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Abstract: As for most Mediterranean countries, groundwater is the main resource for irrigation and 
drinking supply in most parts of Syria, however this resource suffers from mismanagement. In the 
study area (Northeast of Mt. Hermon), the lack of information makes water management in this area 
extremely difficult. Assessing groundwater pollution risk is the most essential issue for water 
resources management, especially in the regions where complex interaction between climate, 
geology, geomorphology, hydrogeology, water scarcity and water resource mismanagement exist. 
This complexity leads to significant complication in determining pollution risk of studied system. In 
the present work, we adopted an Integrative Approach to assess groundwater pollution risk in the 
study area. This methodology is based on the analysis of hydrogeological characteristic of aquifer 
system and the available information about socio-economic context and physio-chemical 
groundwater condition that might affect this system. This approach allowed us to delineate the 
groundwater pollution risk map based on the analysis of concerning parameters/ indicators. The 
degree of risk was assessed based as the sum and average of rating of these parameters and 
indicators for each subarea. Typically, very high pollution risk index was identified over the 
Quaternary/Neogene horizon, i.e shallow and unconfined aquifer and in the lower part of Jurassic 
aquifer. In these two parts, the majority of anthropogenic activities are concentrated. Low pollution 
risk index was found for the outcropping of low permeable Quaternary basalt at the Southern part 
of the study area. A moderate pollution index was identified for the low/moderate permeability of 
silt, clay and marly limestone rich horizons of the major part of Neogene aquifer outside of the 
intersected zones with Quaternary aquifer and for the Paleogene formations. The spatial analysis 
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shows that about 50% of the study area is characterized as being at very high and high pollution risk 
index. Hence, the overall natural protective capacity of this area is still poor. This study demonstrates 
the flexibility of the proposed approach to assess groundwater pollution risk in local complex aquifer 
system characterized by lack of information and data in order to reduce the risk of future 
groundwater pollution.  

Keywords: complex aquifer; karst; hydrogeology; groundwater pollution risk map; integrative 
approach; water resources management; Syria 

 

1. Introduction 

In the arid and semi-arid countries such as Syria, the water resource management is considered 
as the most important task for decision makers. The limited availability of water resources in Syria 
is a major factor in Syria’s geopolitical instability; moreover, as Syria’s economic condition worsens 
the continued deterioration of water resources is inevitable. [1]. Without sufficient infrastructure and 
adequate management, it is possible that the problems associated with water scarcity worsen. The 
water availability in Syria was about 1600 m3 inh.yr-1 in 2000 and is projected to be 700 m3 inh.yr-1 in 
2025 taking into account population growth, increasing water demand and climate change effects 
[2]. In the recent years, and despite the geopolitical crisis, the management of water resources is 
becoming more important for government authorities at different levels. 

In the rural areas of the North Eastern part of Mt. Hermon (NEMH) Southwest Syria, 
groundwater resources are increasingly used for urban and agricultural water demand taking into 
account the advanced mechanized extractions. Untreated waste effluent from sewer, livestock units 
and olive mill associated with the agricultural activities form the major pollution sources which are 
responsible for the groundwater quality degradation. The karstic Jurassic aquifer is dominated in 
the mountain area while the alluvial aquifer is located in the flat region. Karstification is one of the 
most important criteria that influence aquifer’s pollution [3]. Karst aquifers are considered to be 
particularly vulnerable to pollution, because of their unique structure [4]. Intensive development of 
agricultural activities, mainly in the Quaternary alluvial flat area, depends on individual wells which 
provide water for many residential purposes (e.g. crop irrigation, cattle supply, crop cleaning). 
Moreover, in this area there is 40, 000 inhabitants living in 14 villages, untreated sewage water is 
released directly into the environment. Also the agricultural drainage water infiltrates to reach the 
groundwater or flow directly into surface water. This results in an environmental degradation, 
groundwater contamination and consequently, severe public health risk.  

Increased anthropogenic pressure on groundwater resources in NEMH brought to increase the 
challenges of sustainable groundwater resource management. From the hydrogeological point of 
view, this system has been characterized previously based on our three papers cited in this 
manuscript [5-7]. For the complex groundwater flow system of this area [5-7], the developing of 
application to delineate groundwater pollution risk map can be fraught with problems. However, in 
our proposed approach, we will integrate the acquired knowledge about hydrogeological 
characteristics with the socio-economic context in this scarcity water resource region in order to 
consider the polluting activities and contaminant loading that are or will be applied in this area and 
that could affect the water resource quality. 

The complexity of the hydrogeological behavior of the aquifer system in this region, makes the 
pollution risk assessment of this system challenging. Consequently, a tool for evaluating 
groundwater contamination is required. Furthermore, it can help policy makers to avoid the 
potential harm to groundwater before serious impacts occur [8, 9]. The anthropogenic activities that 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 16 March 2021                   



take place at the surface can affect groundwater quality. However, the geological and 
hydrogeological characteristics of the aquifer can provide protection against the infiltration of 
contaminants. Vulnerability in general refers to the degree in which human or environmental 
systems are likely to experience harm due to actual or potential presence of particular pollutants or 
stress. [10, 11].  

The concept of groundwater pollution risk is not a property that can be directly measured in the 
field and its determination is difficult as it depends on many parameters and factors affecting this 
risk. It is based on a combination of hazard, vulnerability and related consequences of 
contamination [12, 13]. Consequently, the risk of pollution depends on the hydrogeological features 
and the presence of pollutants. However, we can have high aquifer’s vulnerability, but in the 
absence of important contaminant load there is no pollution risk, and reciprocally. 

In order to protect the aquifer system, it is fundamental to determine areas where aquifers may 
be more vulnerable to contamination that eventually can reduce the groundwater quality. 
Groundwater pollution risk assessment provides a tool to highlight areas (visual analysis), 
susceptible to contamination in order to prevent and control groundwater pollution. More than a 
hundred methods for assessing the vulnerability and pollution risk of groundwater systems have 
been developed worldwide [14, 15]. These methods can be classified into three general categories, 
namely simulation-based process method, statistical method and overlapping method. The 
groundwater pollution risk mapping constitutes important tools for groundwater management and 
protection [16, 17]. The mapping included hydrogeological settings, hydrological features and 
potential contamination entries (point and non-point sources). Thus, two important factors will be 
used in this work, the hydrogeological characteristic of the aquifer system and anthropogenic data.  

The purpose of this study is to: (i) develop an analysis that can provide a basis for developing 
adaptations to the safety and protection of the complex aquifer system in the study area by 
preventing or reducing the risk of future groundwater pollution. (ii) generate a map with different 
degrees of groundwater pollution risk index to be use as a tool for the decision makers during the 
future planning of land-use and sewage effluent discharge control. The further use of this map can 
help the planners to determine the adopted strategy or scenario for groundwater resource 
management and protection purposes. Perhaps with additional information at smaller scales, a final 
modified map can be reproduced. 

The proposed approach allows to assess the risk of groundwater degradation as a result of an 
interaction of different parameters and factors, even when information is lacking. The described risk 
refers to the potential of groundwater contamination. A very high and high groundwater pollution 
risk value implies that the aquifer will be impacted, or has already been impacted due to the 
anthropogenic contamination source and the accessibility of the contaminants to the aquifer. A low 
groundwater pollution risk value implies limited sources of contamination and/or natural aquifer 
protection capacity. 

2.  Methodology: Outline of the Proposed Integrative Approach for Assessing Groundwater 
Pollution Risk 

The acquired information about geological setting, hydrogeological characteristics and 
anthropogenic activities, which intensively effect the groundwater quantity and quality in the 
NEMH, have been integrated to map pollution risk of the aquifer system in this area. The proposed 
Integrative Approach is based on assessment/analysis of defined parameters/indicators and the 
weighing indicator followed by projecting the results under the form of digitalized map. In this case, 
the weighting system is chosen, the weight of each parameter/indicator depends on its importance 
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in the final evaluation in order to determine the pollution risk score which affects the pollution risk 
assessment of groundwater. However, we attribute a value between 1 and 5 concerning both physio-
chemical and socio-economical parameters and from 1 to 10 for the hydrogeological parameters in 
order to put major emphasis on the hydrogeological characteristics of the aquifer system, the most 
significant factor for aquifer system protection capacity in this rural area. Thus, the criteria that used 
in order to score each parameter/indicator is very flexible and special for this case study. This method 
is in line with GOD application which involves a mapping overlay based on a factor-scoring system 
implemented by [18] for aquifer vulnerability assessment. The grading system used in this 
methodology is illustrated in Table 1. The parameters/indicators used to assess groundwater 
pollution risk as well as their weight are presented in Table 2. Nevertheless, these tables are not 
definitive and can be updated when more data becomes available. 

Table 1. A proposed grading system (range and rating) designed for this case study. 

Theme Parameter/indicator Range Rating (index value) 

Physio-
chemical 

Nitrate(mg.L-1) 

0 – 10 1 
10 – 20 2 
20 – 40 3 
40 - 50 4 
> 50 5 

Cond (μS.cm-1) 

200 -600 1 
600 – 800 2 
800 - 1000 3 

1000 - 1200 4 
> 1200 5 

pH 

6.5 -7.5 1 
6.5 -6, 7.5 -8 2 
6 -5.5, 8 -8.5 3 
5.5 -5, 8.5 -9 4 

< 5, > 9 5 

T (°C) 

10 - 15 1 
15 -20 2 
20 -25 3 
25 - 30 4 
> 30 5 

 
Hydro-

geological 
and climate  

Fault system 

Extensively developed 10– 8 
well-developed 8 – 6 

Moderately developed 6 - 4 
Poorly developed 4 - 2 

Absent 0 

Karst index 

Very high 10– 8 
High 8 – 6 

Moderate 6 - 4 
Low 4 - 2 

Absent 0 

Average hydraulic 
conductivity (m.d-1) 

20 - 15 10-7 
15 - 10 7-4 
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10 - 5 4-2 
5 - 1 1 

Aquifer types 
Unconfined  10 

Confined 1 

Average 
precipitation (mmy-

1) 

1000 – 750 10-8 
750 – 500 8-6 
500 – 250 6-4 
250 – 100 4-2 

< 100 1 

Infiltration 
coefficient (%) 

< 70  10-7 
70 – 50  7-4 
50 – 20  4-3 
20 – 15 3-2 
15 – 10  2-1 

< 10 1 

Groundwater depth 
from the ground 

surface (m) 

60 – 45 1-4 
45 – 30 4-6 
30 – 15 6-10 
15 - 0 10 

Number of springs 

> 20 10 -8 
20 - 10 8-6 
10 - 5 6-4 
5 – 1 4-2 

Socio-
economical 

Degree of 
urbanization 
(Inhabitant) 

40 000 - 30 000 5-4 
30 000 - 20 000 4-3 
20 000 - 10 000 3-2 
10 000 - 5000 2-1 

5000 - 10 1 

Land use for farming 
- km2 (%) 

50 - 40 5-4 
40 - 30 4-3 
30 – 20 3-2 
20 - 10 2-1 
10 - 1 1 

Irrigated area km2 
(%) 

50 - 40 5-4 
40 – 30 4-3 
30 - 20 3-2 
20 - 1 1 

Wells number 
(Exploitation 

potential) 

> 500 5-4 
500 - 350 4-3 
350 - 200 3-2 
200 - 50 2-1 

50 - 1 1 

Irrigation return 
flow/(%) 

50 - 40 5-4 
40 - 30 4-3 
30 – 20 3-2 
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20 - 10 2-1 
10 - 1 1 

Number of 
conveyance 

irrigation canal 

> 10 5-4 
10 – 7 4-3 
7 – 4 3-2 
4 - 1 2-1 

1 1 

Applied fertilizers 
(1000 kg. y-1) 

50 - 40 5-4 
40 - 30 4-3 
30 – 20 3-2 
20 - 10 2-1 
10 - 1 1 

Sewage system- 
correlation with 

inhabitants 

Absent (40 000 – 30 000) 5-4 
Absent (30 000 – 20 000) 4-3 
Absent (20 000 – 10 000) 3-2 
Absent (10 000 – 5000) 2-1 

Absent (5000 –10) 1 
 

The hydrochemistry, stable isotopes and the result of groundwater modelling, as a previous 
conducted studies in NEMH area [5-7], enabled better hydrogeological understanding of a complex 
aquifer system of this area. However, the acquired information, the geological outcrop observation, 
field parameters (EC, pH and T) [19], spatial variation of nitrate concentration, and relative 
anthropogenic contamination load were integrated as initial screening tools as shown in Table 2 and 
Figure 1 in order to determine groundwater pollution risk.  
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Figure 1. Flowchart showing the component of proposed approach and evaluation process for 
groundwater pollution risk assessment in NEMH. 

Finally, the data sets established from the previous studies and the related derived information 
were assembled and evaluated in order to introduce an Integrative Approach (IA) for identifying 
areas inclined to high pollution risk. I A is based mainly on the hydrogeological system properties 
combined with anthropogenic influence by using a weighting system to develop a pollution risk 
assessment method and produce a groundwater pollution risk map. However, the first involves 
consideration of weighting indices of hydrogeological, physio-chemical and socio-economic 
parameters/indicators. The second one involves map production.  
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Table 2. The range of different parameters and factors used to assess the aquifer pollution risk to 
contamination in the NEMH. 

Theme 
Parameter/ 
indicator 

Pollution Risk Zone 
A  B C D 

P.R/R1 P.
R. 
S2 

P.R/R P.
R. 
S 

P.R/R P.
R. 
S 

P.R/R P.
R. 
S 

 
Physio-

chemical 

Nitrate(mg.L-1) 20 - 155 5 0 - 10 1 10 - 40 2 0 - 20 2 
Cond (μS.cm-1) 200 - 1400 4 No Data - 400 - 1000 3 200 - 600 1 

pH 6 - 7.5 1 No Data - 6.5 - 8.5 3 7 - 8 2 
T (°C) 13 - 25 3 No Data - 16 - 22 2 16 - 25 3 

 
Hydro-

geological 

Fault system 
Extensively 
developed 

10 
Well-

developed 
8 

Poorly 
developed 

2 Absent 0 

Karst index Very high 10 High 8 Low 4 Absent 0 
Average 

hydraulic 
conductivity 

(m.d-1) 

18 10 20 10 7 3 1 1 

Aquifer types Unconfined 10 Unconfined 10 Unconfined 10 Confined 1 

Average 
precipitation 

(mmy-1) 

250 in the 
plain area 
and 850 in 

the 
mountains 

8 1000 10 250 4 215 3 

Infiltration 
coefficient (%) 

9 % in the 
plain area 

and 76 % in 
the 

mountains  

10 77% 10 20% 3 10% 1 

Groundwater 
depth (m) 

0 - 30 9 no data 9* 15 - 60 5 45 -60 2 

Number of 
springs 23 10 12 7 5 4 2 2 

Socio-
economical 

Degree of 
urbanization 
(Inhabitant) 

36500 5 Absent - 3500 1 
Almost 
absent 1 

Land use 
(km2) 

≈ 90 (≈ 40%) 4 Absent - Limited 1 limited 1 

Irrigated area 
(km2) 

≈ 50 (≈ 20%) 2 Absent - ≈ 5 1 ≈ 1 1 

Wells number 830 5 0 - 60 1 41 1 
Irrigation 

return 
flow/(%) 

42 5 0 - 0 - 0 - 

Number of 
conveyance 

irrigation 
canal 

11 5 0 - 0 - 0 - 
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Applied 
fertilizers 

(1000 kg. y-1) 
≈ 47 5 Absent 0 1.9 1 1.4 1 

Sewage 
system -

correlation 
with 

inhabitants 

Absent 5 Absent 0 Absent 1 Absent 1 

1 Pollution Risk Range, 2 Pollution Risk Score, * the given value is based on available related 
information (spring, karst index, average hydraulic conductivity… etc.). 

3. Site Description  

3.1 General Settings of the Study Area  

The study area occupies the Southwestern part of Barada and Awaj Basin (Damascus basin) 
where Mt. Hermon is located (Figure 2). Mt. Hermon is the highest point of the Anti-Lebanon 
Mountains. This mountain stretches for a length of 55 km and a width of 25 km of mostly karstified 
limestone [20]. It is an open isolated major trending anticline that lies along the Southwestern margin 
of the Early Mesozoic Palmyride rift system [21]. It continues, with hinge axis trending in NE-SW 
direction, parallel to the Syrian-Lebanese borders (Figure 2). The lithological and geological 
structures result in steep slopes in the Western and Northwestern mountain ridges, where the karstic 
landforms dominated, and a flat relief in the Central and Eastern parts where the alluvial and basalt 
formations outcropped. The general slope of the study area is from West to East and Southeast. Its 
gradient reaches a value of about 50% at the slope of Mt. Hermon and less than 2% in the Eastern or 
Southeastern parts. The narrow, deep Arneh valley connects the mountainous part with the plain 
central region. The elevation of this area varies between 800 and 2800 m.a.s.l. The importance of the 
Hermon area, in addition to its strategic location, comes from the fact that its snowcap and 
precipitation feed every stream, spring and river in that area. The infiltrated precipitation in the 
mountainous area either discharges locally as a karst springs in the upper part of the Arneh Valley 
(Figure 2), or recharges the aquifers. Climate changes have resulted in a decrease in winter 
temperatures and total precipitation amount and in an increase in summer temperatures. Decreasing 
trend of annual precipitation amount is expected to continue with a reduction of up to 20% by the 
year 2050 [21-25]. These factors have led to the domination of a dry continental climate and 
contribute to the increasing water demand on the unsustainable abstraction of groundwater 
resources [26]. 
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Figure 2. The location of the study area in Barada and Awj Basin (left) and the map of Syria (right), which is 
divided into seven hydrogeological basins, after the Ministry of Irrigation, Syria, unpublished data. 

The study area is approximately 600 km2 where Awaj River forms a main water course in the 
eastern slope of Mt. Hermon by the junction of two main tributaries, Sebarani and Jenani (Figure 2). 
These two tributaries fed by a large number of karst springs controlled by subsurface geology and 
distributed along the slope of Mt. Hermon in the Arneh and Beit Jinn valleys. The river flowing east 
and mostly characterized by a seasonal flow regime. Its total long is 91 km and its supply catchment 
area estimated to be 1120 km2 [27]. The annual median discharge of the Awaj River was 4.7 m3·s−1 
between the years 1982 and 2004 [27], but decreased to approximately 2.2 m3·s−1 with a total drought 
period during summer in more recent years (2004–2014) [28]. In the formers days, this river 
terminates in the Al-Hijanah Lake situated in the Eastern Ghouta Oasis Southeastern of the 
Damascus City.  

3.2 Geological, Hydrogeological and Hydro-Climatological Conditions 
3.2.1 Geological conditions 

Geology plays a significant role in terms of storage, flow and quality of the groundwater [29].  
The complexity of thick karstified strata of Jurassic limestone, which interbeds with dolomite, 
dolomitic limestone, gypsiferous limestone and marl is outcropped in the western portion of the 
study area in Mt. Hermon (Figure 3). 

Limited exposure of Cretaceous and Paleogene formations is found locally in the Southwestern 
portion of the study area (Figure 3). The Cretaceous rock sequence ranges from Aptian to Senonian. 
The Aptian and Albian formations are mostly composed of organic limestone containing marls and 
clays. The Cenomanian-Turonian rock strata are composed of limestone, dolomitic limestone layers 
and crystalline dolomite with interbeds of argillaceous limestone, marl and sandstone. The 
Paleogene formations consist of intercalation of marly layers, marly limestone, clay and the 
limestone of Upper Eocene which is characterized by nummulites [30, 31]. 

The plain area is characterized by the exposure of the Neogene and Quaternary deposits. These 
deposits are mainly made of conglomerates, limestone and marly limestone, and dark colored basalt 
of Miocene age which is characterized by fractures filled with calcite, soil and clay. The Quaternary 
basalts resulting from lava overflow from volcanic vents [30] are located in the Southern and 
Southeastern portions of the study area (Figure 3). Figure 4 displays geological cross section showing 
subsurface lithology as well as the major faults. 
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Figure 3. The different geological formation outcrop in the study area, after [31]. 
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Figure 4. Geological cross section showing subsurface lithology in the study area as well as the major 
structure within this area, updated after [19] 

The geological structure of the study area is the result of Jurassic to recent deposition, tectonic, 
and volcanism. Sporadic uplifts along with comprehensive folding and faulting at shallow depth 
resulted to a variety of surface forms and geologic structures. As a result of folding and faulting 
structures, the Jurassic formations have found to be in direct contact with the Paleogene and 
Neogene formations. The tectonic stresses, have induced dense jointing, faulting and fracturing of 
the geological formations which play a principal role in terms of infiltration, storage capacity and 
the location, direction and rate of water discharge. The majority of the aquifers in the mountainous 
part is weakly permeable outside of the tectonic zones and karstic process. 
In general, two major fault directions, playing a significant role in the underground flow, can be 
depicted in the study area (Figure 5). The first one tending in Northeast-Southwest parallel to the 
hinge axis of Mt. Hermon, and the second one oriented to Northwest-Southeast toward the 
groundwater flow direction, as we will see later, which can increase the vulnerability of the aquifer 
system.  
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Figure 5. Major faults that depicted in the study area (after [30]) together with elevation contours as well 
as the DEM of this area. 

3.2.2  Hydrogeological conditions 
Hydrogeological setting is a composite description of all the geological and hydrogeological 

factors controlling groundwater flow into, through and out of an area [32, 33]. The majority of water 
flow in the study area exists as subsurface flow. The aquifers in this area can be classified into karstic 
and porous aquifers. The tectonically broken and karstified rocks as well as the step-like pattern 
create favourable infiltration conditions for precipitation in the elevated part of the Jurassic part. 
While, the unconsolidated or semi-consolidated deposits of Neogene and Quaternary are presented 
mainly in the plain area and form a porous aquifer. The well-developed karstic features in the 
carbonate rocks enhance a large preferential groundwater flow and relatively little surface runoff 
[20].  
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As a result of intensive tectonic/dislocations that are dominated in the study area, there are no 
reliable regionally continuous impermeable beds. Thus, there is no hydraulic isolation between the 
aquifers. However, the aquifer system has been divided into two hydrodynamic sub-systems. The 
first one is shallow and develops in the unconsolidated or semi-consolidated Quaternary/Neogene 
formations in the plain region which forms the upper aquifer horizon. The second one is deep and 
develops in the Cretaceous and Jurassic carbonate strata where the preferential flow mechanism 
contributes potentially to the groundwater flow patterns. The two systems are hydraulically well 
connected either by lateral inflow along the slope of the Mt. Hermon in the western portion or by 
upward leakage of groundwater from deep aquifers into the upper aquifer horizon [7]. The 
discrimination between different aquifers and aquitards in the study area is shown in Figure 6.  

 

 
Figure 6. Different aquifers and aquitards discriminated in the study area, (after [31]). 1, 3 and 5 are 
aquifers, 2 and 4 are aquitards. 
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By using FEFLOW [34], a 3D representation of these aquifers and intercalated aquitards is 
showed in Figure 7 [7]. The two integrated sub-systems are illustrated in this figure as well as the 
contaminants pathway concepts dominated for each system. The contaminants can be transported 
directly from the land surface to the water table or indirectly by the hydraulic connection between 
two hydrodynamic subsystems. 

 

 
Figure 7. A 3D representation of the aquifers and aquitards of NEMH area as well as pollution pathway 
concept, modified from [7]. 

  Hydraulic Conductivity of the aquifer system 
Hydraulic conductivity of an aquifer is represented as averages over areas and refers to its ability 

to transmit water. Higher hydraulic conductivity indicates that the aquifer is more vulnerable, as the 
pollutants move faster, while, low conductivity means high resistance against contamination 
transportation [35, 36]. However, the hydraulic conductivity plays a considerable role in the 
infiltration and the dispersion of the pollutants from the surface to the aquifers. The available data 
obtained from pumping tests [31] are used to extrapolate the hydraulic conductivity value for 
different aquifer system in the whole study area (Figure 8). The hydraulic conductivity for the upper 
aquifer horizon (unconfined aquifer) varied within a reasonable range based on values between 0.3 
and 13 md-1. For the Cretaceous and Jurassic aquifers, there was insufficient data on their spatial 
distribution across these aquifers. Thus, uniform hydraulic conductivities for these aquifers were 
defined as 25 and 18 md-1, respectively [7].  
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Figure 8. Spatial distribution of the hydraulic conductivity (md-1) in the aquifer system of NEMH. 

 Groundwater depth  
Based on groundwater level measurement in wells and piezometers located in the study area 

during October 2006, the depth to groundwater level from the ground surface is shown in figure 9. 
The low water depth has been measured in the Quaternary aquifer of the Arneh valley and the plain 
area, while the highest values have been measured in the North, Northeastern and South of the study 
area. Although the groundwater table is located a depth more than the median depth of 15 m in the 
most part of the study area, the hydrogeological characteristics and the hydrodynamic exchange 
between the aquifer system suggest that the depth to the groundwater table is not an important 
factor to consider when determining aquifers pollution risk. This is most likely true for the 
unconsolidated upper aquifer horizon as well as for the exposed fractured and highly karstified part 
of the complex aquifer horizon of Jurassic and Cretaceous aquifers. 
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Figure 9. Spatial distribution of depth to groundwater level during October 2006 in the study area. 

 
 Piezometric map of the aquifer system:  

The upper aquifer horizon (The Neogene and Quaternary aquifers) is in direct connect with 
the Jurassic and Cretaceous aquifer in the western mountainous side of the study area [7]. 
However, the available data of groundwater static levels measured in the two system during 
October 2006 and the altitudes were used to construct the equipotential contour lines for the 
whole system as shown in figure 10. The general groundwater flow is organized towards the east 
direction. Minor flow direction is also recognized from northwest to southeast toward the faults 
direction (figure 5) where several springs with relatively high discharges emerge close to the limit 
of the basalt formations in the plain region. A steeper hydraulic gradient is observed in the 
western and northern mountainous parts, where the karsts and faults are more dominant. 
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Figure 10. Equipotential contours map of the studied system based on the available groundwater level 
data of October 2006. 

3.2.3 Hydro-climatology conditions 
The climate of the study area is generally considered as a modified Mediterranean type with 

continental influence (warm dry summer and cool rainy winter, with two transitional periods in 
spring and autumn). The climate conditions of this area are often subjected to high variability due to 
the influence of different air mass circulation and the local effect of two main geographical features, 
the Mediterranean Sea and the Anti-Lebanon Mountains. The recent climate changes, including a 
decrease in winter temperatures and total precipitation amount as well as an increase in summer 
temperatures, lead to prevailing of dry continental climate over this region [37, 26]. 

The climate conditions vary from semi-humid (moderate) in the western portion in Mt. Hermon, 
to semi-arid in the plain region. Between December and March, the higher region of Mt. Hermon 
(>1500 m.a.s.l), usually receives the precipitation in the form of snow, which may persist until June. 
The drainage network is found along the slopes of the Mt. Hermon ridge at the altitude of more than 
1000 m.a.s.l where the two tributaries of Awaj River (Sebarani and Jenani) are generated. The major 
factors affecting streams discharge in this area are precipitation and snowmelt. The amount of 
snowfall at the altitude between 2200 m and 2400 m is estimated to be between 1100 and 1700 mm. 
The snowmelt contributes to about 80% of the total precipitation for the altitude above 2400 m, about 
60% for the altitude between 2000 and 2400 m, and about 30% at the altitude of 1500 m [38]. 
Surprisingly, it was observed that snowfall on Mt. Hermon and Anti-Lebanon had twice the water 
content as the same volume of snow falling at the same altitude on the Alps [39,40]. The precipitation 
plays a significant role on the groundwater recharge which estimated to be about 173 x 106 m3.y-1 in 
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the study area for the hydrological year 2009-2010 [7]. In this part of the Mediterranean region, the 
amount of precipitation decreases eastwards, and varies from more than 1000 mmy-1 in the Mt. 
Hermon to less than 300 mmy-1 in the eastern parts. The wide range of the amount of precipitation 
in this relatively small area is related to the existence of mountains which constitute a barrier 
preventing wet depression from the Mediterranean Sea to reach the eastern region. The highest 
portion of precipitation in the mountainous parts is infiltrated throughout the karstic rocks to 
recharge groundwater or discharge as karstic springs [6,7].  

The hydrograph variation of Mambej spring, which is located at the limit between the Neogene 
and Quaternary formations in the southeast portion of the study area, and its response to 
precipitation input event is shown in Figure 11. This hydrograph shows how the spring responds 
rapidly to precipitation with sharp changes in flow. It gives insight into the karst structure and 
dynamic flow of the aquifer. Heavy rainfall during the rainy season leads to a substantial input into 
the subsurface karst network and well-developed conduits. The rapid increase in spring flow, from 
almost zero to several cubic meters per second, suggests short transit time and indicates that the flow 
regime of this spring is developed into an intricate system of dissolution-enlarged fissures within 
the epikarst which highlights the aquifer's low resistance against the pollution. 

 

Figure 11. The variations of the monthly discharge of Mambej spring and the annual amount of 
precipitation measured at Arneh station. 

The monthly average air temperature ranges between 25 °C and 27 °C in summer within the plain 
region, while this value is about 19 °C in the mountains at an elevation above 2000 m.a.s.l during the 
same period. In winter, the monthly average air temperature ranges from 10 °C to 15 °C within the 
plain area and decreases to less than 0 °C above 1500 m.a.s.l. The average temperature over the 
Eastern Mediterranean area has increased by 1.5-4 °C in the last 100 years [26]. 

The relative humidity values are essentially related to temperature oscillation [41], thus low 
monthly values are usually about 24-50% during summer (July and August) and may reach up to 
60–70% during winter (January and February). The humidity values generally decrease eastward 
across the recharge area for any given elevation. 

The annual potential evaporation varies between 1,500 mmy-1 in the flatlands to 1,100 mmy-1 in 
the mountainous parts. The lowest value of potential evaporation is estimated to be at 500 mmy-1 for 
the altitude more 2600 m.a.s.l. Evapotranspiration in the mountainous area varies between 300-400 
mmy-1, while it is about 100 mmy-1 in the flatland area [31, 42]. 

 

0

200

400

600

800

1000

1200

1400

16000

1

2

3

4

5

6

P
re

ci
p

it
at

io
n

 m
m

Y
-1

d
is

ch
ar

ge
 m

3 s
-1

Hydrological Year

Arneh Preci

Mambej Sp

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 16 March 2021                   



4. Impact of water and land use on groundwater contamination in the study area 

The hydrogeologically complex and laterally heterogeneous multi-aquifer system of the study 
area is tapped by urban wells at different depths. Agriculture is the main economic activity in this 
area. Groundwater is the main source for both domestic and agricultural activities mainly in the 
plain region. This source is under intense anthropogenic pressure and constant threat of 
contamination. Therefore, and from a potential contamination perspective, protection of 
groundwater resource against the contamination problem can be considered as an impending 
important subject. The agricultural land, which consists of irrigated fields, dry farming and orchards 
covers around 92 km2. The actual trend of this area is associated with high population growth and 
poor sanitation facilities as well as extensive use of fertilizers, (ammonium nitrate and ammonium 
phosphate) that may lead to nitrate contamination of groundwater. The exposed parts of the 
karstified Jurassic and Cretaceous aquifers in the mountain area show unfavorable conditions for 
exploitation. On the other hand, when they underlie at a reasonable depth in the flat area, they form 
a favorable but relatively deep aquifer. However, the domestic sewages, especially on site sanitation 
systems like pit latrines or discharge of effluents to surface water exacerbate groundwater 
contamination.  

In the last 20 years and due to surface water resources regression resulting from climate change 
and increasing of water demand, the groundwater becomes an important source of water supply in 
the study area. About 1000 wells (most of which are illegal), have been drilled for both domestic and 
agricultural purposes. Increasing the agricultural activities has a negative impact on the quality and 
quantity of the groundwater resources [6]. Figure 12 shows main agricultural fields and spatial 
distribution of abstraction wells. However, in the plain area, where the majority of these wells are 
located, the quality of groundwater is clearly impacted. This will be further elaborated in the 
following sections.  
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Figure 12. Location sites of irrigation field and spatial distribution of abstraction wells. 

5. Field Parameters and Dissolved Solutes (NO3)  

The characteristics of some physiochemical parameters of groundwater change over a very short 
time scale. These parameters should be measured in the field, therefore they call field parameters. 
Among them, electric conductivity (EC) and hydrogen ion concentration (pH) which is significantly 
affected by the temperature (T). However, these three parameters directly affect many of the physical 
and chemical characteristics of groundwater. They can be used to identify different source of 
contamination from surface infiltration, or leakage between the different aquifers which have a 
different water quality. 

5.1 Electric conductivity (EC) 

The electrical conductivity (EC) of water is strongly dependent on its ionic composition. It 
comprises the solute of inorganic salts (principally chlorides, sodium, calcium, magnesium, 
potassium, bicarbonates, and sulfates) and small amounts of organic matter that are dissolved in 
water [43,44]. When groundwater is not affected by pollution, it is characterized by low values of 
EC. The EC values were measured in 750 of groundwater samples collected during the dry period 
(July and August) of 2006 [19]. These samples cover about 360 km2 of the study area and mainly 
located in the plain region (Figure 13). Generally, the EC values show a gradual increase from the 
upland recharge areas (mountain parts) towards the lowland discharge areas (plain area) coincided 
with groundwater flow direction (Figure 13). Along the Arneh valley, where the Sebarani tributary 
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of Awaj River is generated, relatively high values of EC indicate the influence of the salinization 
caused by the dissolution of local evaporite formations such as gypsum and anhydrite. In general, 
the lowest values of EC, (200- 400 μS.cm-1) are measured in the western mountain area (Jurassic part) 
as well as in the basaltic formation in the southern part of the study area. The highest values of EC 
(800-1400 μS.cm-1), are measured in the plain area (Neogene and Quaternary aquifers), indicate the 
effect of irrigation return flow, evapotranspiration, and groundwater flow direction. 

 

Figure 13. Spatial distribution of EC (μS.cm-1) values in groundwater samples based on available data of 
field survey conducted in July and August 2006 and associated equipotential contour map based on 
groundwater level measured during October 2006.  

5.2 Groundwater Temperature Distribution 

The temperature affects biological, chemical and physical activities in the water and can alter the 
physical and chemical properties of water. Groundwater temperature responses to the heat flow 
from the earth’s interior and, near the earth’s surface [45]. The spatial distribution of temperature of 
750 groundwater samples measured in July and August 2006 is shown in Figure 14. This figure shows 
that the groundwater samples that are situated at more than 1400 m and mainly located in the 
Jurassic part showing water temperature of below 16 °C. At these elevations, groundwater 
temperature is affected by altitude and snow melting. Generally, groundwater temperature increases 
in the eastern direction toward the highest values in the southern part of the study area (22-25 °C), 
and then decreases again in the southeastern part of this area. 

The relatively low temperature values (16-19 °C) measured in the southeastern part, could be 
used as a tracer to indicate a flow patterns from the Jurassic aquifer in the west towards the 
Neogene/Quaternary aquifer, as tectonically-induced flow controlled by regional faults. The 
recharge by Awaj River, which is characterized by low temperature and intensively used in 
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agricultural activities in this part, might also contribute to decrease the groundwater temperature. 
In contrast, some groundwater samples demonstrate high temperature values (22-25 °C) as a result 
of upward leakage of groundwater from deep aquifers [7]. These samples also demonstrate high EC 
values (Figure 13). 

 

Figure 14. Spatial distribution of groundwater temperature (T, °C) in the study area based on available data 
of field survey conducted from July to August 2006. 

5.3 Hydrogen Ion Concentration (pH) 

Groundwater pH is a fundamental property that describes the acidity and alkalinity. Also it 
largely controls the chemical form of many organic and inorganic substances dissolved in water [46]. 
It is mathematically defined as the negative logarithm of the hydrogen ion concentration and it 
ranges from 0 to 14. A pH of 7 indicates neutral water, while a measurement below 7 means acid is 
present, whereas a measurement above 7 indicates the basic water (or alkaline). 

The groundwater pH alternations are depending on the rocks geology of both the recharge area 
and the aquifers as well as the residence time of groundwater. The pH measured in the groundwater 
samples, shows both acidity and alkalinity, but the majority of these samples is characterized by pH 
values ranging from 6.5 to 7.5 (Figure 15). Few samples demonstrating high pH values (7.5-8.5) are 
located mainly in the southern and southeastern parts of the study area where the basalt Quaternary 
formations are exposed. The acidic zones, (pH: 6-6.5), are located in the plain area. Groundwater 
table fluctuates due to extensive pumping in this zone introducing oxygen to the hydraulically 
impacted zone. The entrapped air is dissolved subsequently during stages of groundwater table rise, 
thereby oxidizing iron-sulphide minerals commonly present in the sediments [46, 43]. The 
contamination resulted from the domestic wastewater disposal of surrounding villages, decaying 
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organic material and interbedded of sand formations, might have contributed in reducing the pH 
values in this area. 

 

Figure 15. Spatial distribution of pH values in groundwater samples based on available data of field survey 
conducted from July to August 2006. 

5.4 Dissolved Solutes (NO3-)  

As mentioned, agriculture is the main economic activity which influences the quality of 
groundwater, particularly through the leaching of nitrate. The agricultural and urban activities are 
mainly dominated in the plain area where the soil is very vulnerable to leaching by excess irrigation. 
The intensive uses of fertilizers and manure in these activities, the irrigation return flow, the 
wastewater disposal and the waste generated directly by animals have increased the nitrate 
concentration in the groundwater. During flood periods (March and April 2006), the total coliforms 
and fecal coliforms (Escherichia coli), have been detected in three springs located in the plain area 
which indicates a fecal contamination resulted from untreated sewage water or animal wastes [6]. 
The nitrate value in groundwater has been often used as an indicator of groundwater pollution from 
overland input and groundwater vulnerability [47-49]. Actual nitrate concentration values measured 
in 150 groundwater samples [5], show that nitrate levels vary from 0 to 154 mg/l-1 with an average of 
21.7 mgL-1. The areal distribution of this variable is shown in Figure 16. The high nitrate values were 
measured in the plain region may indicate that the aquifer has been influenced by anthropogenic 
activities taking place at or near the land surface where the considerable numbers of groundwater 
abstraction wells are situated. The high values were also measured in two villages located at the 
lower part of the Jurassic aquifer (about 1600 m.a.s.l) as a result of the rapid septic tanks infiltration. 
The highly karstified limestone of this part enhances quick infiltration of untreated wastewater and 
increases the nitrate concentration in the groundwater.  
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Figure 16. Spatial distribution of NO3- (MgL-1) values measured in the groundwater samples, December, 
2006. 

6. Results and discussion 
6.1. Delineation of Groundwater Pollution Risk Map 

The degree of the pollution risk is determined by using an index that resulted from the average 
then sum of final evaluation of hydrogeological, physio-chemical and socio-economical 
parameters/ indicators for each zone (Table 3).  

Table 3. The parameters scoring system adopted for the evaluation and calculation of pollution risk 
score of each zone. 

Impact Factor 
Pollution Risk Zone/ Average Pollution Risk Score 

A B C D 

Physio-chemical 3.3 1 2.5 2 
Socio-economical 4.9 0 1 1 
Hydro-geological 9.6 9 4.4 1.3 

Sum 17.8 10 7.9 4.3 

 

The final calculated value (Table 3), defines the pollution risk score, where the lower pollution 
risk score determines the higher aquifer system protection. Based on this evaluation, four classes or 
pollution risk indices can be identified (Table 4). The range: 0 - 5 is considered as low pollution risk 
index, 5 - 10 is considered as moderate pollution risk index, 10 - 15 is considered as high pollution 
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risk index and more that 15 is considered as very high pollution risk index. However, the study area 
has been divided into four subareas according to the pollution risk index. The result shows that 
around 40% of aquifer system is within very high pollution risk, 9% is estimated as high pollution 
risk, 38% is within moderate pollution risk and 13% is within a low pollution risk category (Table 4).  

Table 4. Accounted pollution risk indices and associated pollution risk areas (km2 and %) adopted by the 
authors for a multi-layered aquifer system of NEMH. 

Pollution Risk 
Zone 

Sum of three 
Component of 
Impact Factors 

Pollution Risk 
Index 

Area (km2) Area (%) 

A 17.8 Very high 239 40 
B 10 High 53 9 
C 7.9 Moderate 232 38 
D 4.3 Low 78 13 

 

A very high pollution risk category is corresponding to the upper aquifer horizon of the alluvial 
and proluvial Quaternary, that extends as a narrow strip along the two tributaries of Awaj River, 
and the karstified Neogene aquifer in the central part of the study area. This aquifer horizon is the 
subject of intensive exploitation to mainly meet the agricultural needs. In this part, the groundwater 
level is relatively shallow and the recharge from irrigation return flow is considerable. The 
anthropogenic activities contribute in various ways to groundwater contamination. The major 
springs, which are located in this aquifer horizon, play a considerable role in agricultural and 
domestic activities. These springs are mainly recharged from karsified Jurassic aquifer [6]. A very 
high pollution risk index was also defined for the lower part of the Jurassic aquifer where several 
villages are located. This area is characterized by a high recharge rate as confirmed by stable isotopic 
composition of groundwater [6]. The karst features (e.g., dolines, sinkholes) and major faults 
contribute to increase the vulnerability and the pollution risk of this zone.  

The high pollution risk index might be given to the upper fractured zone of Jurassic aquifer, 
which is almost eroded from the soil and characterized by the scarcity of vegetation cover and the 
absence of urban activities. The steep slope and lack of bio-geomorphic impacts of biota in this zone, 
compared with the lower zone, might affect the dissolution potential of the rocks. The EC, pH, T and 
NO3- values measured in the groundwater samples as well as the isotopic composition of rainfall 
and groundwater [6], and the springs’ regime, suggest quick conduit flow within this zone.  

In the major part of the Neogene, where an ancient drainage network can be recognized from 
satellite photo (Figure 2), and the Paleogene, the marly and clayey limestone and clay formations are 
dominated. This help to increase the protective capacity of the unsaturated zone. Otherwise, the 
karstic landform is absent or less developed on the surface layer of these formations and the 
urbanisation activities are also less developed. However, the weighted parameters/ indicators 
showed that the moderate pollution risk index of groundwater can be defined for this part.  

The low pollution risk index of groundwater is located in the Quaternary basaltic aquifer. The 
surface basaltic deposits, which forms thick impermeable formation, contributes in protecting the 
aquifer. The groundwater level of this aquifer is situated at a considerable depth and associated with 
a considerably low recharge rate.  

The simplified groundwater pollution risk index map (Figure 17) and land use map (Figure 12), 
show that the irrigation zones are located in the very high pollution risk index area. It indicates that 
the applied fertilizers to the irrigation zones and organic wastes from urban areas infiltrate toward 
the aquifers and affect directly the quality of groundwater. 
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Figure 17. Spatial distribution of simplified groundwater pollution risk index map of NEMH showing the 
pollution risk classes. 

6.2. Groundwater Pollution Risk Index Assessment and Water Resources Management 

The protection of groundwater resources can be considered as a part of an overall water resource 
management approach. Groundwater Pollution risk assessments can help in attaining sustainable 
water resources management by protecting the groundwater resources when a new decision will be 
taken for future development. The final groundwater pollution risk index map can be considered as 
a helpful tool especially when groundwater can be exposed to contamination as a result of activities 
that take place on the land surface as what was seen in the plain area in our case study. Proper 
interpretation of groundwater pollution risk index map can help the planners to determine the 
adopted strategy or to establish a management scenario in order to avoid the groundwater pollution 
threat. However, this map identifies different groundwater susceptible areas due mainly to natural 
impacts and then the anthropogenic effects. It may draw interest on decision makers, 
hydrogeologists or another end-user who would like to know the groundwater risk that can be 
resulted from a particular activity or development. Also it can help in creating different protection 
zones [50, 51]. The development of Integrative Approach (I A) for groundwater pollution risk 
assessment of the study area, allowed us to discriminate between the different four zones. The 
delineation of different zones in different colors aid visually in classifying, distinguishing and 
interpreting groundwater pollution risk map of this area. This map gives an indication of the overall 
risk to groundwater pollution in this area. It shows that about 90% of this area varies from very high 
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to moderate pollution risk index, meaning that, the natural attenuation processes capacity of the 
system is very low. However, about 50% of the study area falls under a high and very high pollution 
risk index which reduces the protection capacity of the unsaturated zone of this area. However, the 
most human-related activities are located in this area which increases the risk of human impact and 
pollution on groundwater. In moderate and low groundwater pollution risk zones, the natural 
protections of groundwater resources are reasonable and high, respectively. In these zones, there are 
less agricultural and urban activities which reduce the risk of groundwater in experiencing pollution. 

The Jurassic aquifer together with the Cretaceous aquifer form the most important water-bearing 
system in the Damascus Basin and even in Syria in terms of storage capacity and discharge of springs 
[41]. These aquifers are located in the very high and high groundwater pollution risk zones. 
However, the majority of springs, abstraction wells and two tributaries of Awaj River are situated in 
very high and high pollution risk zones. Nevertheless, further investigations and risk assessment 
should be conducted before any urban development planning or water exploitation project in order 
to protect and limit the possible impact on groundwater resources in this area.  

Reducing activities that increase the nitrate concentration in the polluted area is an important 
procedure to improve the water quality. The result of groundwater modelling [7], shows strong 
hydraulic connection between the karstified Jurassic aquifer and other aquifers, either directly or by 
upward leakage. Because of the fast and short transit time of groundwater flow and subsequently, 
of pollutants, e.g. fecal and pathogenic microorganisms with very poor attenuation, the groundwater 
pollution risk of this aquifer must be considered. However, this aquifer has to be included into 
immediate planning in order to protect this vital source mainly against the septic tanks and olive 
mill wastewater. Consequently, the strong investment in sewage systems and quality control of 
groundwater should be a priority condition. 

This study demonstrates the role of groundwater pollution risk assessment and mapping 
approach in developing an educational and hydrogeological relevant tool. This toll can use to 
support hydrogeological conceptualization, to develop priorities for aquifer protection policies, in 
particular, and to contributes in improving water resource management decisions in general. It helps 
to develop of an efficient management plan of water resource throughout the emphasizing areas that 
need further investigation and effective intervention. It also provides an overview of water resources 
threats which can facilitate in raising awareness of highest level of groundwater protection. 
However, a low pollution risk index observed for some parts of the study area, does not mean that 
there is no risk for contamination in the future. This simply means that the geological and 
hydrogeological conditions of these parts offer a more natural protection to groundwater resources.  

Several factors such as effective hydraulic connection between the aquifer systems, potentially 
important of geological structures especially the major faults zones, intensive development of 
anthropogenic activities and missing the sewage treatment system contribute to increase 
groundwater pollution risk. The delineated groundwater pollution risk index map can be used as a 
general guideline for water management development plan by reducing the risk of pollutants that 
could reach groundwater.  

7. Conclusion 

The obtained result from this proposed method is based mainly on the previous obtained 
information about the recharge/discharge mechanisms and hydrodynamic exchange between the 
different aquifers of the complex hydrogeological system in the NEMH as well as the analysis of 
socio-economical context dominated in the study area. This preliminary result is considered as an 
important approach to determine the degrees of groundwater pollution risk in region with limited 
data available. By combining geological, hydrogeological physiochemical and socio-economical 
potential impact, the groundwater pollution risk index has been defined by using grading system 
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which allows to integrate the values and weights of major factor. Spatial projection of the results has 
allowed us to delineate spatial variabilities of potential groundwater pollution in the study area. The 
result shows that about 50% of the area fall within very high and high pollution risk categories. In 
fact, the predominance of karstified and fissured carbonate rocks of the Jurassic aquifer in the 
mountain area as well as the outcropping of alluvial and proluvial deposits in the plain area, which 
are highly sensitive to in situ anthropogenic pollutants, correspond to the obtained results. However, 
the overall protective capacity of the aquifer system in NEMH has been strongly affected. The 
pollution risk increases from the upper part to the lower part of Jurassic aquifer. The development 
of karstic process reduces the protective capacity of the unsaturated zone in the lower part of this 
aquifer. The absence of urbanization activities at the higher part, compared to the lower one, leads 
to the absence of anthropogenic contaminant sources and hence the risk to pollution. For the 
outcropping of low permeable Quaternary basalt in the southern and southeastern region of the 
study area, where the anthropogenic activities are almost absent, low pollution risk index was 
assigned. The moderate pollution risk was assigned to the major part of Neogene aquifer and 
Paleogene formations due to the natural protective capacity of the unsaturated zone, relatively low 
hydraulic conductivity and less of anthropogenic activities development. 

The risk of contamination of the aquifer system of NEMH area is due mainly to the 
hydrogeological characteristics of this system. However, the anthropogenic activities play a 
considerable role in the deterioration of groundwater quality and increasing of groundwater 
pollution risk in this area. The result shows that the sewer system losses and septic tanks as well as 
using of chemical fertilizers and manures in the agricultural activities have a very strong impact on 
groundwater nitrate contamination. Nevertheless, and with ever-growing demand for the 
groundwater in this area, priority areas for groundwater management are strongly suggested. The 
final map is based on a relatively arbitrary weighted combination of various hydrogeological, 
physiochemical and socio-economic parameters/factors. However, the Integrative Approach (I.A) 
that was employed in order to produce this map based on available data and information is very 
promising; especially in a region under high tension and lack of control. I.A could give a complete 
assessment of the overall risk of groundwater pollutions if a full data set can be prepared. It is 
expected that further researches based on more data collection and groundwater monitoring will 
decrease the degree of uncertainty and validate the obtained pollution risk index map.  

Despite its limitations, the proposed approach allowed us to link groundwater pollution risk 
assessment map with obtained information about this complex multilayer aquifer system in the 
study area. Consequently, this can provide an important tool for the sustainable management of 
groundwater resource in this area and another area of different region of the country. 
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