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Abstract: The Heisenberg ab initio theory of magnetization is developed to apply for multilayer1

nanoparticles. The theory is based on distribution and partition functions modification with2

account the difference between exchange integral and closest neighbour numbers, that change3

the system of resulting transcendental equation for magnetization and its reversal to form either4

a paramagnetic type curve or hysteresis loops patterns. The equations are obtained within the5

Heisenberg partition function construction by Heitler diagonalization of energy matrix via irreducible6

representations of permutation symmetry group. A combination with the Gauss distribution gives7

the explicit expression for the partition function in the asymptotic limit at large spin range in terms8

of transcendent function. The exchange integral, as a parameter of the equation of state (material9

equation) is evaluated from Curie temperature value by means of a formula derived within the10

presented theory. Methods of data processing from the simultaneous solution of the material equation11

system are proposed. The multi-valued function of hysteresis loop is found by combination of12

graphical approach and special procedure for elimination of mistaken peaks and prolapses of the13

patterns. The theory and computation methods are applied to spherical particles with separate14

surface layers consideration. The contribution of the surface layers, that are specified by number of15

closest neighbors and exchange integrals into overall magnetization, is studied for two-layer and16

three-layer models, that are discussed and compared graphically.17

Keywords: hysteresis; Heisenberg magnetization theory; ab initio theory; multilayer models of18

nanoparticle; Curie-Weiss transition range;19

0. Introduction20

The phenomenon of hysteresis is important in many fields of physical science from21

ferromagnetism [1] (some advances are pointed out in [2]) to acoustics [3,4] and plasma waves theory22

[5]. The principle feature of the phenomenon is that the material relation in such cases is nonlinear and23

not unique, hence its visualization and applications need special attention. It is important to note the24

impact of these features on magnetization dynamics [1].25

In the comprehensive and very instructive book on hysteresis in ferromagnets [1] it is pointed,26

that "the fascinating richness of phenomena’ attract attention of many investigators as its fundamental27

physics side as in applications. In this book the problem of a hysteresis loop definition and, hence,28

drawing is posed.29

In the book [6] few popular models, from Stoner – Wohlfarth’ (especially important for30

nanoparticles) [7] are described in the practical context with a phenomenology including and31
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comparison with experiments. In the case of particles of dimensions small enough to have the32

only domain, the theory significantly simplifies, hence the very many models are applied, starting33

from the mentioned [7]. How it works in a wide field of physics, it is shown in the review [8] and its34

features for ferromagnetic bodies are specified at [9].35

Difficulties in a partition function ab initio construction are well-known [10]. The seminal paper36

of Heisenberg [11] on ferromagnetic matter theory is important as from widely explored and cited37

exchange interaction of the Weiss molecular forces interpretation as from less known implementation38

of permutation group symmetry in the partition function composition. It was established that the Weiss39

electric forces originated from exchange effect of quantum mechanics, introduced for the first time by40

Heitler and London [12]. The paper of Heisenberg [11] contains deep results of general significance.41

The multi-electron terms theory was built using the common symmetry: in respect to the group of42

permutation of the electrons. Its development is studied in [13] for more general exposition, to be valid43

for crystals. It has an extension based on a joint symmetry group of permutations and a space symmetry44

group [14], where the exchange integral notion is "lifted" up the Hartree-Fock equations level. The45

permutation group theory allows to express energy via its irreducible representations characters [15,16]46

and, in same context, statistical distribution function is constructed. Its derivative gives the internal47

parameter (magnetisation M value conjugate to magnetic field H, that results in equation of state48

M(H). Its development for particles with unit spin was realized in [17]. In such approach, the basic49

element of the partition sum construction is the symmetry with respect to electron permutation group.50

However, the calculation contains account of relative positions and number of neighbours, that enter51

the resulting formulas, i.e. the equations that define the form of a magnetisation curve or a hysteresis52

loop. In a sense such a construction accounts anisotropy in implicit form, that, in the simplest models53

as Stoner one, led directly to the hysteresis phenomenon for a one-domain particles magnetization. A54

further development of the Heisenberg theory implies explicit account of a space symmetry [14], that55

would allow to introduce anisotropy parameters within the partition function. Some basic observations56

and modeling outline for nanoscale objects are presented in [14,18]. Note, that at huge values of the57

spin, the problem may be considered as the quasiclassical approximation as it does in the transition58

to the continuous description (e.g. while a derivation of LLG [19] is performed). The microscopic59

Heisenberg model goes to the macroscopic Landau-Lifshits-Gilbert (LLG) equations as it is explained60

in [19,20]. For example, in the article [21] a ferromagnetic alloy explore such LLG-based model for a61

hysteresis loop building with 3D LLG equations. Further, magnetic bi-phase nanocrystalline systems62

with biased (non-symmetric) hysteresis loops are presented in [22], where micromagnetic computations63

of magnetostatic and exchange interactions have been made within the model using Euler–Lagrange64

equations for classic Lagrangean.65

Typically, a nano- or microwire have a magnetic structure consisting mainly of a single66

longitudinal domain and small closure domains at both ends. A rectangular hysteresis loop is then67

observed accompanied by the fast domain wall propagation along the wires. This type of material is a68

good physical example of the idea of a magnetic relay hysteron as described in Preisach model [23]69

hysteresis. As example of a core/shell system that shows magnetization reversal (strongly affected by70

the presence of the shell) and, in particular, by the existence of a frustrated interfacial region playing a71

key role in determining the low temperature irreversibility, the finite coercitivity slightly above the72

Curie temperature of the phase and the horizontal displacement of the FC-hysteresis loop, which is73

attributed to the presence of a large fraction of surface spins [24]. In [25] The magnetization reversal74

sequence of the two ferromagnetic layers depends on the composition of a Permalloy. The magnetic75

features are explained in terms of morphological differences of the ferromagnet/antiferromagnet76

interfaces.77

The main aim of our investigation is to attract attention to the "ab initio" modeling of a variety of78

hysteresis problems formulation and loops construction in a field of its direct application possibility.79

This field covers the one-domain case of magnetization and reversal, especially for nanoparticles80

which surface layer may contribute in resulting loops features. A necessity of such investigation is81
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demonstrated experimentally, see, e.g., the mentioned paper [24]. The model we present in this study82

is based on a division of internal and surface layers of atoms with different exchange and neighbours83

number characteristics, that enter Heisenberg theory parameters. This model we estimate as novel,84

considering it as the main result of the presented work. We also develop results of Heisenberg and85

his followers in the realm of the hysteresis loops patterns construction for different ferromagnets and86

parameters range, including the vicinity of the ferromagnetic and paramagnetic border. Such results are87

also absent in literature, hence - new. It also was instructive to explain our choice of the corresponding88

thermodynamic relations for magnetization and strength of magnetic fields. The term "ab initio" is89

conventionally used in the literature in two meanings: 1. Within a quantum mechanics scope, such as90

based on either Hartree - Fock approach, or in its development as DFT - pseudopotentials calculations91

[26], 2. By the foundation of classical/quantum statistics as in our work. The choice of equation and92

a statement of problem for a distribution function fix the realm of theory validity, such as kinetic or93

equilibrium Gibbs one (our case).94

In this manuscript we also study the computational aspect of the hysteresis phenomenon95

visualisation, However, for a reader convenience, we "order" the basic physical footings of an "ab initio"96

theory, e.g. the partition function form origin, introducing the necessary notations and the choice of97

the corresponding thermodynamic relation for magnetization and strength fields to have the M(H)98

equation of state. In the Second section we, for the same reason sketch the principle points of the99

Heisenberg ferromagnetism theory. This model contains hysteresis specific constructive elements, that100

have not been presented in original publications of Heisenberg and his followers, The Third section is101

devoted to direct corollaries of the theory basic relations in Curie-Weiss range, that allows express the102

exchange integral via the Curie temperature, study the law and illustrate the magnetization behavior103

in the vicinity of the critical temperature. We also pose and solve the problem of graphical solution of104

Heisenberg equations outside the ferromagnetism temperature region. In the Fourth, central point105

section, the general mathematical problems of magnetization visualization in the ferromagnetism106

region are presented. As the fourth one, the fifth section describes magnetization of nanoparticles in107

multi-layers model. A contribution of a surface in magnetism is of significant interest for the "tiny"108

particles. The layers introduced to figure out the difference between parameters of the atomic pairs at109

internal and external layers. Going to the sixth section, we stress its computational aspect, analysing110

such artefacts of the multi-valued nonlinear problems visualisation as prolapses and mistaken peaks111

generation by computing workflow. Such a tool for the problem overcome we name the subtraction112

and summation checking procedure, that we consider as also new. The Conclusion shortly review113

the results and outline perspectives. The short description of the overall algorithm is available online114

in [27]. The more complicated problem of Nonlinear Magnetization Dynamics in Nanosystems is115

presented in comprehensive book of Bertotti-Serpico [28]. We, however do not touch such problems116

with time-dependence in this text.117

1. Mathematical and physical background. Energy partitioning through the distribution function118

1.1. Thermodynamic state equation119

A partition function Z is represented in quantum statistical physics as the normalisation constant
of the distribution:

ĝ(a, T) =
1
Z

exp[−Ĥ(a)
kT

], (1)

where ĝ is a Gibbs canonical distribution operator, used for description of equilibrium states of
physical systems. In (1), we note Ĥ as the Hamiltonian operator, k - Boltzmann constant, T - absolute
temperature. The Gibbs operator depends on external parameter a of the system under consideration.
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We left the only such parameter in the magnetism phenomena description, its choice is done below.
The normalization condition for (1) reads:

Tr[ĝ(a, T)] =
1
Z

Tr[exp[−Ĥ(V, a)
kT

]] = 1. (2)

The thermodynamic internal energy of a system U in the statistical approach is represented as the
mean value of Hamiltonian:

U =< Ĥ >= Tr[Ĥ · exp[− F− Ĥ
kT

]], (3)

where F = U − TS (S - entropy), F is a thermodynamic potential, Helmholtz free energy. Being the
function of state, its differential is exact. Other thermodynamic variables are defined similarly to (3), as
the mean values of corresponding operators. Proceeding the previous point, the connection between
the free energy and the partition function is settled as: F = kTln 1

Z . Plugging it in (2) yields

exp[
F

kT
]Tr[exp[− Ĥ

kT
]] = 1. (4)

The identity (4) is differentiated, taking the tiny change of temperature dT and external parameter δa:

d
F

kT
− 1

kT
<

∂Ĥ
∂a

> δa− < Ĥ > d
1

kT
= 0. (5)

The work δA is defined by

δA =<
∂Ĥ
∂a

> δa = −bδa, (6)

where b is the internal parameter. As the result, the first law of thermodynamics is obtained:

dU − TdS = δA. (7)

Then, as the Pfaff’s form of free energy F is exact, it could be written as follows:

d
F(T, a)

kT
=

1
kT

∂F
∂a

da +
∂F
∂T

dT + Fd
1

kT
(8)

The following expression is substituted in the derived first law of thermodynamics (7), accounting the
rule for linear combinations of independent differentials da and dT, by which the pairs of variables
can be further correspondingly equated as:

(
∂F
∂a

+ b)da + (
∂F
∂T

+ S)dT = 0. (9)

On this ground, the state equation is derived:

b = kT
∂ ln Z

∂a
. (10)

The pair of parameters, necessary for current magnetization patterns visualization, are M = b, H = a.
M - is the magnetization, H - is the external magnetic field force,

M = kT
∂ ln Z

∂H
. (11)

As the result, the connection between prominent quantities - the magnetization and the external120

magnetic field force - is set.121
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Table 1. Number of closest neighbors z by Heitler-London estimations

z Application case#

1 Two atoms
2 Linear chain
4 Quadratic surface lattice
6 Simple cubic lattice
8 Cubic space-centered lattice
12 Cubic face-centered lattice

#Correspondent condensed matter structure for listed z values substitution.

1.2. Heisenberg partition function and exchange interactions properties122

W. Heisenberg builds foundations of the ferromagnetic theory, basing on the general quantum123

statistics fundamentals, described in the preceded section with the effective use of universal symmetry124

of a multi-electron system with respect to the permutation group and the Pauli principle, which makes125

it generally applicable for various materials [11,29]. He incorporates the Heitler-London [12] results for126

exchange interaction description and, as the main tool for energy spectrum evaluation, the Heitler’s127

one [15], that express the multi-electron Hamiltonian in terms of exchange integrals and characters of128

irreducible representations of the permutation group.129

The exchange interaction is described by the number of closest neighbors z - it is settled at the table130

1. Note also, that the exchange integral J - decreases exponentially with the increasing distance between131

atoms. The number of closest neighbors for Iron is zFe = 8, for Nickel and Cobalt zNi = zCo = 12,132

basing on the knowledge about particular materials crystal structure; it is visualized on Figures 23133

(Iron) and 24 (Nickel and Cobalt), placed in Appendix.134

Heisenberg derives an expression for energy with the help of the characters of irreducible
representations, listed in [15] and corrected in [11]. Its distribution within the σ−subspace is given by
Gauss function. The partition function Z by such construction is:

Z = ∑n
s=0 ∑+s

m=−s
∫ +∞
−∞ d∆E fσ√

2π∆E2
σ

e
αm+β s2

2π−
∆E
kT −

∆E2

2∆E2
σ = ∑n

s=0 ∑+s
m=−s fσeαm+β s2

2π−
∆E2

σ
2k2T2 , (12)

m - magnetic quantum number, which denotes spin projections, ∆E2 - mean quadratic energy deviation,
fσ - dimension of the irreducible representation, s - maximum value of m, n - number of electrons, k

- the Boltzmann constant, T - Kelvin temperature. Two assignations of dimensionless variables are
made:

β =
zJ
kT

, (13)

and
α =

µB
kT

H, (14)

here β is a combination of internal material parameters, α - the dimensionless external magnetic field
(H), µB - the Bohr magneton. After the summation of (12), we arrive at

Z = K

2 cosh
α + β m0

n − β2 m0
nz + β2 m3

0
2n3z

2

2n

. (15)

The most probable magnetic quantum number m0 is determined by

m0 =
∂ ln Z

∂α
=

∂ ln([2 cosh ξ]2n)

∂α
= n tanh ξ, (16)
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Figure 1. The function tanh ξ smoothness for an arbitrary material. A) β = 10.6, B) β = 1.32. With the
decrease of β, tanh ξ becomes straitened and intersects the black line once. The thickening regions of
tanh ξ functions correspond to the saturation of m0, as they intersect the black line at the same value of
m0.

that is a form of the equation of state m0(α) in terms of the dimensionless pair of quantities. Next, note,
that the symbol K is a function, which logarithm is small comparatively with the second term at large
n and m0/n. It does not depend on m0, so it is omitted. As in computations we mostly worked with Z,
one more notation is introduced for the argument of hyperbolic function:

ξ =
α + β m0

n − β2 m0
nz (1 +

m2
0

2n2 )

2
. (17)

2. Para-Ferromagnetism border135

2.1. Exchange interactions by Curie point characteristics136

The distinctive feature of Heisenberg ferromagnetic theory is in possibility of switching between137

paramagnetic and ferromagnetic magnetization states that defines the values of β at the boundaries138

between paramagnetic and ferromagnetic ranges.139

The terms β m0
n and β2 m0

nz define the smoothness of hyperbolic tangent functions with argument ξ.140

In turn, the smoothness of hyperbolic tangent functions determines whether m0 is single-valued at141

each solution or if exists a set of m0 values - Figure 1.142

To define the parameter β values at borders of switching from a paramagnetic state into a
ferromagnetic one, we work with the condition:

β(1− β

z
) ≥ 2. (18)

As it is seen from equations (16,17), the tangent of the curve (17) for m0
n = 0 goes under a smaller angle

with the x-axis than the tangent of the curve (16), that define number of intersections of the curves,
hence - the magnetization kind. Below we give a lot of examples of the case. The condition (18) is
equated in the critical temperature point T = θ and β here gets the assignation βθ . It brings us to the
quadratic equation:

β2
θ − zβθ + 2z = 0. (19)
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Table 2. Exchange integrals J through critical temperature θ, see∗

Critical point θ Melting point Exchange integral J
Units (in SI) [Kelvin] [Kelvin] [Joule]
Iron 1043 1538 7.19 · 10−21

Nickel 627 1455 1.82 · 10−21

Cobalt 1121 or 1403* 1495 3.26 · 10−21

The previously mentioned expression with square root
√

1− 8
z figures further in computations by

the Heisenberg theory (inclusively for the exchange integral J evaluation) as the consequence of a
quadratic equation solution way via the discriminant. The solution consists of a pair of roots:

β
[1,2]
θ =

z
2
(1±

√
1− 8

z
). (20)

General expression β = zJ
kT in critical point takes the form:

β
[1,2]
θ =

zJ
kθ[1,2]

, (21)

and, with the roots (20) application for the exchange integral values we get:

J =
kθ[1,2]

2
(1±

√
1− 8

z
). (22)

We, as W. Heisenberg, take one of two possible roots as physical one. Then, we work with the critical143

point value. An approximate estimation of exchange integral J was given in [11] on base of general144

thermodynamics, it is indicated that two conditions have to be accounted for ferromagnetism existence.145

The first one is J ∼ kT, where kT assumes values of the order 10−13[erg] (in Gaussian system of units)146

degrees for Iron, Nickel and Cobalt materials. It follows that J ∼ 10−20[Joule] (in System International).147

Though, the expression (22) allows us to compute the concrete exchange integral J value, which is148

further used in mean magnetization per electron and for a bulk layers in a multi-shell particle model149

as well - Table 2. Theoretically it is more suitable to express the approximate J through the exact150

empirically measured θ point, established firstly for the materials by Pierre Curie [30].151

1
152

For defining the most convenient values of βθ , we plug the numbers of closest neighbors z values
in (20), which are: If z = 8, then

βθ = 4±
√

16− 16 = 4. (23)

If z = 10, then
β
[1,2]
θ = 5±

√
25− 20 = 5±

√
5. (24)

If z = 12, then
β
[1,2]
θ = 6±

√
36− 24 = 6± 2

√
3. (25)

According to Table 1: when z = 8 (corresponds to Iron material), βθ has one root; when z = 12153

(corresponds to Nickel or Cobalt materials), β
[1,2]
θ has two roots.154

1 ∗The values from Table 2 might differ in various references. For our aim (the estimation of a model) implied values have no
principle significance.
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2.2. Heisenberg model with and without Curie-Weiss approximation155

In a primary source the Taylor expansion is done for the expression (16), taking small values of ξ.
It brings us to the approximate description of a high temperature region by Heisenberg theory (namely,
higher than Curie point temperatures):

2x = α + (x− x3

3
)(βθ −

β2
θ

z
) + (x− x3

3
)3 β2

θ

2z
. (26)

The cubic and higher terms are discarded due to its minor significance, i.e.:

m0 ≈ x =
α

2− (βθ −
β2

θ
z )

. (27)

Further the m0 is equated with the expression for x. Referring to the previous point of exchange
integral J reevaluation, βθ is expressed here through

βθ =
zθ

2T
(1±

√
1− 8

z
). (28)

Then, by the binomial factoring rule, substitution of βθ from (28), putting 1
T out of the brackets, tear

minus out of the brackets to exchange the positions of T and θ in θ − T, the resultant expression of
approximation is

m0 =
4αT2

z(T − θ)(1−
√

1− 8
z )(T(1 +

√
1− 8

z )− θ(1−
√

1− 8
z ))

. (29)

For Iron (z = 8) it contracts to

m0 =
αT2

2(T − θ)2 . (30)

On the other hand, the ξ expression (17) is to be prepared for high temperature magnetization without
any approximations. Similarly, we substitute βθ from (28):

ξθ =
α + zθ

2T (1±
√

1− 8
z )

m0
n − ( zθ

2T (1±
√

1− 8
z ))

2 m0
nz + ( zθ

2T (1±
√

1− 8
z ))

2 m3
0

2n3z

2
, (31)

and include the last expression in the system of two equations (the visualization of computation results
is given in Figure 26 and Figure 27) of Appendix:

y1 =
m0

n
; y2 = tanh ξθ . (32)

The system is solved with the temperature change, accounting that α parameter should be small; for156

example, α = 0.01. The mean magnetization value is taken per one electron, so n = 1, as we compute157

the statistical mean per one electron (see the next section for details). The result is obtained from the158

array of intersection points of the system (32), which is illustrated as the resulting figure of this section159

– Figure 2.160

So, (32) and (29) are graphically compared, showing the difference in a curvature angle. The161

Curie-Weiss approximation gives a more uniform decrease of a function, and both graphs match with162

tending to the melting point of a material – Figure 2.163
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Figure 2. Visual comparison of m0(θ, T, α) dependence by Heisenberg model with application of
Curie-Weiss approximation and without approximation. T = 1123..1643[K], α = 0.01, n = 1. Both
functions almost coincide within the range T > 1250[K], by tending to zero, when the material melts.

3. Mean per electron magnetization164

3.1. Mean partition function per electron and functions set mathematical behavior165

For magnetization patterns estimations we consider that for one atom there is one active electron,166

which is involved in paramagnetism and ferromagnetism, as the other electrons magnetic properties167

are considered balanced with each other, and the resultant magnetic moment of an atom is equated to168

para- or ferromagnetism of one active electron. That is why we regard the mean magnetization per169

atom with n = 1, where n – a number of active para-ferromagnetic electrons.170

The expression (17) for mean magnetization per electron acquire the next method application:
substituting the partition function with n = 1 (Z1):

ξ1 =
α + βm0 − β2 m0

z + β2 m3
0

2z
2

. (33)

The most probable magnetic quantum number m0 per one electron is determined by (16) is

m0 =
∂ ln Z1

∂α
=

∂ ln([2 cosh ξ1]
2)

∂α
=

2(2 cosh ξ1)
2−1 · 2 sinh ξ1

2(cosh ξ1)2 = tanh ξ1, (34)

as it is a derivative of a compound function. Next, we compose the system of two equations:

y1 = tanh ξ1; y2 = m0, (35)

where m0 is the main variable. The system (35) is considered to be the most convenient for software
to find out the solutions in case of paramagnetic curves creation, but for the ferromagnetic case we
recommend to imply the second way of gaining the intersection points with the usage of the system
with inverted hyperbolic function:

y1 = ξ1; y2 = arc tanh m0. (36)

The solutions of (35) and (36) are the same, but still, the processing and its speed might be different171

due to different solutions density and location relatively to the axes – Figure 3. Before building the172
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Figure 3. Functions sets general mathematical behavior (for arbitrary element), represented by the
corresponding curves, with changes of two parameters. α = −50..50. α increases in 0.1. The plot
contains 1001 curves (marked with red and blue colors), each intersects with black curves. (A), (B), (C),
(D): T = 1400[K]. (E), (F), (G), (H): T = 300[K]. (A), (C), (E), (G): (35). (B), (D), (F), (H): (36). As the
result, with the temperature decrease, the sets of curves contract, producing multiple intersections

connection with physics, we considered important to study the functions sets general mathematical173

behavior – in order to find out the consequence of functions sets behavior and properties.174

According to Figure 3 we conclude, that with applying the first system (35) the functions set175

thickens in one point, while with applying the second system (36), the functions set thickens along176

the straight line, parallel to y1,2 axis. It makes the difference in data processing speed and quality. We177

recommend both variants to be used, and then to choose the result of better processing in building178

magnetization patterns compared by the computation time and visible quality of the resulting patterns.179

For the majority of tasks, including mean magnetization per electron, we imply the change of180

α in limits α = −2..2, where its values increase in 0.1 for each solution. In general, there are 41 α181

values, respectively – 41 curves of tanh ξ. It imitates the changing external magnetic field. Temperature182

remains constant and its value is set manually at the beginning. Figure 3 illustrates the amplification of183

curves number in order to emphasize the thickening, but in concrete array creation 41 curves are fully184

enough in magnetic saturation catching. Saturation – the region, where the magnetization pattern is185

constant relatively to m0 axis. Arrays in α-change are automatically generated by applying the next186
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Figure 4. m0(α). Algorithmic built double loop for Cobalt (T = 300[K], J is evaluated by (22)). Double
loops are presented as a defined prospective of Heisenberg model development for complicated
hysteresis cases, look [31].

commands: Appendix, Figure 28. Similar with Figure 25, in Figure 28 (computational details are given187

again at Appendix) firstly comes the borders creation – two integer numbers, denoting the index of188

each future value (A).189

As it is observable from Figure 1 and Figure 3, hysteresis loops originate in case of multiple190

intersections of Q0 with Q2 (35), or Q4 with Q6 (36). There are various possible intersection patterns:191

single point, two, three, four or five points. The single point gives a smooth curve pattern, while192

multiple intersections produce the variety of loops. If all multiple intersections of each set curve occur193

at one quarter, but the central part has single intersections, we obtain double loops as in Figure 4. This194

result takes place at low temperatures (T ≤ 300[K]), see also [31].195

3.2. Mean per electron magnetization visualization196

After applying a numeric evaluation, we can built ordinary curves by converting two lists197

into the axes of a plot (see Figure 33 at Appendix ). With the decrease of temperature systems198

start intersecting more times, producing curves. Low temperature range – lower than Curie point –199

shows a ferromagnetic pattern behavior, high temperature range – higher than Curie point – shows200

a paramagnetic behavior. That is why the separate algorithmic part is dedicated to paramagnetic201

patterns at high temperature range.202

Going to the ferromagnetism domain, for loops building we firstly need to analyze and transform203

the data in terms of the variable α. The changes are to be done with solution values. This time the204

intersections are rewritten in a new array, as it would allow to assign several values to one index205

number. This array is transformed into the array of sets by convert(array[i], set), where i is the array206

index number. Then, the method of maximums and minimums separation is made by max(set[i]) and207

min(set[i]) as at the Appendix, Figure 32, It makes each set of values to be dissected: from overall208

index set the maximum and the minimum values are rewritten in separate lists.209

The smoothness of obtained hysteresis loops is estimated as well – Figure 33 at Appendix. As we210

can see, the way of patterns rising is directly determined by material thermal energy change, namely211

– by temperature change. The size of a coercive force in α units is directly connected with material212

parameters (number of closest neighbors z, exchange integral J) and temperature too. The pattern of213

loop bifurcation starting point (as it is shown for Nickel – Appendix - Figure 33) is connected with214

critical temperature point – Curie point θ.215

Resulting hysteresis patterns by Heisenberg theory are more rectangular (showing hard216

magnetization patterns), that is why without additional coefficients implication for their deformation,217

they could be adapted for descriptions of some micro-bodies [32], for example: nanowires [33] and218

nanothreads, or groups of materials, which are thermally annealed in magnetic field (p. 856, [34]), as219

their patterns have rectangular nature as well as the models by Heisenberg theory have. With the220

increase of temperature, magnetization hardness gets reduced - Figure 6.221
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Figure 5. Iron deviance reduction by zFe = 9 assumption instead of physically reasoned zFe = 8
(Section 2). It is done by the means of mathematical selection only.

Figure 6. Loops decay smoothness comparison for Cobalt. Left pattern - T = 300[K], the coercive force
α = 1.6. Right pattern - T = 670[K],the coercive force α = 0.45.

As the coercive force – the value of magnetic field strength, needed for full material222

demagnetization – is already mentioned in estimations, let us proceed to the curve of primary223

material magnetization [1]. Before obtaining the pattern of remanent magnetization – our focus,224

the material should be magnetized with external magnetic field application, to move the internal225

material magnetization from zero [6]. Primary curve of material magnetization is built by Heisenberg226

expressions – Figure 7. Its pattern is built by the same methods as ordinary curves in paramagnetic227

cases.228

4. Multi-layer nanoparticle magnetization229

A nanoparticle is the most important object for our investigations, because for small enough230

dimension of a body the domain structure is most simple: it is one-domain case, so it is the main object231

for the Heisenberg model [35,36] . When we go down in the dimension, another question arises, a232

contribution of surface in magnetic properties. A multi-layer model may give an answer for the posed233

question, establishing the border of surface phenomena significance. In the case of physical tasks for234

larger bodies, it is used to omit the surface phenomena due to its small impact [9]; i.e. if the scale of235

an object is bigger than thousands of nanometers. Vice versa, if the scale of an object is of nanoscale236

order, surface phenomena is considered to be accounted [8]. During the developments we divided a237

spherical model of a nanoparticle into several layers, and then fixed, when the surface phenomena238

(in our case – exchange interaction between nanoparticle atoms) causes the impact on magnetization239

pattern. A nanoparticle is divided into the layers by the exchange interaction factor, that is why new240

layers were not subtracted from the previous.241

4.1. Parameters computation for two-layer and three-layer nanoparticles242

For nanoscale magnetism studies we regarded working with spherical nanoparticles, as their
shape is the most convenient for primary estimations due to its uniform central symmetry – Figure 8.
In defining the number of active magnetic electrons we adapted a common formula for a spherical
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Figure 7. Primary magnetization, located in a center of a loop. It is defined simultaneously with
a hysteresis loop by f solve(x) command application. It computes single-valued list for each index,
regardless if exists more intersections than one.

Figure 8. Space spherical division. As it is shown, the grids represent the order of layer division. The
yellow grid shows the inner sphere, which is accounted homogeneous for its parameters values. The
space inside the thick orange grid is segregated, when we define the second layer. The space inside
the rare orange grid is additionally segregated, when the third layer is defined. Without any layer
segregation, phenomena from space outside yellow grid are omitted.

shell volume. It is the representation of an annulus in a three-dimensional case [9], defined as the
subtraction of the smaller nested sphere with radius r2 from the bigger total sphere with radius r1, for
its volume we write:

V =
4
3

πr3
1 −

4
3

πr3
2. (37)

We considered two main configurations of nanoparticle models useful in nanoscale physics: a two-layer243

spherical nanoparticle – Figure 9, and a three-layer spherical nanoparticle – Figure 10. Nonetheless,244

more number of layers can be distinguished using the same principles, illustrated throughout this245

section. In preparing the number of electrons parameter n, we come to calculation of each atomic layer246

consistency.247

Each additional layer has the thickness, equal to the thickness of a mono-atomic layer. The248

approximate diameter of each element atom is taken as an elementary layer unit by d = 2r, where r –249

atom radius. Each element value is represented in Table 3.250
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Table 3. Element radii r values [9]

Element Radius in [pm] Radius in [m]
Iron 156 156·10−12

Nickel 149 149·10−12

Cobalt 152 152·10−12

Figure 9. Two-layer nanoparticle simplification. Number of electrons defining. R – whole nanoparticle
radius, d – element node diameter. B – bulk layer, S – surface layer.

Figure 10. Three-layer nanoparticle model. Number of electrons defining. R – whole nanoparticle
radius, d – element node diameter. B – bulk part, I – intermediate part, S – surface part.

We have obtained needed visual information about particles structure and their size parameters
from Figure 9 and Figure 10. R is a total nanoparticle radius. Moreover, we can establish, that in
implying new layers we just exhale them without additional transformations of previously modeled
ones. There are three number of electrons values, separate for each layer: nB – number of electrons in a
bulk part, located in the center of a particle, nI – number of electrons in an intermediate layer with
the thickness of mono-atomic layer, nS – number of electrons in a surface layer with the thickness of
mono-atomic layer. They are derived transforming (37) for our case:

nB =
4
3 π(R− d)3

d3 =
4
3 πR3 − 4πR2d + 4πRd2 − 4

3 πd3

d3 , (38)

nI =
4
3

π
(R− d)3 − (R− 2d)3

d3 , (39)

nS =
4
3

π
R3 − (R− d)3

d3 = 4π
R2 − Rd + 1

3 d2

d2 . (40)

Then, the most suitable nanoparticle size is established numerically – Table 4. Concluding the251

calculations for Iron two-layer model, we can make an inference, that the most relevant nanoparticle252
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Table 4. Number of electrons comparison for Iron two-layer nanoparticle of various sizes

R in [nm] 1 3 5 10 15 50 100
R in [m] 1 · 10−9 3 · 10−9 5 · 10−9 1 · 10−8 1.5 · 10−8 5 · 10−8 1 · 10−7

nS 93 1045 3030 1.25 · 104 2.84 · 104 3.2 · 105 1.28 · 106

nB 44 2678 14209 1.25 · 105 4.37 · 105 1.69 · 107 1.36 · 108

Figure 11. Establishing the smallest border of nanoparticle multilayer model workability. Blue –
monoatomic layer atoms number, red – central part atoms number. X axis – atoms number, Y axis –
nanoparticle radii. Left and right plots differ in the atoms number range.

size for our modeling is with 5 nm ≥ R ≥ 3 nm. With decreasing the radius up to 1 nanometer, the253

surface layer becomes thicker than the bulk layer – in this case film models are to be applied instead254

of bulk. As for the bigger radius – it lesser causes the impact, that is why up to 100 nanometers it255

gradually becomes inconspicuous – Figure 11.256

The next, microscopic, parameters for nanoparticle division: exchange integral J, number of257

closest neighbors z, and the combined material parameter, composed from J, z and thermal energy kT.258

The last constitutes general material characteristics, as it was mentioned in the Curie magnetization259

section. The evaluation of these group of parameters is done sequentially on the ground of physical260

reasons.261

Analyzing Figure 12, we observe the patterns of exchange interactions parameters. Where the
lines are thicker, the interaction is stronger. As the interaction patterns of a bulk layer (marked red)
fully cover the whole nanoparticle, the exchange integral remains the same as in previous model of
mean magnetization per electron. So we just use the expression, which was primary derived in Curie
region section:

JB =
kθ

2
(1±

√
1− 8

zB
). (41)

It is evaluated through the concrete values; zB is the same as z from mean per electron model. However,
both monoatomic layer exchange patterns (marked blue) and corresponding exchange integrals require
changes. We supposed that the values of exchange integral increases with approximate percentage
ratio. For intermediate layer its value is bigger in 0.15, in surface layer – in 0.25.

JI = JB · 1.15; JS = JB · 1.25. (42)

Analogically it is made for number of closest neighbors for each part, implying the same command
of discarding non-integer numbers parts as in Figure 34 of Appendix. The difference is in other
percentage relation:

zI = zB · 0.75; zS = zI · 0.78, (43)
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Figure 12. Exchange interactions estimation. Red lines – the internal exchange parameter. Blue lines
– the surface exchange parameter. Spheres – nodes, representing each layer. The more outer node
occupies the atom, the less its exchange interaction is compensated. For all edge nodes exchange
interactions occur from one side only. That is why the exchange integral J changes at each layer.

where intermediate layer contains 0.75 of the bulk one, while surface layer contains 0.78 of intermediate.
The percentage in this case is selected to obtain homogeneous decrease of each with accounting the
crystal structure of each material, see Figure 23 and Figure 24 at Appendix. The parameter β is just
separated for each layer - βB, β I , βS, and zB, zI , zS evaluation results are inserted in its evaluation:

βB =
zB JB
kT

; β I =
zI JI
kT

; βS =
zS JS
kT

. (44)

The results of z, J and β particular evaluation are represented in Figure 35 for Cobalt mono-elemental262

nanoparticle (Appendix).263

4.2. Partition functions for two-layer and three-layer nanoparticles264

When all the values are computed and the connection between them is automatically set for each265

case and material, we are to highlight the energy distribution for multilayered nanoparticle and derive266

the partition function for every layer.267

Let the interaction between layers is neglected, except the contributions in neighbours numbers
and exchange integrals value, supposing that the total Hamiltonian of the whole body is just the sum
of Hamiltonians of each layer. Under such assumption the partition function can be separated for both
models (ZI I and ZI I I - index I I for a two-layer nanoparticle, index I I I for a three-layer nanoparticle),
using the property of exponent ea+b = ea · eb:

exp[−ĤII
kT

] = exp[−ĤB
kT
− ĤS

kT
] = exp[−ĤB

kT
] · exp[−ĤS

kT
], (45)
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where ĤII is the Hamiltonian of a two-layer nanoparticle. Hence

ZI I = ZBZS, (46)

and, after implying both of substitutions into Gibbs operator general definition (1), we obtain

1
ZI I

exp[−ĤII
kT

] =
1

ZBZS
exp[−ĤB + ĤS

kT
]. (47)

It leads to the Gibbs operator expression for two layers ĝwII (during this section index "w" is used
for denoting energy levels instead of canonical "n", in order to avoid mixing up with denotation of
electrons number "n"):

ĝwII = ĝwB · ĝwS =
1

ZBZS
exp[−ĤB + ĤS

kT
], (48)

defining energy spectra for each layer, when Hamilton operator is already applied

ZB = ∑
w

exp[
EwB
kT

]; ZS = ∑
w

exp[
EwS
kT

]. (49)

Here EwB – energy spectrum for a bulk layer, EwS – energy spectrum for a surface layer.268

For defining three layers operators we do alike transformations, transforming the general
definition (1) into

1
ZI I I

exp[−ĤIII
kT

] =
1

ZBZI ZS
exp[−ĤB + ĤI + ĤS

kT
]. (50)

As the result, the Gibbs distribution expression for three layers ĝwII I is

ĝwII I = ĝwB · ĝw I · ĝwS =
1

ZBZI ZS
exp[−ĤB + ĤI + ĤS

kT
]. (51)

The connection of the energy spectra with partition function for each layer is given by

ZB = ∑
w

exp[
EwB
kT

]; ZI = ∑
w

exp[
EwI
kT

]; ZS = ∑
w

exp[
EwS
kT

], (52)

EwB – energy spectrum for a bulk layer, EwI – energy spectrum for an intermediate layer, EwS – energy
spectrum for a surface layer. Let us proceed to the connection of obtained transformations. All the
values are included in ξB, ξ I and ξS,that looks identically, for example,

ξB =
α + βB

m[B]
0

nB
− β2

B
m[B]

0
nBzB

+ β2 (m[B]
0 )3

2(nB)3zB

2
. (53)

Hence, the partition function for the corresponding layer reads

ZB = K[2 cosh ξB]
2nB ; ZI = K[2 cosh ξ I ]

2nI ; ZS = K[2 cosh ξS]
2nS . (54)

On this ground, for magnetization variable m0 we have:

m[B]
0 =

∂ ln ZB
∂α

=
∂ ln(K[2 cosh ξB]

2nB)

∂α
, (55)
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the corresponding m[I]
0 , m[S]

0 looks similar. For two-layer spherical nanoparticle the expression (16)
changes the form with substituting the partition function Z2:

m[BS]
0 =

∂ ln Z2

∂α
=

∂ ln ZBZS
∂α

=
∂ ln ZB

∂α
+

∂ ln ZS
∂α

=
∂ ln(K[2 cosh ξB]

2nB)

∂α
+

∂ ln(K[2 cosh ξS]
2nS)

∂α
=

(56)
= nB tanh ξB + nS tanh ξS. (57)

As the result, the expression for m[BS]
0 is derived analogically as in Section 4, for mean magnetization per

electron model. The difference is in number of electrons impact. For three-layer spherical nanoparticle
the expression (16) changes the form with substituting the partition function Z3:

m[BIS]
0 =

∂ ln Z3

∂α
=

∂ ln ZBZI ZS
∂α

=
∂ ln ZB

∂α
+

∂ ln ZI
∂α

+
∂ ln ZS

∂α
= (58)

= nB tanh ξB + nI tanh ξ I + nS tanh ξS, (59)

which demonstrates the possibility of multiple inserting of new layers, if to compare m[BIS]
0 derivation

procedure with the derivation for m[BS]
0 . In building the resultant magnetization patterns, the system

of equations from mean magnetization per electron model (35) is changed into the pairs of systems
like this:

y1 = nB tanh ξB; y2 = m[B]
0 . (60)

The alternative variant, like (36), which is easier for data processing, writes, e.g. as:

y1 = ξB; y2 = arc tanh(
m[B]

0
nB

). (61)

where m[B]
0 , m[I]

0 , m[S]
0 are the variables of different order. Data from each system solution is added by

adding each index value [j] of one layer to the correspondent index value of the other layers. Every
index is marked identically and every array has to have the same number of index values.

m[BS]
0 [j] = m[B]

0 [j] + m[S]
0 [j], (62)

m[BIS]
0 [j] = m[B]

0 [j] + m[I]
0 [j] + m[S]

0 [j]. (63)

The resulting sums m[BS]
0 [j] and m[BIS]

0 [j] are the total magnetization patterns of a two-layer nanoparticle269

and a three-layer nanoparticle. They give us the concrete review of mono-atomic layers impact in total270

nanoparticle magnetization of the given size.271

4.3. Magnetization curves and hysteresis loops for two-layer and three-layer nanoparticles272

4.3.1. Paramagnetic case273

The starting point of a multilayer spherical nanoparticle modeling is in defining m[B]
0 [j]. The274

principles and methods are the same as in the mean per electron model, but have some peculiarities,275

highlighted here. The paramagnetic case for a Cobalt (6 nanometer-sized particle, R = 3[nm]) is276

considered to be the example for a high-temperature modeling part. T = 1200[K]. A bulk layer is277

firstly created separately - Figure 36 at Appendix.278

Though, multiple solutions could occur only in a bulk part, that is why loop occurrence checking279

is done for a bulk layer only. There is given the reason of hysteresis occurrence impossibility.280

Mono-atomic layers parameters, such as exchange integrals J, number of closest neighbors z and281

each layer thickness have different values from a bulk one, denoting less compensated exchange282
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Figure 13. Paramagnetic surface (blue) and intermediate (pink) magnetization patterns creation.
Auxiliary functions show each saturation beginning by intersecting the correspondent curves.
Comparatively with bulk pattern (Figure 36, Appendix) paramagnetic S and I patterns are always
smooth out of parameters peculiarity condition.

interactions. The position of atoms in nodes of intermediate and surface layers do not give needed283

curvature for multiple intersections of functions sets.284

Despite the fact that intermediate and surface layers have the same thickness, peculiarities of285

exchange interactions lead to the consequence in patterns difference. In any case the surface layer286

pattern is less curved, than the intermediate one. On the other hand, the number of electrons in surface287

part is always bigger, which produces greater impact in total nanoparticle magnetization – Figure 13.288

All auxiliary functions are calculated for each curve through the auxiliary function multiplier289

η = 0.04, which is defined through the percentage ratio. It is multiplied on particular layer number of290

electrons n and each value index j. The resultant list of values is discrete, which helps us not only in291

saturation defining, but in magnetization patterns smoothing, which is done further in ferromagnetic292

occurrence sample. Analogical functions can be defined from material peculiarities for particular293

patterns deformations in other physical situations.294

The slope angle of each layer auxiliary function is different, but they show that the saturation295

region of every layer matches for the whole nanoparticle.296

Figure 14 gives the explanation, where ferromagnetic pattern origin is placed at high temperatures297

region. Para- and ferromagnetic patterns are built here by f solve(x) for ordinary curve and solve(x)298

with defining maximum and minimum values similarly as in hysteresis case. As we can conclude,299

both patterns match.300
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Figure 14. Additional patterns analysis. (A) - Corresponding auxiliary functions help in avoiding
incorrect analysis of mono-atomic layers saturation. Comparatively with Figure 13, mono-atomic
magnetizations display is deformed by adding the bulk pattern scale. (B) - Loop occurrence area display.
It shows, where the magnetization pattern of the whole nanoparticle starts producing hysteresis by
reaching ferromagnetic conditions. The paramagnetic pattern and the area of ferromagnetic pattern
emergence must match in high temperature range.

Figure 15. Two-layer and three-layer nanoparticle paramagnetic patterns comparison. Intermediate
layer gives a greater impact in total magnetization pattern. Brown curve – two-layer model. Black
curve – three-layer model.

Then, the comparison of two-layer and three-layer nanoparticle models is done. As it is described301

in Figure 15, the intermediate mono-atomic layer gives a significant impact in total nanoparticle302

magnetization.303

Figure 16 proves, that paramagnetic behavior remains the same in temperature slightly upper304

than the Curie point. On this base we consider this range applicable in practical usage.305

If to visualize nanoparticle size studies (Figure 17),a multi-layer model gives a possibility to define306

mono-atomic layers impact for nanoparticles with various sizes from Table 4, accounting the border307

of film magnetization emergence from Figure 11. An Iron element is determined applicable in such308

situation modeling with zB = 8.309

The represented graph shows the border value of a nanoparticle bulk-significant size, as the bulk310

part starts becoming small relatively to the surface part. In further nanoparticle size decreasing the311

bulk phenomena disappears, in accordance with the general theoretical background (the exchange312

interaction is not compensated in films).313
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Figure 16. (A) - Three-layer paramagnetic patterns for Nickel nanoparticle (R = 3[nm]) at T = 660[K].
Black curve – total nanoparticle magnetization. Orange – bulk. Blue – surface. Pink – intermediate. (B)
- Two-layer and three-layer paramagnetic patterns comparison. T = 700[K]. Red – three-layer total
magnetization. Black – two-layer total magnetization.

Figure 17. (A) - 6 nanometer-sized (R = 3[nm]) and (B) - 10 nanometer-sized (R = 5[nm]) Iron particles
comparison. A two-layer model creation is done. T = 1400[K]. The surface layer significance vastly
differs in a slight nanoparticle size change. The orange curve - a bulk layer impact, the blue curve - a
surface layer impact. ’S’ index - for the surface solution scale, ’B’ index - for the bulk solution scale.
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Figure 18. Ferromagnetic bulk magnetization pattern creation. Intersection display and processing
result.

Figure 19. Ferromagnetic surface (blue) and intermediate (pink) magnetization patterns creation. Grey
auxiliary functions show each saturation. Patterns are more curved than in paramagnetic case, but still
producing single-intersection behavior.

4.3.2. Ferromagnetic case314

Proceeding to the ferromagnetic pattern derivation, we analogically start with the bulk part315

magnetization pattern building – Figure 18. The solution is primary made in a nanoparticle scale,316

though, a large-scaled bulk hysteresis loop is the same as in Figure for mean per electron magnetization.317

T = 300[K]. Material – Nickel.318

Intermediate and surface ferromagnetic patterns differ noticeably, despite the condition, there is319

no hysteresis in mono-atomic nanoparticle layers – Figure 19.320

In a room temperature there are 1-3 multiple intersecting curves in a central region of intermediate321

layer. This number is insignificant comparatively with the whole data array and it is not enough322

for hysteresis loop creation. This fact is considered to be discarded by the virtue of its immateriality,323

though, intermediate hysteresis generation can be established and accounted with increasing of its324

layer thickness.325
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Figure 20. Ferromagnetic magnetization patterns comparison. The mean per electron loop is identical
and can be established by multiplying it on number of electrons in a bulk part. This shows the
connection of unique isolated magnetization of a single atom and the magnetization of a nanoscale
material center.

Figure 21. Two-layer and three-layer nanoparticle ferromagnetic patterns comparison. Intermediate
layer gives a greater impact in total magnetization pattern. Brown curve – two-layer model. Black
curve – three-layer model.

When all the ferromagnetic patterns are defined, let us regard on bulk patterns comparison –326

Figure 20. Due to the low magnitude of processing,the mean magnetization per electron resulting327

pattern is more smooth and concrete. It allows us to replace the bulk hysteresis pattern with the mean328

per electron hysteresis.329

Multi-layer hysteresis of a spherical nanoparticle is to be compared as well. For this aim Figure330

21 is algorithmically built, Figure 22 is made with manual checking to emphasize each separate331

loop pattern changes. Every layer gives not only the impact in a bulk hysteresis, but the total loop332

deformation, which can be interpreted as the one of rectangular loop deformation methods.333

Heisenberg model combination prospective is traced in Appendix, Sec. 6.2.1. The problems that334

appears at computational stage of the hysteresis pattern visualisation, such as appearance of prolapses,335

are posed at Appendix, Subsection 6.5.1, together with subtraction and summation method application,336

see Subsection 6.5.2. The logic and principles of subtraction checking are sufficiently versatile and its337
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Figure 22. R = 3[nm]. Nickel. T = 400[K]. (A) - Three-layer ferromagnetic patterns with showing the
way of each curve changes. Black and brown curves – total nanoparticle magnetization. Red and blue –
bulk layer magnetization. Light-green – surface layer. Silver – intermediate layer. (B) - Single-layer,
two-layer and three-layer ferromagnetic patterns comparison. Red – three-layer total magnetization.
Black – two-layer total magnetization.

methods can be adapted for any functions transformations, not for a narrow range of computational338

tasks.339

5. Conclusion340

We develop the Heisenberg theory and propose its applications. Such a context for the applied341

and computational part of the theory and models motivates us to reproduce the main results and342

additional ingredients of the theory, such as the thermodynamic and statistical physics alternatives.343

We take the basic ferromagnetic metals for the illustration to be close to the known results. The given344

examples, however, show very interesting features of the hysteresis phenomena.345

Basing on obtained results, we consider the following algorithm of magnetization patterns creation346

by the Heisenberg ferromagnetism theory itself and a perspective for further studies and usage:347

magnetization curves and hysteresis loops are successfully produced from transcendental solutions; it348

can be currently used for spherical nanoparticles magnetization modeling and, not less important, it349

can replace approximate or manual theoretical magnetization creations. Note again, that the resulting350

transcendental equations that are used in the magnetization curves computations are obtained at very351

large values of spin, hence the whole problem may be considered at quasiclassical approximation as352

it does in transition to continuous description. All the tasks are fully completed: firstly, a technique353

of theoretical hysteresis loops creation by the Heisenberg theory has been developed from solutions354

of systems of transcendental equations; secondly, an algorithm of theoretical magnetization curves355

and hysteresis loops creation for multi-layer spherical nanoparticles by the Heisenberg theory has356

been built; thirdly, a procedure of the analysis and corrections of theoretical hysteresis loops and357

magnetization curves has been constructed. They all gave a background of overall algorithm joining358

and structuring see also Appendix for the details. Then, the analysis of obtained results is formulated.359

Namely, the magnetization upper Curie temperature is described by a concrete approximation,360

on the ground of which the estimation is done: the magnetization corresponds to the common values361

of material melting and fluently descends (Figure 2), converges with the curve without approximation362

by the same theory.363

The model of multi-layered nanoparticle magnetization is developed and the resulting patterns are364

analyzed. Generally, the patterns accuracy depends on the magnitudes of parameters – for processing365

simplifications several techniques are used. The technique of mean magnetization per electron is366

separated in a corresponding section and the algorithmic part in Appendix. The mean magnetization367

per electron, multiplied on number of electrons, give similar patterns as for a nanoparticle bulk368

part – it simplifies processing and gives more accurate loops (Figure 20). Hysteresis loops of mean369

magnetization per electron or bulk nanoparticle layer correspond to empirical hysteresis loops for370

nanorods by points densities and curvature shapes. For enlarging of loops application diapason (for371
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Figure 23. Defining the number of closest neighbors z for Iron from its crystal structure. Bright-blue
nodes, joined with red crystallographic planes, – cubic crystal system. Green nodes – volume-centered,
located in a center of each cube.

wider range of materials) loop deformation coefficients could be created and applied. The mean372

magnetization per electron gave the next patterns on the example of Iron, Cobalt and Nickel (Figure373

33-App[endix) – Iron element can be described by Heisenberg model as well; though, its pattern374

shows peculiar behavior in the hysteresis beginning range. It could be further fixed. The multi-layer375

magnetization model for a nanoparticle concretely demonstrates the impact of surface layers in total376

magnetization (results for paramagnetic patterns – Figure 15, Figure 16 and Figure 17, results for377

ferromagnetic patterns – Figure 21 and Figure 22). The most relevant nanoparticle radius for layer378

separation is approximately in a range of 3-5 nanometers, where the surface impact is significant, but379

does not exceed the bulk part.380

Additionally, out of high processing magnitudes algorithm sometimes produced imprecise381

patterns areas – the solution is developed and presented too (Figure 43, Appendix). It brought382

us to creation of compound patterns analysis and correction stages, called subtraction and summation383

checking. This procedure and its principles are useful not only in particular patterns correction, but384

in transformations of primary correct patterns, such as curves smoothing, loops divisions etc. It385

opens a prospective of new coefficients defining, for other concrete patterns regions deformations.386

Such coefficients can account domain-wall structure, materials handling specificity etc. Exchange387

interactions, expressed by the exchange integral J play a prominent role in ferromagnetic patterns388

creation, as well as the number of closest neighbors z for each node. The dependence on temperature389

and material characteristics is concrete and accurate by Heisenberg theory. The technique of390

loop maximum/minimum curves separation is convenient and easy-to-use for any other functions391

transformations.392

The overall algorithmic sequence allows applications in general field of hysteresis loops393

construction and analysis. Namely, the issue of hysteresis occurrence is solved numerically, and,394

not less important, the prolapse and peaks generated by discrepancies are controlled and eliminated.395

The example we trace is the hysteresis loops problem, appears in many areas of physical knowledge,396

so the algorithm can be useful in fragmentary reconstructions of other functions. The online available397

variant illustrates several sequences of common particular cases of loops and curves reconstructions398

[27].399

6. Appendix. Problems of computation: methods and details of solution.400

6.1. On number of closest neighbors definition401

Here we put illustrations of the schematic atom positions visualizing, see Figs.23,24.402

6.2. Computation peculiarities and automatizing403

The peculiar step of computation automatizing – producing arrays by Maplesoft worksheet mode,404

as the manual creating of each curve has to be repeated 40 or, even 50 times for each section. First,405
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Figure 24. Defining the number of closest neighbors z for Nickel and Cobalt from their crystal structure.
Bright-blue nodes, joined with red crystallographic planes, - cubic crystal structure. Violet nodes –
face-centered, located in a center of each face.

Figure 25. A temperature array creation by Maplesoft worksheet mode. (A) - The array creation
command input. (B) - The array creation software reply. (C) - Array values evaluation by a sequential
loop operator and recording them into the list. (D) - Array values evaluation software reply. The
numbers for T1 and T2 denote the indexes of each future value. TA – the resultant list of temperature
changing values.

Figure 26. Graphical solution of the Heisenberg model without approximation with changing
temperature over the Curie region (32). T = 1123..1723[K], α = 0.01, n = 1. The set of curves
intersects the line function in descending of m0 values. See Fig. 27 for a close-up view.

we have to create the changing temperature range. It is the simplest array among represented in this406

article, so let us start from its example, see Figure 25. The Figure 25 highlights two main stages of407

temperature array creation. The first stage is the creation of a set of values (A) and (B), which are to408

be evaluated in (C). Firstly, we establish two independent points, then the empty segment between409

them is fulfilled with ordered succession of integers. Index numbers for T1 are specially selected in410

a way, transforming of which in T[j] := j · 20 + θ, give us the needed values. In such a case the first411

suitable number for us was j = 4; it gave the first value of TA list: TA[1] := 1143; (D). Coming back412
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Figure 27. Graphical solution of Heisenberg model without approximation – Close-up view. The
intersecting descends in the arrow direction with temperature increase. Functions tend to infinity at
Curie point. the axis are the same as at Fig. 26.

Figure 28. m0(α) functions arrays and sets creation. (A) - Array creation command input. (B) - Array
creation software reply. (C) - Functions set evaluation by the sequential loop operator. Variant I – (35).
Variant II – (36). The numbers for α1 and α2 denote the integer indexes of each future value. Q1, Q3,
Q5, Q7 – the resultant sets of four corresponding functions. Q3 and Q7 represent functions, which do
not depend on changing α and T.

to intersection points lists creation, we produce the next loop operations, which are similar to the413

programming loops, created in Figure 28.414

Then, after establishing of the borders, the interval between them is fulfilled one by one by other415

sequential indexes. Finally, the sequential loop operator do/od (C) transforms each j index into the416

needed value of α by α · 0.1 operation. The figure 28 has its peculiarity in a compound loop evaluation.417

This time it implies the transformation of a single array into two arrays, the results are recorded in418

two different arrays instead of lists, as the list data type implies one solution for each index, while419

array data type can imply a set of solutions for each index. Composing the second array with so called420

"independent" functions (independent with respect to α and T) is the additional operation, which421

defines the individual intersecting function for every term with ξ1.422

Figure 29 (A) shows the possibility of materials combinations in Heisenberg model. Figure 29 (B)423

shows supplementary information about intersecting functions by β parameter amplifications.424
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Figure 29. (A) - Heisenberg model combination prospective. The model could be used in irregularities
mapping. The following combination is done with two materials – Nickel and Cobalt. Border α values
are evaluated for Nickel, central – for Cobalt. (B) - Functions set mathematical behavior. Curve-to-curve
and line-to-curve variants; α is taken in 0.001 increments for an arbitrary material; β is amplified to 10
for defining the math reasons of a computational hysteresis origin.

Figure 30. Programming loops implication. (A) - α axis creation. (B) - Numeric solutions evaluation.

6.2.1. Heisenberg model combination prospective425

Each index of Q primary array is transformed for evaluating α changing magnetic field imitation.426

The same is done with m0 – main magnetic variable (in computations it is assigned as mD, emphasizing,427

that we work on drafts creation first) – Figure 30. During the mD evaluation, computation records each428

function intersection one by one. It is illustrated in Figure 31. It brings visual prediction if there are429

no multiple solutions. For the manual example the following array Q = array(−25..25, [i]) is chosen.430

The last shows, that there are 51 indexes in a primary array. For convenience, the list of maximum431

values is primary marked as a red curve, the list of minimum values is marked as a blue curve. The432

examples of loop drafts are displayed similarly as in Figure 4. The following graphs are figuratively433

called drafts, as they cover secondary processing and checks, if there occur any mistakes, peaks or434

prolapses. The secondary processing and checking are described in Subtraction checking section below435

(Section 6.3 ). Expressions from (38)-(40) do not need opening the brackets if they are evaluated via436

software. To calculate the number of electrons n by the means of Maple software package, we imply437

the next commands – Figure 34.438

Float(round(Float(x))) commands are put to use in discarding non-integer parts of a number,439

as every n denotes a concrete set of elements nodes, which has to be integer in any cases. eval f (x)440

command is primary intersected in the previous command, forming a compound request.441

The loop occurrence checking repeats Figure 32 procedure, which founds out multiple442

intersections. If there are none, it displays the message (C). This checking insures if the processing is443

done properly from the physical prospective – Figure 37. In case of incorrect operations or previous444

values re-writings it implements the second condition eli f and warns users to restart operation. Such445

conditional loops i f /else and i f /eli f are widely used in subtraction checking section for patterns446

secondary processing - Section 6.3.447
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Figure 31. Solution process display. Left solutions - by (35) system of equations. Right solutions - by
(36) system of equations. The same operation is done numerically in Figure 30 (B). The first pair shows
the single solution for each curve. The second part shows the non-standard case for Iron (analogically
with Figure 4). The third pair shows the homogeneous hysteresis, which gives rectangular loops. All
the resulting patterns are illustrated here – Figure 33

Figure 32. Maximum and minimum values separations. Four programming loops are involved. The
first loop solves the system by command solve(x) instead of f solve(x), which was previously used
in producing ordinary curves. The result is rewritten in a new array. Each array line of values is
transformed by the second programming loop into the set. As the result – functions set is created.
Each set is processed by the third and the fourth loops, when among every set of values, it defines the
biggest and the smallest value.

6.3. On substruction448

The first subtraction stands in defining the module of subtractions of two closest points – Figure449

39. This operation adverts to the magnetization curve pattern and works with its correction. As the450

subtraction is taken by module, all the peaks are presented in a positive part of a coordinate plane,451

relatively to the peak index axis. For now, we need an exact numeric, by which we will divide all the452

peaks into two groups. Low peaks are always proper; the highest peaks are always mistaken. This453

quality follows from the analysis of mistaken graphs – the drop between the closest intersection points454
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Figure 33. Magnetization patterns for Iron, Nickel and Cobalt in various temperatures. With the
temperature decrease appears hysteresis. Each temperature range is written below the correspondent
graph. As we see, Iron gives a fracture loop, as the functions set with ξ1 is too curved to produce
single-valued intersections.

Figure 34. Number of electrons evaluation for each layer. nB – number of electrons for a bulk layer,
nI – number of electrons for an intermediate layer, nS – number of electrons for a surface layer.
A) Commands input order, B) Software reply. The dots after evaluated values denote the order of
discarding non-integer parts of each number.

has to be organic, smooth, as in early presented curves – Figure 42. During the first subtraction we455

need only one numeric value to cut off the peaks over this numeric (marked by brown circle). This456
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Figure 35. Material characteristics evaluation. (A), (C), (D) – command input. (B), (E), (F) – software
reply and evaluation results. Resulting βB, β I , βS are of magnitude 1, JB, JI , JS of order 10−21, which
comports with the Heisenberg theory.

numeric coefficient is calculated through the median of all first subtractions results, multiplied on a457

percentage multiplier – Figure 40. As the prolapses and peaks originate in random, the percentage458

multiplier can fluctuate, depending on the particular case.459

The loop is to be separated into five areas – Figure 43 (B). The first area contains two first460

maximums, again, for avoiding extra processing of non-existent values with indexes, smaller than the461

first index of each array α1. The fifth area contains two last minimums, for avoiding extra processing462

of non-existent values with indexes, bigger than the last index of each array α2. For example, if463

the correction algorithm is to be expanded for more complicated aims, the number of elements in464

a subtraction/sum can be bigger than two, so the number of points, separated in the first and the465

fifth areas, is to be the same. The first subtraction arrangement is clearly illustrated on the difference466

between two curve patterns for Nickel multi-layer model, where the surface pattern is correct and467

the intermediate pattern contains peaks – Figure 41. Then, the division of a single curve could be468

done by the loop borders, if for the same situation both types of patterns are created – Figure 42.469

MaxPeakList and MinPeakList are the assignations of hysteresis loop peak lists, which are created in470

the same manner as in the previous case.471

In central part rebuilding for a single-curve pattern, the smoothness procedure is applied as well.472

It implies deriving new curve points by evaluation the mean value of several closest values of already473

corrected curve and several closest values of a correspondent auxiliary function, which is additionally474

assigned for each curve on the step of drafts creation – Figure 42.475

Three central areas are left to be divided by some borders. Among these parts the subtraction476

modules of two closest maximums and two closest minimums are evaluated separately. On the base of477

each evaluation results, the mean numeric coefficients are derived for both curves. Each coefficient478

is multiplied on a percentage numeric multiplier, which can fluctuate on the assumption of random479
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Figure 36. Paramagnetic bulk magnetization pattern creation. (A) - Intersection display. (B) - Processing
result. (D) - Loop occurrence checking. (C) - Loop occurrence report display. Auxiliary function shows
the saturation beginning by intersecting a magnetization pattern.

Figure 37. Programming loop with conditions i f /eli f .

Figure 38. Defining the peak axis.

Figure 39. Subtraction module defining for each closest pair of points. mID is the analogue of mD
assignment of m0 from previous sections, denoting a single-valued curve points values. Conditional
loop operator i f /eli f used, it works in the same manner as i f /else, but more than 1 condition can be
implied with its usage.

Figure 40. Mistaken peak list creation. The coefficient (marked as brown circle) from Figure 39 is
used for values separation. The borders CurveBoard1 and CurveBoard2 "cut" the curves, for further
separation of correct regions from mistaken regions.

mistakes occurrence – Figure 45. Every value of subtraction module is converted in a list, then this list480

is displayed with representing each module value and each module index.481
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Figure 41. Curve peaks checking on the example of curves from Figure 19. As the curve coefficient
(brown circle) is bigger than the highest peak, the curve is recognized as correct - (A) and (B). In case of
mistakes, the coefficient cuts off the peaks over its value - (C) and (D). The results of reevaluation are
presented in Figure 19, Figure 20 and Figure 21.

Figure 42. Curve smoothing by auxiliary functions (each point is marked as N[j]) and loop borders. As
it is presented, the curves do not have the mistakes, but require smoothing. It is done with the help of
subtraction checking. (A) - Curve parts separation could be done by hysteresis loop division borders
too in case of simultaneous hysteresis and mono-curve occurrence, as it is presented here. (B) and (C):
Here the auxiliary functions from previous sections are used for patterns smoothness calculation. It is
done for mono-curves inside hysteresis loops, but could be used for loops smoothing as well, see also
Sec. 6.4.

This situation is more complicated, comparatively to the single curve pattern, as the original loop482

always gives two correct peaks in areas of maximums/minimums transition from negative to positive483
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Figure 43. Curve and loop divisions. Subtraction checking works with the second region of a single
curve (A) and with the third regions of each loop curves (B).

Figure 44. Loop reflection procedure. BClearMin assigns the curve of loop minimums in this case.
This operation reflects the minimum values into maximums, or vice versa.

Figure 45. (A) - Second subtraction module defining. (B) - Peak coefficients calculation (marked by
black circles). (C) - Peak lists creation for loop maximums and minimums.

(or vice versa). So, we create two corresponding lists of peak indexes and discard these two correct484

peaks from these lists. For maximums: the first peak is always correct, so we discard the first peak485

index from the list of loop maximum peaks. For minimums: the last peak is always correct, so we486

discard the last peak index from the list of loop minimum peaks. Among the region of all other peaks487

(locating in the center), their values are compared with a coefficient: when the coefficient is bigger than488

the peak value, it is not fixed as the border; when the coefficient is smaller than the peak value, it is489

fixed as the potential loop division border and is rewritten in a list of mistaken peaks. This procedure490

is illustrated here – Figure 46.491

6.4. The second subtraction492

The second subtraction could be used for loop division coefficients defining too, as in single-curve493

correction, but loop prolapse usually consists of multiple-pointed regions of mistakes, while a curve494

prolapse consists of one-two mistaken peaks. So, we use another method for loop coefficients495

evaluation – Figure 47.496
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Figure 46. Loop borders defining by peaks. Black peaks show the maximums behavior (red), grey
peaks show the minimums behavior. The first black peak and the last grey peak are correct, that is why
they are not compared with the black point value (peak coefficient). Central peaks are discarded. The
first sample is mean per electron model loop, the second – bulk nanoparticle loop, correction results of
both are presented in Figure 42.

Figure 47. Summation checking. (A) - Summation code sample. (B) - Loop division coefficients
evaluation. (C) - Software reply. First is for mean per electron loop correction, second is for bulk
nanoparticle loop correction. Blue circles are loop division coefficients. The prolapse, which module is
smaller than these coefficients, is discarded. In (C) different percentage multipliers are implied in a loop
division coefficient evaluation, for illustrating the flexibility of subtraction checking procedure. The last
of (C) is the summation for a non-mistaken graph; it shows the prospective of hysteresis deformation;
so the summation checking can be used not only for corrections, but as a deformation procedure of
primary correct curves.

When we defined borders of loop division (four border indexes in total), we obtained, at which497

indexes maximum and minimum patterns will be subdivided (into three parts each pattern). For loop498

division coefficients evaluation, we create the sums of three closest values lists for both curves. Here499

the modules are not relevant, so the sums are just calculated. Three elements in the summation obligate500

us to cut off the first three index values from maximum sum list, and to cut off the last three index501

values from minimum sum list. For central symmetry saving we evaluate the medians of each list,502

then we find the mean value of two medians. This numeric is complemented by percentage multiplier,503

and it is duplicated with minus sign for negative loop values – it is done for saving symmetry too.504
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As it was mentioned before, prolapses and peaks originate randomly, that is why in some cases505

the summations require recheck. For example, when there is only one mistaken peak for the whole506

loop pattern – all the borders match at one value then. The lacking borders can be defined manually,507

but there exists one more computational solution. All the obtained barders are repeatedly processed.508

If all the borders are already defined, algorithm displays the message on a screen, reporting: which509

concrete prolapse part of the whole magnetization pattern is properly processed. If the software lacks510

at least one index – it is immediately created at this step. Each border corresponds to one of two511

α indexes region. If the border has to be in negative α part, the reevaluation is done in negative α512

region only and vice versa. For single curve borders, it finds out the mean of three curve values in513

corresponding α region. The index of each value can be changed, if we want to change the curvature of514

a pattern by applying the other mean value. Then it finds out between which closest values this mean515

value is located. For loop division borders there are two reevaluation situations. If the computing516

lacks at least one coefficient, simply, it finds out the mean among the loop values in corresponding517

α region. Then, it computes, between which closest values this mean is located. If the loop borders518

match – representing the same index, both of indexes are changed into relevant correct loop peaks519

(which were previously discarded). It means, that each loop curve is divided then into three parts by520

its correct peaks – the points, where magnetization pattern changes the sign.521

When all the coefficients and borders are obtained, the whole magnetization pattern is cut by the522

border indexes and the problematic parts are replaced by recently evaluated alternatives. Each pattern523

substitution is reevaluated individually by implying original manual formula. At low magnitudes of524

patterns, the loop reevaluation formulas could contain the mean of 5-6 elements, which produces the525

smoothing. The percentage multiplier from each reevaluation expression could be changed manually,526

in case of new pattern deviation. Though, the programming loop operators contain the replacement527

of values, which are not evaluated yet. It is counted on the repeated usage of this step. For the first528

time of applying – one amount of points is calculated, for the second time of applying the same step –529

lacking amount is calculated, using the results of previous evaluation. The whole algorithm is built530

in a manner, where additional repeating of particular steps does not confuse or break down general531

modeling.532

6.5. Fragmentary reconstruction. Subtraction and summation checking533

6.5.1. Prolapse origin reasoning534

As the graphs by (60) and similar transcendental systems of equations are not an ordinary task535

for software packages, in case of hysteresis, plots are sometimes displayed with prolapses. The536

same situation can happen in mono-curve cases too (corresponding to a paramagnetic magnetization537

pattern).538

This defect occurs with loops as a consequence of nonstandard computation task: during the539

solution of systems, up to 5 intersections for each pair of functions are usually found out. The typical540

task for common transcendental solutions usually implicates less number of intersection points (ex.: 1541

or 2 per curve), easier functions (ex.: trigonometric), or, even, involves the processing of much less542

amount of functions (usually 2-3 functions are processed simultaneously) than the represented variant543

in this work [37]. The current task imitates a detailed change of the magnetic field force, that leads544

to intersecting of two arrays of functions, one of which differ in tiny increments. That is why the545

algorithm omits some points, without accounting them in lists. As the result, the plots can be displayed546

with peaks or prolapses. The other defect, dealing with ordinary single-pointed curves, originates if547

the computation scale is very large. It is hard to process data with huge magnitudes (1029 order, for548

example), especially if the hardware is not primary purposed for this aim.549

It is easy to prove, that the observed peaks and prolapses are built mistakenly. The first evidence550

is - exists the full observable central symmetry of all possible solutions. When the mistaken omission551

happens - the symmetry is contravened. On this ground all the intersections points recording is always552
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done in exclusively one sequence – from α1 to α2. The second evidence is - visual comparison of an553

automatic list of i-points and their manual analogue. Before the development of automatizing, all the554

points were written out by hand, so the first loops were built manually. The last is the reason, why the555

following modeling is recommended to be used in its simplest configurations with small magnitudes.556

It was found out in the result, the matching curves with various scales are identical, so the difference is557

always in their axes scale, not in a shape of graph increments.558

It is important to mention, professional and narrowly targeted for transcendental tasks packages559

should solve the system without highlighted prolapses. If such difficulty still arises, the detailed560

succession how to correct the graphs is outlined here and some recommendations are included as well.561

6.5.2. Fragmentary reconstruction in use. Subtraction and summation checking application in562

magnetization patterns563

The following correction stage is considered to be the most complicated, as it implies complex564

smoothing of the sharpest peaks. Though, all prolapses fixing is recommended to start from here.565

It is called the subtraction and summation check procedure, as several subtractions and566

summations are used throughout problem solution. It implies the division of the whole magnetization567

pattern into segments with the help of coefficients and border indexes. Each coefficient contains a568

percentage multiplier, which provides the possibility of its value easy manual changing. In case of569

checking step improvement, the coefficients can be definitely established on the base of multitude570

prolapsing patterns coefficients generalization.571

Before data converting we are to create the peak axis. It numerates each peak by its index number.572

As it is a draft step of algorithm, we can leave the α axis by the way of subtraction/summation573

argument. The following alternative just makes visualization more precise – Figure 38.574

When correct peaks indexes are rewritten in a new list, our task is to define the borders of curve575

cutting. Each function pattern is cut into several areas. Namely, into four areas, but the fourth area576

always contains only two last points of a list and it is created just for avoiding extra processing of577

not-existent values with indexes, higher than the last index of each array α2 – Figure 43 (A). The other578

three areas are separated by borders in order not to influence the regions after saturation (saturation is579

always precise in every region), during changing the central part. The processing catches the first and580

the last peaks from this list and nominates the next border role for two future borders: index before581

the first peak index and index after the last peak index. Though, both borders have to be centrally582

symmetrical for an ordinary single-pointed curve, so there are some additional operations for border583

reflections, described in the next paragraphs of this section. If the curve draft is primary correct, the584

subtraction checking step can be omitted or both the borders could be set equal to 0 at this step. It585

leads us to "cutting" the correct curve in its center, so the central correction region will contain 0 points.586

The second subtraction and the third procedure (summation) are developed for corrections of587

hysteresis loops. They work analogically to the curve pattern correction. The main difference is in588

separate checking of loop maximums (marked red) and loop minimums (marked blue). The corrections589

can be done for one loop part only, and then it can be reflected, producing the same resulting loop –590

Figure 44.591

However, the aim of this step of work was to develop this checking with its future prospective in592

hysteresis biases modeling as well. Or, even, to forecast such subtraction/summation applications in593

other functions building, without any limitations due to their symmetry.594
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