Preprint
Article

Demineralized Dentine Material Membrane As Barrier Membrane for Bone Regeneration

Altmetrics

Downloads

299

Views

372

Comments

0

Submitted:

16 March 2021

Posted:

17 March 2021

You are already at the latest version

Alerts
Abstract
Mandibular critical size defect (CSD) due to pathological conditions, trauma, and congenital disease can not heal spontaneously and predominantly filled with fibrous tissue. Therefore, a Guided Bone Regeneration (GBR) combined with bone grafting can be performed. The researchers considered using Demineralized Dentin Material Membrane (DDMM) from bovine dentine as an alternative GBR. This study aimed to determine the amount of fibroblast and collagen density after DDMM and bone graft implantation on CSD. Thirty-six Rattus norvegicus rats were used as samples. Mandibular bone defect 5x5 mm was made, then filled with bone graft and covered with Bovine Pericardium Collagen Membrane (BPCM) in the control group and DDMM in the treatment group. Six samples were sacrificed on 7, 14, and 21 days post-surgical for histology examination. There were no significant differences in the amount of fibroblast and collagen density (p-value > 0,05). The amount of fibroblast is lower and the collagen density is higher in treatment group. DDMM has microporosity to prevent connective tissue ingrowth and dentine tubules to allow growth factors release. DDMM and bone graft implantation can reduce the amount of fibroblasts and increase collagen density of CSD which potentially being used as a CSD alternative treatment for bone regeneration.
Keywords: 
Subject: Medicine and Pharmacology  -   Orthopedics and Sports Medicine
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated