

௞

∑ 𝑓௟
௞ெ

௞ୀଵ

−
𝑓௥

௞

∑ 𝑓௥
௞ெ

௞ୀଵ

቉ . 𝑥ଶ
ଶ                                  (43) 

𝑠௞,ଽ
௡௘௪ = 𝑠௞,ଽ

௢௟ௗ + 𝜂. 0.5. 𝑒௣. ቈ
𝑓௟

௞

∑ 𝑓௟
௞ெ

௞ୀଵ

−
𝑓௥

௞

∑ 𝑓௥
௞ெ

௞ୀଵ

቉ . 𝑦ଶ(𝑡 − 1)                    (44) 

𝑠௞,ଵ଴
௡௘௪ = 𝑠௞,ଵ଴

௢௟ௗ + 𝜂. 0.5. 𝑒௣. ቈ
𝑓௟

௞

∑ 𝑓௟
௞ெ

௞ୀଵ

−
𝑓௥

௞

∑ 𝑓௥
௞ெ

௞ୀଵ

቉ . |𝑥ଵ. 𝑥ଶ. 𝑦(𝑡 − 1)|  (45) 

The learning rate is indicated by 𝜂.  
To update the left and right weights, the equations (46)–(49) are 

used.  

𝑤௟
௞௡௘௪ = 𝑤௟

௞௢௟ௗ + 𝜂. 0.5. 𝑒௣ ∙
𝑦௟

௞ − 𝑦ො௟

∑ 𝑓௟
௝ெ

௝ୀଵ

 .
𝑓௞ − 𝑓௟

௞

𝑤ഥ௟
௞ + 𝑤௟

௞
                                               (46) 

𝑤ഥ௟
௞௡௘௪ = 𝑤ഥ௟

௞௢௟ௗ + 𝜂. 0.5. 𝑒௣.
𝑦௟

௞ − 𝑦ො௟

∑ 𝑓௟
௝ெ

௝ୀଵ

.
𝑓̅௞ − 𝑓௟

௞

𝑤ഥ௟
௞ + 𝑤௟

௞                                                 (47) 

𝑤௥
௞௡௘௪ = 𝑤௥

௞௢௟ௗ + 𝜂. 0.5. 𝑒௣.
𝑦௥

௞ − 𝑦ො௥

∑ 𝑓௥
௝ெ

௝ୀଵ

.
𝑓௞ − 𝑓௥

௞

𝑤ഥ௥
௞ + 𝑤௥

௞
                                                (48) 

𝑤ഥ௥
௞௡௘௪ = 𝑤ഥ௥

௞௢௟ௗ + 𝜂. 0.5. 𝑒௣ ∙
𝑦௥

௞ − 𝑦ො௥

∑ 𝑓௥
௝ெ

௝ୀଵ

.
𝑓̅௞ − 𝑓௥

௞

𝑤ഥ௥
௞ + 𝑤௥

௞
                                                 (49) 

And finally the equations for updating the antecedent parameters 
can be described as follows: 

𝑚௞,௜
௡௘௪ଵ = 𝑚௞,௜

௢௟ௗଵ + 𝜂. 0.5. 𝑒௣. ൥
𝑦௟

௞ − 𝑦ො௟

∑ 𝑓௟
௝ெ

௝ୀଵ

.
𝜕𝑓௟

௞

𝜕 𝑚௞,௜
ଵ +

𝑦௥
௞ − 𝑦ො௥

∑ 𝑓௥
௝ெ

௝ୀଵ

.
𝜕𝑓௥

௞

𝜕 𝑚௞,௜
ଵ ൩                (50) 

𝑚௞,௜
௡௘௪ଶ = 𝑚௞,௜

௢௟ௗଶ + 𝜂. 0.5. 𝑒௣. ൥
𝑦௟

௞ − 𝑦ො௟

∑ 𝑓௟
௝ெ

௝ୀଵ

.
𝜕𝑓௟

௞

𝜕 𝑚௞,௜
ଶ +

𝑦௥
௞ − 𝑦ො௥

∑ 𝑓௥
௝ெ

௝ୀଵ

.
𝜕𝑓௥

௞

𝜕 𝑚௞,௜
ଶ ൩                (51) 

𝜎௞.௜
௡௘௪ = 𝜎௞.௜

௢௟ௗ + 𝜂. 0.5. 𝑒௣. ൥
𝑦௟

௞ − 𝑦ො௟

∑ 𝑓௟
௝ெ

௝ୀଵ

.
𝜕𝑓௟

௞

𝜕𝜎௞,௜

+
𝑦௥

௞ − 𝑦ො௥

∑ 𝑓௥
௝ெ

௝ୀଵ

.
𝜕𝑓௥

௞

𝜕𝜎௞,௜
൩                             (52) 

where, 
𝜕𝑓௟

௞

𝜕 𝑚௞,௜
ଵ =

𝑤ഥ௟
௞ ∙ ൣ𝑓̅௞ − 𝜇௞,௜

ଶ ∙ ∏ ൫𝜇̅௞,௟൯
௡
௟ୀଵ,௟ஷ௜ ൧ + 𝑤௟

௞ ∙ 𝑓௞

𝑤ഥ௟
௞ + 𝑤௟

௞ ∙
𝑥௜ − 𝑚௞,௜

ଵ

൫𝜎௞,௜൯
ଶ ,                      (53) 

𝜕𝑓௟
௞

𝜕 𝑚௞,௜
ଶ =

𝑤ഥ௟
௞ ∙ ൣ𝑓̅௞ − 𝜇௞,௜

ଵ ∙ ∏ ൫𝜇̅௞,௟൯௡
௟ୀଵ,௟ஷ௜ ൧ + 𝑤௟

௞ ∙ 𝑓௞

𝑤ഥ௟
௞ + 𝑤௟

௞ ∙
𝑥௜ − 𝑚௞,௜

ଶ

൫𝜎௞,௜൯
ଶ                        (54) 

𝜕𝑓௟
௞

𝜕𝜎௞,௜

=

𝑤ഥ௟
௞ ∙ ൥൫𝑓̅௞ − 𝜇௞,௜

ଶ ∙ ∏ ൫𝜇̅௞,௟൯௡
௟ୀଵ,௟ஷ௜ ൯ ∙

൫𝑥௜ − 𝑚௞,௜
ଵ ൯

ଶ

൫𝜎௞,௜൯
ଷ ൩

𝑤ഥ௟
௞ + 𝑤௟

௞
                                          

           +

𝑤ഥ௟
௞ ∙ ൥൫𝑓̅௞ − 𝜇௞,௜

ଵ ∙ ∏ ൫𝜇̅௞,௟൯௡
௟ୀଵ,௟ஷ௜ ൯ ∙

൫𝑥௜ − 𝑚௞,௜
ଶ ൯

ଶ

൫𝜎௞,௜൯
ଷ ൩

𝑤ഥ௟
௞ + 𝑤௟

௞                                           

           +

𝑤௟
௞ ∙ 𝑓௞ ∙ ൥

൫𝑥௜ − 𝑚௞,௜
ଵ ൯

ଶ
+ ൫𝑥௜ − 𝑚௞,௜

ଶ ൯
ଶ

൫𝜎௞,௜൯
ଷ ൩

𝑤ഥ௟
௞ + 𝑤௟

௞                                                (55) 

𝜕𝑓௥
௞

𝜕 𝑚௞,௜
ଵ =

𝑤ഥ௥
௞ ∙ ൣ𝑓̅௞ − 𝜇௞,௜

ଶ ∙ ∏ ൫𝜇̅௞,௟൯
௡
௟ୀଵ,௟ஷ௜ ൧ + 𝑤௥

௞ ∙ 𝑓௞

𝑤ഥ௥
௞ + 𝑤௥

௞
∙

𝑥௜ − 𝑚௞,௜
ଵ

൫𝜎௞,௜൯
ଶ                   (56) 

𝜕𝑓௥
௞

𝜕 𝑚௞,௜
ଶ =

𝑤ഥ௥
௞ ∙ ൣ𝑓̅௞ − 𝜇௞,௜

ଵ ∙ ∏ ൫𝜇̅௞,௟൯
௡
௟ୀଵ,௟ஷ௜ ൧ + 𝑤௥

௞ ∙ 𝑓௞

𝑤ഥ௥
௞ + 𝑤௥

௞
∙

𝑥௜ − 𝑚௞,௜
ଶ

൫𝜎௞,௜൯
ଶ                   (57) 
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𝜕𝑓௥
௞

𝜕𝜎௞,௜

=

𝑤ഥ௥
௞ ∙ ൥൫𝑓̅௞ − 𝜇௞,௜

ଶ ∙ ∏ ൫𝜇̅௞,௟൯
௡
௟ୀଵ,௟ஷ௜ ൯ ∙

൫𝑥௜ − 𝑚௞,௜
ଵ ൯

ଶ

൫𝜎௞,௜൯
ଷ ൩

𝑤ഥ௥
௞ + 𝑤௥

௞
                                     

           +

𝑤ഥ௥
௞ ∙ ൥൫𝑓̅௞ − 𝜇௞,௜

ଵ ∙ ∏ ൫𝜇̅௞,௟൯
௡
௟ୀଵ,௟ஷ௜ ൯ ∙

൫𝑥௜ − 𝑚௞,௜
ଶ ൯

ଶ

൫𝜎௞,௜൯
ଷ ൩ 

𝑤ഥ௥
௞ + 𝑤௥

௞
                                    

           +

𝑤௥
௞ ∙ 𝑓௞ ∙ ൥

൫𝑥௜ − 𝑚௞,௜
ଵ ൯

ଶ
+ ൫𝑥௜ − 𝑚௞,௜

ଶ ൯
ଶ

൫𝜎௞,௜൯
ଷ ൩

𝑤ഥ௥
௞ + 𝑤௥

௞
                                          (58) 

4. Convergence Analysis of Learning Algorithm 
Lyapunov function is used to learning algorithm convergence 

guarantee. Define lyaponov function as 

𝑉௣(𝑘) = 𝐸௣(𝑘) =
1

2
𝑒௣

ଶ(𝑘) =
1

2
ቀ𝑡௣(𝑘) − 𝑦ො௣(𝑘)ቁ

ଶ

                                       (59) 

Eq. (60) shows the layapunov function changes. 

∆𝑉௣(𝑘) = 𝑉௣(𝑘 + 1) − 𝑉௣(𝑘) =
1

2
(𝑒௣

ଶ(𝑘 + 1) − 𝑒௣
ଶ(𝑘))                               (60) 

Next moment error is calculated from eq. (61). 

𝑒௣(𝑘 + 1) = 𝑒௣(𝑘) + ∆𝑒௣(𝑘) ≅ 𝑒௣(𝑘) + ቈ
𝜕𝑒௣(𝑘)

𝜕𝑊
቉

்

∆𝑊                                   (61) 

In eq. (61), ∆𝑊  is parameter changing where 𝑊 = [𝜎௞,௜ , 𝑚௞,௜
ଵ , 𝑚௞,௜

ଶ , 𝑐௞,௜ , 𝑠௞,௜] 
In equation (62) the general form of gradient-based updating is 

presented. 

𝑊(𝑘 + 1) = 𝑊(𝑘) + ∆𝑊(𝑘) = 𝑊(𝑘) + 𝜂. ቆ−
𝜕𝐸௣(𝑘)

𝜕𝑊
ቇ                                 (62) 

where, 
𝜕𝐸௣(𝑘)

𝜕𝑊
= −𝑒௣(𝑘).

𝜕𝑦ො

𝜕𝑊
                                                                 (63) 

Eq. (60) can be rewritten as eq. (64). 

∆𝑉௣(𝑘) =
1

2
ቀ𝑒௣

ଶ(𝑘 + 1) − 𝑒௣
ଶ(𝑘)ቁ                                                                                                      (64) 

 
=

1

2
ൣ(𝑒௣(𝑘 + 1) − 𝑒௣(𝑘))൧. ቂቀ𝑒௣(𝑘 + 1) + 𝑒௣(𝑘)ቁቃ 

=
1

2
∆𝑒௣(𝑘) ቂ2 ቀ𝑒௣(𝑘)ቁ + ∆𝑒௣(𝑘)ቃ 

= ∆𝑒௣(𝑘) ൤𝑒௣(𝑘) +
1

2
∆𝑒௣(𝑘)൨ 

= ቈ
𝜕𝑒௣(𝑘)

𝜕𝑊
቉

்

. 𝜂. 𝑒௣(𝑘).
𝜕𝑦ො(𝑘)

𝜕𝑊
. ൝𝑒௣(𝑘) +

1

2
ቈ
𝜕𝑒௣(𝑘)

𝜕𝑊
቉

்

. 𝜂. 𝑒௣(𝑘).
𝜕𝑦ො(𝑘)

𝜕𝑊
ൡ 

= − ൤
∂yො(k)

∂W
൨

୘

. η. e୮(k).
∂yො(k)

∂W
. ൝e୮(k) −

1

2
ቈ
∂yො(k)

∂W
቉

୘

. η. e୮(k).
∂yො(k)

∂W
ൡ 

= −η. ቀe୮(k)ቁ
ଶ

ቤ
∂yො(k)

∂W
ቤ

ଶ

. ൥1 −
1

2
η. ቤ

∂yො(k)

∂W
ቤ

ଶ

൩ 

In order that ∆𝑉௣(𝑘) < 0, the eq. (65) must be satisfied 
0 < η <

2

𝑚𝑎𝑥 ฬ
∂yො(k)

∂W ฬ
ଶ                                                                          (65) 

If (65) holds for every parameter 𝑊 = ൣ𝜎௞,௜ , 𝑚௞,௜
ଵ , 𝑚௞,௜

ଶ , 𝑐௞,௜ , 𝑠௞,௜൧, 
then the algorithm is definitely convergent. We choose the initial 𝜂 as: 
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𝜂 =
1

𝑚𝑎𝑥 ฬ
𝜕𝑦ො(𝑘)

𝜕𝑊 ฬ
ଶ 

After all the data has been applied, the variable learning rate is 
determined by the following form.  

⎩
⎪
⎨

⎪
⎧𝒊𝒇          

𝑅𝑀𝑆𝐸 (𝑙)

𝑅𝑀𝑆𝐸 (𝑙 − 1)
< 1         →           𝜂(𝑙) = 𝜂(𝑙 − 1)            

𝒊𝒇          
𝑅𝑀𝑆𝐸 (𝑙)

𝑅𝑀𝑆𝐸 (𝑙 − 1)
≥ 1         →           𝜂(𝑙) = 0.9 × 𝜂(𝑙 − 1)

 

Where 𝑅𝑀𝑆𝐸 is Root Mean Square Error and 𝑙 is the number of 
iteration. 

5. Simulation results 
In this paper two real renewable energy systems are used to 

identification. For each system, the structure of the system and the 
NCPRT2FS based identifier is shown in Fig. 5. 

 

 
 

Figure 5. The structure of the system and the NCPRT2FS based identifier. 

 

The inputs to the NCPRT2FS-based identifier are the main input 
and delayed system output. The parameters of NCPRT2FS structure 
should be adjusted to minimize plant output yd and identification yield 
𝑦ො per all input values of x. 

Example 1: Real data of a 660kw wind turbine have been taken 
from Iran Renewable Energy Organization (SUNA) 1 . The model of 
wind turbine is S47-660kw made by VESTAS (Denmark) are given in 
Table 1. 

 
1 http://www.suna.org.ir/en/home 
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Figure 6. Manjil and Rudbar Wind Farm. 

Table 1. Information for Example 1. 

Cut-in wind speed: 4 m/s 
Rated wind speed: 15 m/s 
Cut-out wind speed: 25 m/s 
Survival wind speed: 60 m/s 
Rotor: 

Diameter: 47 m 
Swept area: 1.735 m² 
Number of blades: 3  
Rotor speed, max: 28.5 U/min 
Tipspeed: 70.1 m/s 
Type: 22.9  
Material: GFK  

 

Generator: 
 Type: Asynchronous  

Number: 1.0  
Speed, max: 1.650 U/min 
Voltage: 400 V 
Grid connection: Thyristor  
Grid frequency: 50 Hz 

 

In this example 𝑢(𝑘), 𝑘 = 1, … ,365 is wind speed that is fed to the 
wind turbine system and obtains the 365 samples of 𝑦(𝑘)  that is 
output power of the wind turbine. The other details are the same as 
proposed NCPRT2FS in example 1. Fig. 7 shows the identification 
results of the NCPRT2FS. Here the plant output (solid line) and the 
NCPRT2FS identifier output (dashed line) is shown. 
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Figure 7. Identification results of the NCPRT2FS for wind turbine. 

The trained NCPRT2FS is used to calculate the wind power in a 
place of Ilam2. Fig. 8 shows the wind speed of Ilam for a year. Fig. 9 
shows the predicted wind power in Ilam. 

 

 

Figure 8. Wind speed of a place in Ilam for a year. 

 
 

 

Figure 9. Predicted wind power of a place in Ilam for a year. 

 
2- A city in the west of Islamic Republic of IRAN. 
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The final values of the parameters of NCPRT2FS are shown in 
Table 2. 

Table 2. The final values of NCPRT2FS parameters. 

Antecedent 
parameters 

 𝑚ଵ
௜௝  𝑚ଶ

௜௝  𝜎௜௝  

u(k) 𝑚ଵ
ଵଵ = 3.62 

𝑚ଵ
ଶଵ = 6.13 

𝑚ଵ
ଷଵ = 8.19 

𝑚ଶ
ଵଵ = 4.32 

𝑚ଶ
ଶଵ = 7.02 

𝑚ଶ
ଷଵ = 9.51 

𝜎ଵଵ = 0.38 

𝜎ଶଵ = 1.10 

𝜎ଷଵ = 0.89 

y(k-1) 𝑚ଵ
ଵଶ = 4.93 

𝑚ଵ
ଶଶ = 5.34 

𝑚ଵ
ଷଶ = 5.81 

𝑚ଵ
ସଶ = 6.11 

𝑚ଶ
ଵଶ = 5.12 

𝑚ଶ
ଶଶ = 5.66 

𝑚ଶ
ଷଶ = 5.98 

𝑚ଶ
ସଶ = 6.48 

𝜎ଵଶ = 0.21 

𝜎ଶଶ = 0.09 

𝜎ଷଶ = 0.36 

𝜎ସଶ = 0.18 

fourth layer 

adaptive weights 

𝑤ഥ௥
ଵ = 1.92 𝑤୰

ଵ = 1.50 𝑤ഥ௟
ଵ = 1.00 𝑤୪

ଵ = 0.63 

𝑤ഥ௥
ଶ = 1.66 𝑤୰

ଶ = 0.92 𝑤ഥ௟
ଶ = 0.71 𝑤୪

ଶ = 0.06 

𝑤ഥ௥
ଷ = 0.80 𝑤୰

ଷ = 0.70 𝑤ഥ௟
ଷ = 0.56 𝑤୪

ଷ = 0.43 

𝑤ഥ௥
ସ = 1.87 𝑤୰

ସ = 0.94 𝑤ഥ௟
ସ = 0.85 𝑤୪

ସ = 0.77 

consequent 

parameters 

Rule 1 Rule 2 Rule 3 Rule 4 Rule 1 Rule 2 Rule 3 Rule 4 

𝑠ଵ,଴ = 0.40 𝑠ଶ,଴ = 0.33 𝑠ଷ,଴ = 0.27 𝑠ସ,଴ = 0.52 𝑐ଵ,଴ = 1.00 𝑐ଶ,଴ = 1.40 𝑐ଷ,଴ = 1.00 𝑐ସ,଴ = 1.40 
𝑠ଵ,ଵ = 0.55 𝑠ଶ,ଵ = 0.39 𝑠ଷ,ଵ = 0.48 𝑠ସ,ଵ = 0.43 𝑐ଵ,ଵ = 1.10 𝑐ଶ,ଵ = 1.00 𝑐ଷ,ଵ = 1.00 𝑐ସ,ଵ = 1.00 

𝑠ଵ,ଶ = 1.00 𝑠ଶ,ଶ = 1.00 𝑠ଷ,ଶ = 1.00 𝑠ସ,ଶ = 1.00 𝑐ଵ,ଶ = 1.00 𝑐ଶ,ଶ = 1.32 𝑐ଷ,ଶ = 0.81 𝑐ସ,ଶ = 0.93 

𝑠ଵ,ଷ = 0.43 𝑠ଶ,ଷ = 0.39 𝑠ଷ,ଷ = 0.65 𝑠ସ,ଷ = 0.90 𝑐ଵ,ଷ = 1.00 𝑐ଶ,ଷ = 1.00 𝑐ଷ,ଷ = 1.65 𝑐ସ,ଷ = 1.82 

𝑠ଵ,ସ = 0.62 𝑠ଶ,ସ = 1.00 𝑠ଷ,ସ = 1.00 𝑠ସ,ସ = 1.00 𝑐ଵ,ସ = 1.00 𝑐ଶ,ସ = 1.09 𝑐ଷ,ସ = 1.00 𝑐ସ,ସ = 1.00 

𝑠ଵ,ହ = 0.87 𝑠ଶ,ହ = 0.10 𝑠ଷ,ହ = 1.00 𝑠ସ,ହ = 1.00 𝑐ଵ,ହ = 1.10 𝑐ଶ,ହ = 1.00 𝑐ଷ,ହ = 1.55 𝑐ସ,ହ = 1.90 

𝑠ଵ,଺ = 1.00 𝑠ଶ,଺ = 1.00 𝑠ଷ,଺ = 1.00 𝑠ସ,଺ = 1.00 𝑐ଵ,଺ = 1.00 𝑐ଶ,଺ = 1.00 𝑐ଷ,଺ = 1.00 𝑐ସ,଺ = 1.00 

𝑠ଵ,଻ = 0.69 𝑠ଶ,଻ = 0.66 𝑠ଷ,଻ = 0.31 𝑠ସ,଻ = 0.06 𝑐ଵ,଻ = 0.80 𝑐ଶ,଻ = 0.72 𝑐ଷ,଻ = 0.67 𝑐ସ,଻ = 0.81 

𝑠ଵ,଼ = 0.96 𝑠ଶ,଼ = 0.11 𝑠ଷ,଼ = 0.54 𝑠ସ,଼ = 0.21 𝑐ଵ,଼ = 1.10 𝑐ଶ,଼ = 1.00 𝑐ଷ,଼ = 0.92 𝑐ସ,଼ = 0.59 

𝑠ଵ,ଽ = 0.30 𝑠ଶ,ଽ = 0.32 𝑠ଷ,ଽ = 0.36 𝑠ସ,ଽ = 0.98 𝑐ଵ,ଽ = 0.95 𝑐ଶ,ଽ = 0.77 𝑐ଷ,ଽ = 1.00 𝑐ସ,ଽ = 1.00 

𝑠ଵ,ଵ଴ = 0.35 𝑠ଶ,ଵ଴ = 0.31 𝑠ଷ,ଵ଴ = 0.54 𝑠ସ,ଵ଴ = 0.50 𝑐ଵ,ଵ଴ = 1.00 𝑐ଶ,ଵ଴ = 0.44 𝑐ଷ,ଵ଴ = 0.64 𝑐ସ,ଵ଴ = 0.89 

 

Example 2: A real solar cell system is shown in Fig. 10. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a)                        (b)                 

Figure 10. Experimental solar cell testing system (a) and a solar cell (b). 
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In this example 𝑢(𝑘), 𝑘 = 1, … ,600 is solar radiation that is fed to 
the real solar cell system and obtain the 600 samples of 𝑦(𝑘). The other 
details are the same as proposed NCPRT2FS in examples 1 and 2. Fig. 
11 shows the identification results of the NCPRT2FS for three solar 
radiations. Here the plant output (solid line) and the NCPRT2FS 
identifier output (dashed line) is shown. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11. Identification results of the NCPRT2FS for solar cell. 

After structure learning, for NCPRT2FS three rules are generated 
and the Root Mean Square Error (RMSE) value for the NCPRT2FS and 
IT2-TSK-FNN for training and test are shown in table 3. The final values 
of NCPRT2FS parameters are shown in Table 3. 

Table 3. The final values of NCPRT2FS parameters. 

Antecedent 
parameters 

 𝑚ଵ
௜௝  𝑚ଶ

௜௝  𝜎௜௝  

u(k) 𝑚ଵ
ଵଵ = 251 

𝑚ଵ
ଶଵ = 598 

𝑚ଵ
ଷଵ = 798 

𝑚ଶ
ଵଵ = 332 

𝑚ଶ
ଶଵ = 615 

𝑚ଶ
ଷଵ = 949 

𝜎ଵଵ = 43 

𝜎ଶଵ = 12 

𝜎ଷଵ = 211 

y(k-1) 𝑚ଵ
ଵଶ = 69 

𝑚ଵ
ଶଶ = 82 

𝑚ଵ
ଷଶ = 93 

𝑚ଶ
ଵଶ = 75 

𝑚ଶ
ଶଶ = 89 

𝑚ଶ
ଷଶ = 97 

𝜎ଵଶ = 11 

𝜎ଶଶ = 5 

𝜎ଷଶ = 3 

fourth layer adaptive 

weights 

𝑤ഥ௥
ଵ = 0.20 𝑤୰

ଵ = 0.06 𝑤ഥ௟
ଵ = 0.12 𝑤୪

ଵ = 0.09 

𝑤ഥ௥
ଶ = 1.80 𝑤୰

ଶ = 1.00 𝑤ഥ௟
ଶ = 1.42 𝑤୪

ଶ = 0.98 

𝑤ഥ௥
ଷ = 0.57 𝑤୰

ଷ = 0.21 𝑤ഥ௟
ଷ = 1.93 𝑤୪

ଷ = 1.10 

consequent 

parameters 

Rule 1 Rule 2 Rule 3 Rule 1 Rule 2 Rule 3 

𝑠ଵ,଴ = 0.10 𝑠ଶ,଴ = 0.84 𝑠ଷ,଴ = 1.00 𝑐ଵ,଴ = 0.56 𝑐ଶ,଴ = 1.00 𝑐ଷ,଴ = 1.22 
𝑠ଵ,ଵ = 0.32 𝑠ଶ,ଵ = 0.39 𝑠ଷ,ଵ = 0.37 𝑐ଵ,ଵ = 0.94 𝑐ଶ,ଵ = 1.60 𝑐ଷ,ଵ = 1.00 

𝑠ଵ,ଶ = 1.00 𝑠ଶ,ଶ = 1.00 𝑠ଷ,ଶ = 0.61 𝑐ଵ,ଶ = 1.00 𝑐ଶ,ଶ = 1.00 𝑐ଷ,ଶ = 1.00 

𝑠ଵ,ଷ = 0.22 𝑠ଶ,ଷ = 1.20 𝑠ଷ,ଷ = 0.50 𝑐ଵ,ଷ = 1.00 𝑐ଶ,ଷ = 1.77 𝑐ଷ,ଷ = 1.20 

𝑠ଵ,ସ = 0.10 𝑠ଶ,ସ = 0.42 𝑠ଷ,ସ = 1.00 𝑐ଵ,ସ = 1.61 𝑐ଶ,ସ = 0.60 𝑐ଷ,ସ = 1.63 

𝑠ଵ,ହ = 0.47 𝑠ଶ,ହ = 1.00 𝑠ଷ,ହ = 1.00 𝑐ଵ,ହ = 1.30 𝑐ଶ,ହ = 1.00 𝑐ଷ,ହ = 2.00 

𝑠ଵ,଺ = 0.10 𝑠ଶ,଺ = 1.00 𝑠ଷ,଺ = 1.00 𝑐ଵ,଺ = 1.00 𝑐ଶ,଺ = 1.11 𝑐ଷ,଺ = 1.00 

𝑠ଵ,଻ = 1.20 𝑠ଶ,଻ = 1.00 𝑠ଷ,଻ = 0.19 𝑐ଵ,଻ = 1.10 𝑐ଶ,଻ = 1.50 𝑐ଷ,଻ = 0.88 

𝑠ଵ,଼ = 1.00 𝑠ଶ,଼ = 0.36 𝑠ଷ,଼ = 0.69 𝑐ଵ,଼ = 1.60 𝑐ଶ,଼ = 0.89 𝑐ଷ,଼ = 0.91 

𝑠ଵ,ଽ = 1.00 𝑠ଶ,ଽ = 0.28 𝑠ଷ,ଽ = 0.11 𝑐ଵ,ଽ = 1.53 𝑐ଶ,ଽ = 0.95 𝑐ଷ,ଽ = 0.48 

𝑠ଵ,ଵ଴ = 0.55 𝑠ଶ,ଵ଴ = 0.35 𝑠ଷ,ଵ଴ = 0.50 𝑐ଵ,ଵ଴ = 0.88 𝑐ଶ,ଵ଴ = 1.00 𝑐ଷ,ଵ଴ = 1.00 
The trained NCPRT2FS is used to calculate the solar power of Ilam. Fig. 12 shows the solar radiation of Ilam for a year. Fig. 13 shows the predicted solar power in Ilam. 
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Figure 12. Solar radiation of Ilam. 

 

 

 

 

 

 

 

 

 

 

 

Figure 13. Predicted solar power in ILAM for a year. 

Table 4. presents the comparison of our proposed method with another 
method (method of [46]). 

Table 4. Comparison between results of the proposed method and the 
method of [46]. 

Example Method of [46] Proposed NCPRT2FS 
- Rules epochs Run Time 

(s) 
RMSE Rules epochs Run Time 

(s) 
RMSE 

1 4 34 4 0.0159 4 31 6 0.0057 
2 5 27 4 0.00759 3 39 7 0.0013 

 

Simulation results show that the proposed NCPRT2FS has high 
performances in function approximation and system identification. 
Table 4 shows that the number of rules of the proposed NCPRT2FS is 
almost less than method of [53], accuracy of identification is better than 
[53], but the training time that achieves by average of 10 times run the 
program (computer processor: Dual CPU T3200 @ 2.00 GHz 2.00 GHz, RAM: 
2.00 GB and MATLAB 2011a), is more than [53]. The references [23, 46] 
presented two different T2F neural structures. They have also been 
used and evaluated only to identify some theory systems. In the present 
paper, however, both the T2F neural network structure is different from 
references [23] and [53] and several experimental energy systems have 
been used for modeling. 
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6. CONCLUSION 
In this paper, a novel Nonlinear Consequent-Part Recurrent T2FS 

(NCPRT2FS) for identification and prediction of renewable energy 
systems was proposed. Nonlinear consequent part helps to better 
model highly nonlinear systems. Recurrent structure is a useful and yet 
suitable choice for modeling and identification of dynamical systems. 
Adaptive learning rate helps to prevent the NCPRT2FS from trapping 
into local minima. Self-evolving structure helps to get simpler structure 
of NCPRT2FS by ending up with finally a minimum number of fuzzy 
sets and fuzzy rules. Simulation results showed that the NCPRT2FS 
based on backpropagation algorithm with adaptive learning rate 
performs better than IT2-TSK-FNN [53] in identification of highly 
nonlinear time-varying systems. S47-660 kw wind turbine (VESTAS 
company Denmark) and a solar cell were selected as case studies. After 
data gathering, the proposed method was finally used the experimental 
data for the purpose of identification. The RMSE was less than 0.006 
and the number of fuzzy rules was equal and less than 4 rules, so the 
results easily approved the remarkable capability of the NCPRT2FS 
developed in the paper.  In order to continue the work and look to the 
future, we can use the evolutionary algorithms as a complement to the 
proposed method for the development of the fuzzy neural network (to 
increase accuracy, increase convergence, etc.). On the other hand, 
different case studies (types of solar cells, types of wind turbines, etc.) 
should be identified and the appropriate renewable system can be 
extracted for each geographical location. 
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