Preprint
Article

Predicting Electrokinetic Coupling and Electrical Conductivity in Fractured Media Using a Bundle of Tortuous Capillary Fractures

Altmetrics

Downloads

224

Views

345

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

05 March 2021

Posted:

05 March 2021

You are already at the latest version

Alerts
Abstract
The electrokinetics methods have a great potential to characterize hydrogeological processes in geological media, especially in complex hydrosystems such as fractured formations. In this work, we conceptualize fractured media as a bunch of parallel capillary fractures following the fractal size distribution. This conceptualization permits to obtain analytical models for both the electrical conductivity and the electrokinetic coupling in water saturated fractured media. We explore two different approaches to express the electrokinetic coupling. First, we express the streaming potential coupling coefficient as a function of the zeta potential and then we obtain the effective charge density in terms of macroscopic hydraulic and electrokinetic parameters of porous media. We show that when the surface electrical conductivity is negligible, the proposed models reduces to the previously proposed one based on a bundle of cylindrical capillaries. This model opens up a wide range of applications to monitor the water flow in fractured media.
Keywords: 
Subject: Environmental and Earth Sciences  -   Atmospheric Science and Meteorology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated