Complex models have received significant interest in recent years and are being increasingly used to explain the stochastic phenomenon with upward and downward fluctuation such as the stock market. Different from existing semi-variance methods in traditional integer dimension construction for two variables, this paper proposes a simplified multi-factorized fractional dimension derivation with the exact Excel tool algorithm involving the fractional center moment extension to covariance, which is a complex parameter average that is a multi-factorized extension to Pearson covariance. By examining the peaks and troughs of gold price averages, the proposed algorithm provides more insight into revealing underlying stock market trends to see who is the financial market leader during good economic times. The calculation results demonstrate that the complex covariance is able to distinguish subtle differences among stock market performances and gold prices for the same field that the two variable covariance may overlook. We take the London, Tokyo, Shanghai, Toronto and Nasdaq as the representative examples.
Keywords:
Subject: Computer Science and Mathematics - Algebra and Number Theory
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.