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Abstract. This paper proposes a multifractal model,
with the aim of providing a possible explanation for the
locality phenomenon that appears in the estimation of
the Hurst exponent in stationary second order temporal
series representing self-similar traffic flows in current
high-speed computer networks. It is shown analytically
that this phenomenon occurs if the network flow consists
of several components with different Hurst exponents.
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Un Modelo Multifractal Simplificado

para Flujos de Trafico Autosimilares

en Redes de Computadoras de Alta
Velocidad

Resumen. Se propone un modelo multifractal, con el
animo de proveer una posible explicacion al fenébmeno
de localidad que aparece en la estimacion del exponente
de Hurst en series temporales estacionarias de segundo
orden, propias de los flujos de trafico autosimilares en
las actuales redes de computadoras de alta velocidad.
Analiticamente se demuestra que este fendmeno se
presenta cuando los flujos se componen de diversos
tipos de tréaficos con diferentes exponentes de Hurst.

Palabras clave. Multifractales, autosimilitud, exponente
de Hurst (H), redes de computadoras de alta velocidad,
modelos de trafico.

1 Introduction

The properties that evidence the nature of the
fractal origin of ftraffic flows in high-speed
computer networks have been extensively studied
and reported in the literature during the last
twenty years, and it is generally accepted that
their rescaled dynamic behavior must be carefully
considered in performance analyses.

There are, therefore, numerous explanations
and models that attempt to give an answer to this
origin, e.g. [1-3].

On the other hand, admitting that the localities
of a fractal process can only be analyzed from the
standpoint of multifractal analysis, in view of their
construction from multiplicative cascades that
ensure an exact characterization as a result of the
high frequency analysis [9, 10], it is accepted that
the traffic flows present in current high-speed
computer networks are of a multifractal nature,
and this gives rise to a new flow model that
attempts to explain the locality phenomenon
present in the estimation of the Hurst exponent [4,
8, 10].

From the results obtained by the use of
computational simulations, it is inferred that the
model contributes to the knowledge of the actual
dynamics of the ftraffic in current high-speed
computer networks, and that it can be used to
simulate realistic traffic flow from real networks.

2 On the Multifractal Traffic Flows

In computer networks traffic flows is represented
by means of a self-similar process Y(k) such that

Y(k)=, a"'Y(ak), Va>0, k=0, (1)

where =4 represents the equal finite-dimensional
distributions and H < (0,1) is the Hurst exponent
of the self-similar stochastic process (H-SS) Y(k).
An H-SS process with stationary increments
described in terms of the behavior of its
aggregations is obtained by the multiplexation of
X(k) = Y(k + 1) — Y(k) increments over non-
superposed blocks of size n according to
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X" (k) = EX(kn —j) keZ neN. (2

j=0

The resultant process has finite dimensional
distributions similar to X(k). Specifically for each n
we have that

X" (k)=, n"X(k), neN. (3)

The stationary process X(k) that fulfills (3) is
called a self-similar stationary process, H-SSS,
with Hurst exponent H. A typical example is the
fractional Gaussian noise (fGn) given by the
expression X(k) = BH)(k+1) — BH)(k), which is the
only known H-SSS Gaussian process [5].

There are several ways of studying the
statistical properties of X" (k). The cumulants of
the aggregate series, which are defined in terms
of Taylor coefficients of the cumulant generating
function, are considered in [5]

g(t) =1ogE(e™ ™) = 3" t"m!" cum, X(k), (4)

m=1

where cump, X(k) = g¢™(0). In [7] it is shown that
the mth order cumulants of an H-SSS aggregate
process scales according to a power law given by

cum, X (k) = n™scum_X(k). (5)

If a H-SSS process fulfills (5) V n, m € N, then
[log cumy, X)(k)| behaves in such a way that its
values scale linearly with those of log n, with mHs
coefficients that are a linear function of m. In other
words, mHs = mH(m), i.e.

cum, X (k) = n™™Mcum_X(k). (6)
In [5] it is shown that a generalization of a self-
similar process to a multifractal process is given

as follows: a stationary process X(k) with k € Z is
a multifractal process if

Iog|cummX(”)(k)| =mH(m)logn+c(m), (7)

for every m, n € N, allowing the exponent H to
vary with the order m.

The general form of mH(m) is given by
mH(m)=am + f, (8)

which corresponds to the linear fractal model,
where the coefficients « and g are determined
directly during the fitting of the cumulants. In [8, 9]
it is shown that the only known process of this
kind takes the form

mH(m)=m+2(H, -1), (9)

and it is called a unifractal process.

In [5] the unifractal model is compared with the
self-similar model using empirical flows. The
analysis of Figures 3 and 4 in [5] puts in evidence
that both models are capable of capturing the
main trends of the real flows in the estimation of
H, but also that none of them harmonizes with the
locality phenomenon of the Hurst exponent.

Figure 1 gives an illustration of the locality
phenomenon. In the current case the X-axis stands
for log n and the Y-axis stands for log cumulant.
The slope of the fitting curve crossovers from a
small value to a notably larger value. Therefore
the curve consists of three parts: a line segment
with a gentler slope when log n is small, the
intermediate transition part, and another line
segment with a steeper slope when log n is large.
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Figure 1. lllustration of the locality phenomenon.

3 A Multifractal Model for the Locality
Phenomenon

Reference [10] reports that the PCA (Principal
Components Analysis) of the spectrum of proper
values that result from mixing fractional Brownian
motion signals with different Hurst exponents (H)
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produces a bi-scalar behavior. This precise fact is
what motivates the statement of a multifractal flow
traffic model capable of reproducing the locality
phenomenon of the Hurst exponent.

Let us assume a network traffic process, W(k),
composed of the addition of two independent self-
similar processes; Xi(k) and Xa(k), with Hurst
exponents H1 and H-, respectively, i.e.

W(k) = a, X, (k) + a, X, (k), (10)

where Var{X1} = Var{X2} and the scale coefficients
a1 and a2 (a1, a2 > 0) controlling the variance of
the components of (10). Also, without loss of
generality, that H1 < H2. The same as for the case
of (2), we can define the aggregate process Z"(k)
through multiplexing increments Z(k) given by the
expression Z(k) = Wk + 1) — W(k), considering
non-overlapping blocks of size n as

Z"(k) = EX(kn—j), keZ neN. (11)

j=0

From independence, for the self-similar and
unifractal models it is verified that

lcum,, 2" (k)| =

joum, (e X{" (k) + &, X{ (k)| = -

nHy(m) —

c,(mn"™™ 1 ¢,(m)n

m+2(Hy(m m+2(Hy(m)-1)

c,(m)n 1 c,(m)n ,

with c1(m) and cz2(m) partially determined by the
coefficients a1 and a2, respectively.

Then, if c1(m) > c2(m), there is a unique positive
solution n* (not necessarily integer) of the equation
in terms of variable n

C1(m)nm+2(H1(m)—1) — Cz(m)nm+2(H2(m)—1)_ (13)
Thus, it is easy to verify that

leum,, 2 (k)| =

C1(m)nm+2(H1(m)*1)’ para n< n* (14)
c,(mn™ %M - nara n>n’

For every m the logarithmic scale diagram of
the mth order cumulant of Z("(k) consists of three
segments: a first linear segment with slope given
for m + 2(H1 — 1) when n is small; an intermediate
transition section (often very short), and finally a
linear segment with slope m + 2(H2 - 1) when nis
large. Therefore, the locality phenomenon of the
Hurst exponent is put in evidence.

Figure 2 shows the locality phenomenon in the
behavior of a fGn series with H = 0.6 generated
spectrally, while Figure 3 shows the phenomenon
for a fGn series with H = 0.8; Figure 4 shows the
joint behavior of both series with a1 = a2 in (10)
[11].

The above shows in a simple manner that if a
traffic process is formed from two independent
self-similar additive components with different
Hurst exponents, then the locality phenomenon is
seen in the estimation of the H exponent using
cumulants. It is not difficult to see that this model
can be extended to the case of more than two
components with similar results.

Figure 2. Phenomena in a fGn series with H = 0.6.

Figure 3. Phenomena in a fGn series with H =0.8.
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Figure 4. Phenomena observed in the joint behavior of
the previous series with a1 = a2 in (10).

4 Conclusions

It is interesting to notice that the theoretical
inconsistency of a single value of the Hurst
exponent and the locality phenomenon can be
solved using a simple model that adds second
order self-similar temporal series. On the other
hand, it is possible to generate various processes
with different Hurst exponents using any of the
existing methods for the generation of second
order self-similar series and then adding them.
This agrees with the conclusion of [12], which
states that it is necessary to multiplex various
traffic sources to generate more appropriate
simulations for the traffic flows.

Most of the previous models that deal with the
origins of traffic flow self-similarity in high speed
networks can be adopted, from the perspective of
their application to the proposed model, with the
purpose of stressing the coexistence in real flows
of multiple self-similar heterogeneous components.
It can therefore be stated that if in the On/Off
model of [13] one assumes the existence of two
different values for the Pareto exponents that
control the distribution of the On periods and the
Off periods of the sources, then the aggregate
final process flow will present two different
components in terms of their Hurst exponents and
therefore the locality phenomenon will appear.

In general, for large coverage networks, i.e.
with very complex structures, the data channel is
shared by multiple sources in a manner that can
be considered approximately independent and
additive. Because of diversity of sources and
transfer mechanisms, the incoming flow coming

from each source has different Hurst exponents.
This leads to the statement of the following
conjecture: it is more probable to observe the
locality phenomenon in traffic flows of trunk
networks than of local area networks.
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