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Abstract. This paper proposes a multifractal model, 
with the aim of providing a possible explanation for the 
locality phenomenon that appears in the estimation of 
the Hurst exponent in stationary second order temporal 
series representing self-similar traffic flows in current 
high-speed computer networks. It is shown analytically 
that this phenomenon occurs if the network flow consists 
of several components with different Hurst exponents. 
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Un Modelo Multifractal Simplificado 
para Flujos de Tráfico Autosimilares 
en Redes de Computadoras de Alta 

Velocidad 

Resumen. Se propone un modelo multifractal, con el 
ánimo de proveer una posible explicación al fenómeno 
de localidad que aparece en la estimación del exponente 
de Hurst en series temporales estacionarias de segundo 
orden, propias de los flujos de tráfico autosimilares en 
las actuales redes de computadoras de alta velocidad. 
Analíticamente se demuestra que este fenómeno se 
presenta cuando los flujos se componen de diversos 
tipos de tráficos con diferentes exponentes de Hurst. 

Palabras clave. Multifractales, autosimilitud, exponente 
de Hurst (H), redes de computadoras de alta velocidad, 
modelos de tráfico. 

1 Introduction 

The properties that evidence the nature of the 
fractal origin of traffic flows in high-speed 
computer networks have been extensively studied 
and reported in the literature during the last 
twenty years, and it is generally accepted that 
their rescaled dynamic behavior must be carefully 
considered in performance analyses. 

There are, therefore, numerous explanations 
and models that attempt to give an answer to this 
origin, e.g. [1-3]. 

On the other hand, admitting that the localities 
of a fractal process can only be analyzed from the 
standpoint of multifractal analysis, in view of their 
construction from multiplicative cascades that 
ensure an exact characterization as a result of the 
high frequency analysis [9, 10], it is accepted that 
the traffic flows present in current high-speed 
computer networks are of a multifractal nature, 
and this gives rise to a new flow model that 
attempts to explain the locality phenomenon 
present in the estimation of the Hurst exponent [4, 
8, 10]. 

From the results obtained by the use of 
computational simulations, it is inferred that the 
model contributes to the knowledge of the actual 
dynamics of the traffic in current high-speed 
computer networks, and that it can be used to 
simulate realistic traffic flow from real networks. 

2 On the Multifractal Traffic Flows 

In computer networks traffic flows is represented 
by means of a self-similar process Y(k) such that 
 
 ( ) ( ),   0, 0,H

dY k a Y ak a k     (1) 

 
where d represents the equal finite-dimensional 
distributions and H  (0,1) is the Hurst exponent 
of the self-similar stochastic process (H-SS) Y(k). 

An H-SS process with stationary increments 
described in terms of the behavior of its 
aggregations is obtained by the multiplexation of 
X(k)  Y(k  1)  Y(k) increments over non-
superposed blocks of size n according to 
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The resultant process has finite dimensional 

distributions similar to X(k). Specifically for each n 
we have that 
 
 ( )( ) ( ),  .n H

dX k n X k n   (3) 

 
The stationary process X(k) that fulfills (3) is 

called a self-similar stationary process, H-SSS, 
with Hurst exponent H. A typical example is the 
fractional Gaussian noise (fGn) given by the 
expression X(k) = B(H)(k+1)  B(H)(k), which is the 
only known H-SSS Gaussian process [5]. 

There are several ways of studying the 
statistical properties of X(n)(k). The cumulants of 
the aggregate series, which are defined in terms 
of Taylor coefficients of the cumulant generating 
function, are considered in [5] 
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1
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where cumm X(k)  g(m)(0). In [7] it is shown that 
the mth order cumulants of an H-SSS aggregate 
process scales according to a power law given by 
 

 ( )cum ( ) cum ( ).SmHn
m mX k n X k  (5) 

 
If a H-SSS process fulfills (5)  n, m  ℕ, then 

|log cumm X(n)(k)| behaves in such a way that its 
values scale linearly with those of log n, with mHS 
coefficients that are a linear function of m. In other 
words, mHS  mH(m), i.e. 
 
 ( ) ( )cum ( ) cum ( ).n mH m

m mX k n X k  (6) 

 
In [5] it is shown that a generalization of a self-

similar process to a multifractal process is given 
as follows: a stationary process X(k) with k  ℤ is 
a multifractal process if 
 

 ( )log cum ( ) ( )log ( ),n
m X k mH m n c m   (7) 

 
for every m, n  ℕ, allowing the exponent H to 
vary with the order m. 

The general form of mH(m) is given by 
 
 ( ) ,mH m m    (8) 

 
which corresponds to the linear fractal model, 
where the coefficients  and  are determined 
directly during the fitting of the cumulants. In [8, 9] 
it is shown that the only known process of this 
kind takes the form 
 
 ( ) 2( 1),UmH m m H    (9) 

 
and it is called a unifractal process. 

In [5] the unifractal model is compared with the 
self-similar model using empirical flows. The 
analysis of Figures 3 and 4 in [5] puts in evidence 
that both models are capable of capturing the 
main trends of the real flows in the estimation of 
H, but also that none of them harmonizes with the 
locality phenomenon of the Hurst exponent. 

Figure 1 gives an illustration of the locality 
phenomenon. In the current case the X-axis stands 
for log n and the Y-axis stands for log cumulant. 
The slope of the fitting curve crossovers from a 
small value to a notably larger value. Therefore 
the curve consists of three parts: a line segment 
with a gentler slope when log n is small, the 
intermediate transition part, and another line 
segment with a steeper slope when log n is large. 
 

 

Figure 1. Illustration of the locality phenomenon. 

3 A Multifractal Model for the Locality 
Phenomenon 

Reference [10] reports that the PCA (Principal 
Components Analysis) of the spectrum of proper 
values that result from mixing fractional Brownian 
motion signals with different Hurst exponents (H) 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 12 March 2021                   doi:10.20944/preprints202103.0299.v2

https://doi.org/10.20944/preprints202103.0299.v2


produces a bi-scalar behavior. This precise fact is 
what motivates the statement of a multifractal flow 
traffic model capable of reproducing the locality 
phenomenon of the Hurst exponent. 

Let us assume a network traffic process, W(k), 
composed of the addition of two independent self-
similar processes; X1(k) and X2(k), with Hurst 
exponents H1 and H2, respectively, i.e. 
 
 1 1 2 2( ) ( ) ( ),W k X k X k    (10) 

 
where Var{X1}  Var{X2} and the scale coefficients 
1 and 2 (1, 2 > 0) controlling the variance of 
the components of (10). Also, without loss of 
generality, that H1 < H2. The same as for the case 
of (2), we can define the aggregate process Z(n)(k) 
through multiplexing increments Z(k) given by the 
expression Z(k)  W(k  1)  W(k), considering 
non-overlapping blocks of size n as 
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From independence, for the self-similar and 

unifractal models it is verified that 
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with c1(m) and c2(m) partially determined by the 
coefficients 1 and 2, respectively. 

Then, if c1(m) > c2(m), there is a unique positive 
solution n* (not necessarily integer) of the equation 
in terms of variable n 
 

 1 22( ( ) 1) 2( ( ) 1)
1 2( ) ( ) .m H m m H mc m n c m n     (13) 

 
Thus, it is easy to verify that 
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For every m the logarithmic scale diagram of 
the mth order cumulant of Z(n)(k) consists of three 
segments: a first linear segment with slope given 
for m  2(H1  1) when n is small; an intermediate 
transition section (often very short), and finally a 
linear segment with slope m  2(H2  1) when n is 
large. Therefore, the locality phenomenon of the 
Hurst exponent is put in evidence. 

Figure 2 shows the locality phenomenon in the 
behavior of a fGn series with H  0.6 generated 
spectrally, while Figure 3 shows the phenomenon 
for a fGn series with H  0.8; Figure 4 shows the 
joint behavior of both series with 1  2 in (10) 
[11]. 

The above shows in a simple manner that if a 
traffic process is formed from two independent 
self-similar additive components with different 
Hurst exponents, then the locality phenomenon is 
seen in the estimation of the H exponent using 
cumulants. It is not difficult to see that this model 
can be extended to the case of more than two 
components with similar results. 
 

 

Figure 2. Phenomena in a fGn series with H  0.6. 

 

Figure 3. Phenomena in a fGn series with H  0.8. 
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Figure 4. Phenomena observed in the joint behavior of 
the previous series with 1  2 in (10). 

4 Conclusions 

It is interesting to notice that the theoretical 
inconsistency of a single value of the Hurst 
exponent and the locality phenomenon can be 
solved using a simple model that adds second 
order self-similar temporal series. On the other 
hand, it is possible to generate various processes 
with different Hurst exponents using any of the 
existing methods for the generation of second 
order self-similar series and then adding them. 
This agrees with the conclusion of [12], which 
states that it is necessary to multiplex various 
traffic sources to generate more appropriate 
simulations for the traffic flows. 

Most of the previous models that deal with the 
origins of traffic flow self-similarity in high speed 
networks can be adopted, from the perspective of 
their application to the proposed model, with the 
purpose of stressing the coexistence in real flows 
of multiple self-similar heterogeneous components. 
It can therefore be stated that if in the On/Off 
model of [13] one assumes the existence of two 
different values for the Pareto exponents that 
control the distribution of the On periods and the 
Off periods of the sources, then the aggregate 
final process flow will present two different 
components in terms of their Hurst exponents and 
therefore the locality phenomenon will appear. 

In general, for large coverage networks, i.e. 
with very complex structures, the data channel is 
shared by multiple sources in a manner that can 
be considered approximately independent and 
additive. Because of diversity of sources and 
transfer mechanisms, the incoming flow coming 

from each source has different Hurst exponents. 
This leads to the statement of the following 
conjecture: it is more probable to observe the 
locality phenomenon in traffic flows of trunk 
networks than of local area networks. 
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