This paper is related to the fractional view analysis of Helmholtz equations, using innovative analytical techniques. The fractional analysis of the proposed problems has been done in terms of Caputo-operator sense. In the current methodology, first, we applied the r-Laplace transform to the targeted problem. The iterative method is then implemented to obtain the series form solution. After using the inverse transform of the r-Laplace, the desire analytical solution is achieved. The suggested procedure is verified through specific examples of the fractional Helmholtz equations. The present method is found to be an effective technique having a closed resemblance with the actual solutions. The proposed technique has less computational cost and a higher rate of convergence. The suggested methods are therefore very useful to solve other systems of fractional order problems.
Keywords:
Subject: Computer Science and Mathematics - Algebra and Number Theory
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.