Preprint
Review

Machine Learning: Algorithms, Real-World Applications and Research Directions

Altmetrics

Downloads

3023

Views

1178

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

07 March 2021

Posted:

08 March 2021

You are already at the latest version

Alerts
Abstract
In the current age of the Fourth Industrial Revolution ($4IR$ or Industry $4.0$), the digital world has a wealth of data, such as Internet of Things (IoT) data, cybersecurity data, mobile data, business data, social media data, health data, etc. To intelligently analyze these data and develop the corresponding real-world applications, the knowledge of artificial intelligence (AI), particularly, machine learning (ML) is the key. Various types of machine learning algorithms such as supervised, unsupervised, semi-supervised, and reinforcement learning exist in the area. Besides, the deep learning, which is part of a broader family of machine learning methods, can intelligently analyze the data on a large scale. In this paper, we present a comprehensive view on these machine learning algorithms that can be applied to enhance the intelligence and the capabilities of an application. Thus, this study's key contribution is explaining the principles of different machine learning techniques and their applicability in various real-world applications areas, such as cybersecurity, smart cities, healthcare, business, agriculture, and many more. We also highlight the challenges and potential research directions based on our study. Overall, this paper aims to serve as a reference point for not only the application developers but also the decision-makers and researchers in various real-world application areas, particularly from the technical point of view.
Keywords: 
Subject: Computer Science and Mathematics  -   Information Systems
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated