Preprint
Technical Note

scikit-activeml: A Library and Toolbox for Active Learning Algorithms

Altmetrics

Downloads

1353

Views

892

Comments

0

Submitted:

04 March 2021

Posted:

05 March 2021

You are already at the latest version

Alerts
Abstract
Machine learning applications often need large amounts of training data to perform well. Whereas unlabeled data can be easily gathered, the labeling process is difficult, time-consuming, or expensive in most applications. Active learning can help solve this problem by querying labels for those data points that will improve the performance the most. Thereby, the goal is that the learning algorithm performs sufficiently well with fewer labels. We provide a library called scikit-activeml that covers the most relevant query strategies and implements tools to work with partially labeled data. It is programmed in Python and builds on top of scikit-learn.
Keywords: 
Subject: Computer Science and Mathematics  -   Artificial Intelligence and Machine Learning
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated